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Preface

Knowledge Representationisthe areaof Artificial Intelligence (Al) concerned with
how knowledge can be represented symbolically and manipulated in an automated
way by reasoning programs. It is at the very core of aradical idea about how to
understand intelligence: instead of trying to understand or build brains from the
bottom up, we try to understand or build intelligent behavior from the top down.
In particular, we ask what an agent would need to know in order to behave intelli-
gently, and what computational mechanisms could allow this knowledge to be made
availableto the agent asrequired. Thisbook isintended asatext for an introductory
coursein this area of research.

There are many different ways to approach and study the area of Knowledge
Representation. One might think in terms of a representation language like that of
symbolic logic, and concentrate on how logic can be applied to problemsin Al.
This hasled to courses and research in what is sometimes called “logic-based Al.”
In a different vein, it is possible to study Knowledge Representation in terms of
the specification and development of large knowledge-based systems. From this
line of thinking arise courses and research in specification languages, knowledge
engineering, and what are sometimes called “ontologies.” Yet adifferent approach
thinksof Knowledge Representation in aCognitive Science setting, wherethefocus
ison plausible models of human mental states.

The philosophy of this book is different from each of these. Here, we con-
centrate on reasoning as much as on representation. Indeed, we feel that it is the
interplay between reasoning and representation that makesthefield both intellectu-
ally exciting and relevant to practice. Why would anyone consider arepresentation
scheme that was less expressive than that of a higher-order intensional “kitchen-
sink” logic if it were not for the computational demands imposed by automated
reasoning? Similarly, even the most comprehensive ontology or common sense
knowledge base will remain inert without a clear formulation of how the repre-
sented knowledgeisto be made availablein an automated way to asystem requiring
it. Finally, psychologica models of mental states that minimize the computational
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aspects run the risk of not scaling up properly to account for human level compe-
tence.

Intheend, our view isthat Knowledge Representation isthe study of how what
we know can at the same time be represented as comprehensibly as possible and
reasoned with as effectively as possibly. There is a tradeoff between these two
concerns, which is an implicit theme throughout the book, and explicit in the final
chapter. Although we start with full first-order logic as a representation language,
and logical entailment as the basis for reasoning, thisisjust the starting point, and
a somewhat unredistic one at that. Subsequent chapters expand and enhance the
picture by looking at languages with very different intuitions and emphases, and
approaches to reasoning sometimes quite removed from logical entailment. Our
approach is to explain the key concepts underlying a wide variety of formalisms,
without trying to account for the quirks of particular representation schemes pro-
posed in the literature. By exposing the heart of each style of representation, com-
plemented by a discussion of the basics of reasoning with that representation, we
aim to give the reader a solid foundation for understanding the more detailed and
sophisticated work found in the research literature.

The book is organized as follows. The first chapter provides an overview and
motivation for the whole area. Chapters 2 through 5 are concerned with the ba-
sic techniques of Knowledge Representation using first-order logic in adirect way.
These early chapters introduce the notation of first-order logic, show how it can
be used to represent commonsense worlds, and cover the key reasoning technique
of Resolution theorem-proving. Chapters 6 and 7 are concerned with representing
knowledge in a more limited way, so that the reasoning is more amenable to pro-
cedural control; among the important concepts covered there we find rule-based
production systems. Chapters 8 through 10 deal with a more object-oriented ap-
proach to Knowledge Representation and the taxonomic reasoning that goes with
it. Here we delve into the ideas of frame representations and description logics,
as well as spending time on the notion of inheritance. Chapters 11 and 12 deal
with reasoning that is uncertain or not logically guaranteed to be correct, includ-
ing default reasoning and probabilities. Chapters 13 through 15 deal with forms of
reasoning that are not concerned with deriving new beliefs from old ones, includ-
ing the notion of planning, which is central to Al. Finally, Chapter 16 exploresthe
tradeoff mentioned above.

A course based on the topics of this book has been taught a number of times at
the University of Toronto. The course comprises about 24 hours of lectures and oc-
casional tutorials, and isintended for upper-level undergraduate students or entry-
level graduate students in Computer Science or a related discipline. Students are
expected to have aready taken an introductory coursein Al wherethe larger picture
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of intelligent agents is presented and explored, and to have some working knowl-
edge of symbolic logic and symbolic computation, for example, in Prolog or Lisp.
As part of a program in Al or Cognitive Science, the Knowledge Representation
coursefitswell between abasic coursein Al and research-oriented graduate courses
(on topics like probabilistic reasoning, nonmonotonic reasoning, logics of knowl-
edge and belief, and so on).

A number of the exercises used in the course are included at the end of each
chapter of the book. These exercises focus on the technical aspects of Knowledge
Representation, although it should be possible with this book to consider some
essay-type questions as well. Depending on the students involved, a course in-
structor may want to emphasize the programming questions and de-emphasi ze the
mathematics, or perhaps vice-versa.

Comments and corrections on al aspects of the book are most welcome and
should be sent to the authors.
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Chapter 1

| ntroduction

Intelligence, as exhibited by people anyway, is surely one of the most complex
and mysterious phenomenathat we are aware of. One striking aspect of intelligent
behaviour is that it is clearly conditioned by knowledge: for avery wide range of
activities, we make decisions about what to do based on what we know (or believe)
about theworld, effortlessly and unconsciously. Using what we know inthisway is
so commonplace, that we only really pay attention to it when it is not there. When
we say that someone behaved unintelligently, like when someone uses a lit match
to seeif thereisany gasin acar’s gas tank, what we usually mean is not that there
is something that the person did not know, but rather that the person has failed to
use what he or she did know. We might say: “You weren't thinking!” Indeed, it is
thinking that is supposed to bring what is relevant in what we know to bear on what
we aretrying to do.

One definition of Artificial Intelligence (Al) isthat it is the study of intelligent
behaviour achieved through computational means. Knowledge Representation and
Reasoning, then, is that part of Al that is concerned with how an agent uses what
it knows in deciding what to do. It is the study of thinking as a computational
process. Thisbook isan introduction to that field and the ways that it has invented
to create representations of knowledge, and computational processesthat reason by
manipulating these knowledge representation structures.

If this book is an introduction to the area, then this chapter is an introduction
to the introduction. In it, we will try to address, if only briefly, some significant
questions that surround the deep and challenging topics of the field: what exactly
do we mean by “knowledge,” by “representation,” and by “reasoning,” and why
do we think these concepts are useful for building Al systems? In the end, these
are philosophical questions, and thorny ones at that; they bear considerable inves-
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tigation by those with a more philosophical bent and can be the subject matter of
whole careers. But the purpose of this chapter is not to cover in any detail what
philosophers, logicians, and computer scientists have said about knowledge over
the years; it is rather to glance at some of the main issues involved, and examine
their bearings on Artificial Intelligence and the prospect of a machine that could
think.

1.1 Thekey concepts. knowledge, representation, and
reasoning

Knowledge What is knowledge? Thisis a question that has been discussed by
philosophers since the ancient Greeks, and it is still not totally demystified. We
certainly will not attempt to be done with it here. But to get arough sense of what
knowledgeis supposed to be, it isuseful to look at how wetalk about it informally.

First, observe that when we say something like “John knowsthat ...," wefill
in the blank with a simple declarative sentence. So we might say that “ John knows
that Mary will come to the party” or that “John knows that Abraham Lincoln was
assassinated.” This suggests that, anong other things, knowledge is arelation be-
tween aknower, like John, and aproposition, that is, the ideaexpressed by asimple
declarative sentence, like “Mary will cometo the party”.

Part of the mystery surrounding knowledge is due to the nature of proposi-
tions. What can we say about them? As far as we are concerned, what matters
about propositions is that they are abstract entities that can be true or false, right
or wrong.l When we say that “John knows that p,” we can just as well say that
“John knows that it is true that p.” Either way, to say that John knows something
is to say that John has formed a judgment of some sort, and has come to realize
that the world is one way and not another. In talking about this judgment, we use
propositionsto classify the two cases.

A similar story can be told about a sentence like “John hopes that Mary will
cometo the party.” The same propositionisinvolved, but the relationship John has
toitisdifferent. Verbslike “knows,” “hopes,” “regrets,” “fears,” and “doubts’ al
denote propositional attitudes, relationships between agents and propositions. In
all cases, what matters about the proposition is its truth: if John hopes that Mary

Lstrictly speaking, we might want to say that the sentences expressing the proposition are true
or false, and that the propositions themselves are either factua or non-factual. Further, because of
linguistic features such asindexicals (that is, words whose referents change with the context in which
they are uttered, such as “me” and “yesterday” ), we more accurately say that it is actual tokens of
sentences or their uses in specific contexts that are true or false, not the sentences themselves.
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will cometothe party, then John ishoping that theworld isoneway and not another,
as classified by the proposition.

Of course, there are sentences involving knowledge that do not explicitly men-
tion aproposition. When we say “John knowswho Mary istaking to the party,” or
“John knows how to get there,” we can at least imagine the implicit propositions:
“John knowsthat Mary istaking so-and-so to the party”, or “John knows that to get
to the party, you go two blocks past Main Street, turn left, ...,” and so on. On the
other hand, when we say that John has askill asin “ John knows how to play piano,”
or adeep understanding of someone or something asin “John knows Bill well,” it
isnot so clear that any useful proposition isinvolved. Whilethisis certainly chal-
lenging subject matter, we will have nothing further to say about thislatter form of
knowledge in this book.

A related notion that we are concerned with, however, is the concept of belief.
The sentence “John believes that p” is clearly related to “John knows that p.” We
use the former when we do not wish to claim that John’s judgment about the world
is necessarily accurate or held for appropriate reasons. We sometimes use it when
we feel that John might not be completely convinced. In fact, we have afull range
of propositiona attitudes, expressed by sentences like “John is absolutely certain
that p,” “John is confident that p,” “John is of the opinion that p,” “John suspects
that p,” and so on, that differ only in the level of conviction they attribute. For
now, we will not distinguish amongst any of them. What matters is that they all
share with knowledge a very basic idea: John takes the world to be one way and
not another.

Representation  The concept of representation isas philosophically vexing asthat
of knowledge. Very roughly speaking, representation is arelationship between two
domainswherethefirstismeant to “ stand for” or take the place of the second. Usu-
ally, thefirst domain, the representor, is more concrete, immediate, or accessiblein
some way than the second. For example, adrawing of amilkshakeand ahamburger
on asign might stand for aless immediately visible fast food restaurant; the draw-
ing of acircle with aplus below it might stand for the much more abstract concept
of womanhood; an elected legislator might stand for his or her constituency.

The type of representor that we will be most concerned with here is the formal
symbol, that is, a character or group of them taken from some predetermined al pha-
bet. Thedigit“7,” for example, stands for the number 7, as doesthe group of letters
“VII,” and in other contexts, the words “sept” and “shichi.” Aswith all represen-
tation, it isassumed to be easier to deal with symbols (recognize them, distinguish
them from each other, display them, etc.) than with what the symbols represent. In
some cases, aword like“ John” might stand for something quite concrete; but many
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words, like “love” or “truth,” stand for abstractions.

Of special concern to usiswhen agroup of formal symbols stands for a propo-
sition: “John loves Mary” stands for the proposition that John loves Mary. Again,
the symbolic English sentenceisfairly concrete: it hasdistingui shablepartsinvolv-
ing the 3 words, for example, and a recognizable syntax. The proposition, on the
other hand, is abstract: it is something like a classification of all the different ways
we can imagine theworld to be into two groups. those where John loves Mary, and
those where he does not.

Knowledge Representation, then, isthis: it isthefield of study concerned with
using formal symbols to represent a collection of propositions believed by some
putative agent. Aswewill see, however, we do not want to insist that these symbols
must represent all the propositions believed by the agent. There may very well be
an infinite number of propositions believed, only afinite number of which are ever
represented. It will be the role of reasoning to bridge the gap between what is
represented and what is believed.

Reasoning So what isreasoning? In generdl, it is the formal manipulation of the
symbols representing a collection of believed propositions to produce representa-
tions of new ones. It is here that we use the fact that symbols are more accessible
than the propositions they represent: they must be concrete enough that we can
manipulate them (move them around, take them apart, copy them, string them to-
gether) in such away as to construct representations of new propositions.

The analogy here is with arithmetic. We can think of binary addition as being
a certain formal manipulation: we start with symbols like “1011” and “10,” for
instance, and end up with “1101.” The manipulation here is addition since the
final symbol represents the sum of the numbers represented by the initial ones.
Reasoning is similar: we might start with the sentences “John loves Mary” and
“Mary iscoming to the party,” and after acertain amount of manipulation produce
the sentence “Someone John loves is coming to the party.” We would call this
form of reasoning logical inference because the final sentence represents a logical
conclusion of the propositions represented by the initial ones, as we will discuss
below. According to this view (first put forward, incidentally, by the philosopher
Gottfried Leibnizinthe 17th century), reasoning isaform of calculation, not unlike
arithmetic, but over symbols standing for propositions rather than numbers.

1.2 Why knowledge representation and reasoning?

Why isknowledge evenrelevant at al to Al systems? Thefirst answer that comesto
mind isthat it is sometimes useful to describe the behaviour of sufficiently complex
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systems (human or otherwise) using a vocabulary involving terms like “beliefs,”
“goals,” “intentions,” “hopes,” and so on.

Imagine, for example, playing agame of chess against acomplex chess-playing
program. Inlooking at one of its moves, we might say to ourselves something like
this: “It moved this way because it believed its queen was vulnerable, but still
wanted to attack the rook.” In terms of how the chess-playing program is actually
constructed, we might have said something more like, “ It moved this way because
evaluation procedure P using static evaluation function ¢) returned a vaue of +7
after an alpha-beta minimax search to depth d.” The problem is that this second
description, athough perhaps quite accurate, is at the wrong level of detail, and
does not help us determine what chess move we should make in response. Much
more useful isto understand the behaviour of the programin termsof theimmediate
goals being pursued, relative to its beliefs, long-term intentions, and so on. Thisis
what the philosopher Daniel Dennett calls taking an intentional stancetowardsthe
chess-playing system.

Thisis not to say that an intentional stance is aways appropriate. We might
think of athermostat, to take a classic example, as “knowing” that the room istoo
cold and “wanting” to warm it up. But this type of anthropomorphization is typi-
cally inappropriate: thereisaperfectly workable electrical account of what isgoing
on. Moreover, it can often be quite misleading to describe an Al system in inten-
tional terms: using this kind of vocabulary, we could end up fooling ourselvesinto
thinking we are dealing with something much more sophisticated than it actually
is.

But there’samore basic question: isthiswhat Knowledge Representationisall
about? Isall the talk about knowledge just that—talk—a stance one may or may
not choose to take towards a complex system?

To understand the answer, first observe that the intentional stance says nothing
about what is or is not represented symbolically within a system. In the chess-
playing program, the board position might be represented symbolicaly, say, but
the goal of getting a knight out early, for instance, may not be. Such a goa might
only emerge out of acomplex interplay of many different aspects of the program,
its evaluation functions, book move library, and so on. Yet, we may still choose to
describe the system as “having” this goal, if this properly explainsits behaviour.

Sowhat roleisplayed by asymbolic representation? The hypothesisunderlying
work in Knowledge Representation is that we will want to construct systems that
contain symbolic representations with two important properties. First is that we
(from the outside) can understand them as standing for propositions. Second isthat
the system is designed to behave the way that it does because of these symbolic
representations. Thisis what is called the Knowledge Representation Hypothesis
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by the philosopher Brian Smith:

Any mechanically embodied intelligent process will be comprised of
structural ingredients that a) we as external observers naturally take
to represent a propositional account of the knowl edge that the overall
process exhibits, and b) independent of such external semantic attri-
bution, play a formal but causal and essential rolein engendering the
behaviour that manifests that knowledge.

In other words, the Knowledge Representation Hypothesis implies that we will
want to construct systems for which the intentional stanceisgrounded by designin
symbolic representations. We will call such systems knowledge-based systems and
the symbolic representations involved their knowledge bases (KB's).

1.2.1 Knowledge-based systems

To seewhat a knowledge-based system amountsto, it is helpful to look at two very
simple ProLOG programs with identical behaviour. Consider the first:

printCol our(snow) :- !, wite("lt's white.").
printCol our(grass) :- !, wite("It’s green.").
printCol our(sky) :- !, wite("It's yellow.").
printColour(X) :- wite("Beats ne.").

And hereis an alternate:

printColour(X) :- colour(XY), !,
wite("It’'s "), wite(Y), wite(".").

printColour(X) :- wite("Beats ne.").

col our (snow, white).

col our (sky, yel | ow) .

colour (X, Y) :- madeof (X 2), colour(ZY).

madeof (gr ass, veget ati on).

col our (veget ati on, green).

Observethat both programs are able to print out the colour of variousitems (getting
the sky wrong, as it turns out). Taking an intentional stance, both might be said
to “know” that the colour of snow is white. The crucial point, as we will see,
however, isthat only the second program is designed according to the Knowledge
Representation Hypothesis.
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Consider the clause col our (snow, whi t e), for example. Thisisa sym-
bolic structure that we can understand as representing the proposition that snow is
white, and moreover, we know, by virtue of knowing how the rroLOG interpreter
works, that the system prints out the appropriate colour of snow precisely because
it bumps into this clause at just the right time. Remove the clause and the system
would no longer do so.

There is no such clause in the first program. The one that comes closest isthe
first clause of the program which says what to print when asked about snow. But
we would be hard-pressed to say that this clause literally represents abelief, except
perhaps a belief about what ought to be printed.

So what makes a system knowledge-based, as far as we are concerned, is not
the use of alogica formalism (like PrOLOG), or thefact that it is complex enough
to merit an intentional description involving knowledge, or the fact that what it
believesistrue; rather it isthe presence of aKB, acollection of symbolic structures
representing what it believes and reasons with during the operation of the system.

Much (though not al) of Al involves building systems that are knowledge-
based in thisway, that is, systemswhose ability derivesin part from reasoning over
explicitly represented knowledge. So-called “expert systems’ areavery clear case,
but we aso find KBsin the areas of language understanding, planning, diagnosis,
and learning. Many Al systems are also knowledge-based to a somewhat lesser
extent—some game-playing and high-level vision systems, for instance. And fi-
nally, some Al systems are not knowledge-based at all: low-level speech, vision,
and motor control systems typically encode what they need to know directly in the
programs themselves.

How much of intelligent behaviour needsto be knowledge-based in this sense?
At this point, this remains an open research question. Perhaps the most serious
challenge to the Knowledge Representation Hypothesis is the so-called “connec-
tionist” methodol ogy, which attempts to avoid any kind of symbolic representation
and reasoning, and instead advocates computing with networks of weighted links
between artificial “neurons.”

1.2.2 Why knowledge representation?

So an obvious question arises when we start thinking about the two proLOG pro-
grams of the previous section: what advantage, if any, does the knowledge-based
one have? Wouldn't it be better to “ compile out” the KB and distribute this knowl-
edgeto the proceduresthat need it, aswedid in thefirst program? The performance
of the system would certainly be better. It can only slow a system down to have
to look up factsin a KB and reason with them at runtime in order to decide what
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actions to take. Indeed advocates within Al of so-called “procedural knowledge”
take pretty much this point of view.

When we think about the various skills we have, such as riding a bicycle or
playing a piano, it certainly feelslike we do not reason about the various actionsto
take (shifting our weight or moving our fingers); it seems much more like we just
know what to do, and doit. In fact, if we try to think about what we are doing, we
end up making a mess of it. Perhaps (the argument goes), this applies to most of
our activities, making ameal, getting a job, staying dive, and so on.

Of course, when we first learn these skills, the case is not so clear: it seems
like we need to think deliberately about what we are doing, even riding a bicycle.
The philosopher Hubert Dreyfus first observed this paradox of “expert systems.”
These systems are claimed to be superior precisely because they are knowledge-
based, that is, they reason over explicitly represented knowledge. But novices are
the ones who think and reason, claims Dreyfus. Experts do not; they learn to rec-
ognize and to react. The difference between a chess master and a chess novice is
that the novice needsto figure out what is happening and what to do, but the master
just “sees’ it. For this reason (among others), Dreyfus believes that the devel op-
ment of knowledge-based systems is completely wrong-headed, if it is attempting
to duplicate human-level intelligent behaviour.

So why even consider knowledge-based systems? Unfortunately, no definitive
answer can yet be given. We suspect, however, that the answer will emerge in our
desireto build systemsthat deal with aset of tasksthat isopen-ended. For any fixed
set of tasks, it might work to “compile out” what the system needs to know; but if
the set of tasksis not determined in advance, the strategy will not work. The ability
to make behaviour depend on explicitly represented knowledge seems to pay off
when we cannot specify in advance how that knowledge will be used.

A good example of thisis what happens when we read a book. Suppose we
are reading about South American geography. When we find out for the first time
that approximately half of the population of Peru livesin the Andes, we are in no
position to distribute this piece of knowledge to the various routines that might
eventually require it. Instead, it seems pretty clear that we are able to assimilate
the fact in declarative form for a very wide variety of potential uses. Thisisa
prototypical case of a knowledge-based approach.

Further, from a system design point of view, the knowledge-based approach
exhibited by the second pProLOG program seems to have a number of desirable
features:

o We can add new tasks and easily make them depend on previous knowledge.
In our PROLOG program example, we can add the task of enumerating all
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objects of a given color, or even of painting a picture, by making use of the
KB to determine the colours.

¢ Wecan extend the existing behaviour by adding new beliefs. For example, by
adding a clause saying that canaries are yellow, we automatically propagate
thisinformation to any routine that needsiit.

¢ We can debug faulty behaviour by locating the erroneous beliefs of the sys-
tem. Inthe proLOG example, by changing the clause for the colour of the
sky, we automatically correct any routine that uses colour information.

¢ We can concisely explain and justify the behaviour of the system. Why did
the program say that grasswas green? |t was because it believed that grassis
aform of vegetation and that vegetation is green. We are justified in saying
“because” here since if we removed either of the two relevant clauses, the
behaviour would indeed change.

Overall, then, the hallmark of aknowledge-based system isthat by design it hasthe
ability to be told facts about its world and adjust its behaviour correspondingly.

Thisability to have some of our actions depend on what we believe is what the
cognitive scientist Zenon Pylyshyn has called cognitive penetrability. Consider,
for example, responding to afirealarm. The normal responseisto get up and leave
the building. But we would not do so if we happened to believe that the alarm
was being tested, say. There are any number of ways we might come to this belief,
but they all lead to the same effect. So our response to afire alarm is cognitively
penetrable since it is conditioned on what we can be made to believe. On the other
hand, something like a blinking reflex as an object approaches your eye does not
appear to be cognitively penetrable: even if you strongly believe the object will not
touch you, you still blink.

1.2.3 Why reasoning?

To see the motivation behind reasoning in a knowledge-based system, it sufficesto
observe that we would like action to depend on what the system believes about the
world, as opposed to just what the system has explicitly represented. In the second
PrROLOG example, there was no clause representing the belief that the colour of
grass was green, but we still wanted the system to know this. In general, much of
what we expect to put inaKB will involve quite general facts, which will then need
to be applied to particular situations.
For example, we might represent the following two facts explicitly:
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1. Patient z isalergic to medication m.
2. Anyone alergic to medication m is also alergic to medication m’.

Intrying to decide if it is appropriate to prescribe medication ' for patient =, nei-
ther represented fact answers the question. Together, however, they paint a picture
of aworld where z isallergic to m’, and this, together with other represented facts
about alergies, might be sufficient to rule out the medication. So we do not want to
condition behaviour only on the represented facts that we are able to retrieve, like
in adatabase system. The beliefs of the system must go beyond these.

But beyond them to where? Thereis, as it turns out, a simple answer to this
guestion, but one which, as we will discuss many times in subsequent chapters,
is not always practical. The simple answer is that the system should believe p if,
according to the beliefs it has represented, the world it isimagining is one where
p istrue. Inthe above example, facts (1) and (2) are both represented. If we now
imagine what the world would be like if (1) and (2) were both true, then thisisa
world where

3. Patient z isalergic to medication m’

isalso true, even though this fact is only implicitly represented.

This is the concept of logical entailment: we say that the propositions repre-
sented by a set of sentences S entail the proposition represented by a sentence p
when the truth of p isimplicit in the truth of the sentencesin 5. In other words, if
the world is such that every element of .5 comes out true, then p does as well. All
that we require to get some notion of entailment is a language with an account of
what it means for a sentence to be true or false. Aswe argued, if our representa-
tion language is to represent knowledge at all, it must come with such an account
(again, to know p is to take p to be true). So any knowledge representation lan-
guage, whatever other features it may have, whatever syntactic form it may take,
whatever reasoning procedures we may define over it, ought to have awell-defined
notion of entailment.

The simple answer to what beliefs a knowledge-based system should exhibit,
then, isthat it should believe all and only the entailments of what it has explicitly
represented. The job of reasoning, then, according to this account, is to compute
the entailments of the KB.

What makes this account smplistic is that there are often quite good reasons
not to calculate entailments. For one thing, it can be too difficult computationally
to decide which sentences are entailed by the kind of KB we will want to use.
Any procedure that always gives us answers in a reasonable amount of time will
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occasionally either miss some entailments or return some incorrect answers. Inthe
former case, the reasoning process is said to be logically incomplete; in the latter
case, the reasoning is said to be logically unsound.

But there are al so conceptual reasonswhy we might consider unsound or incom-
plete reasoning. For example, suppose p isnot entailed by aKB, but isareasonable
guess, given what is represented. We might still want to believe that p istrue. To
use aclassic example, supposeall | know about an individual Tweety isthat sheisa
bird. I might have anumber of facts about birdsin the KB, but likely none of them
would entail that Tweety flies. After all, Tweety might turn out to be an ostrich.
Nonetheless, it is a reasonable assumption that Tweety flies. Thisis logicaly un-
sound reasoning since we can imagine aworld where everything in the KB istrue
but where Tweety does not fly.

Alternately, a knowledge-based system might come to believe a collection of
facts from various sources which, taken together, cannot al be true. In this case,
it would be inappropriate to do logically complete reasoning, since then every sen-
tence would be believed: because there are no worlds where the KB istrue, every
sentence p will betrividly true in all worlds where the KB is true. Anincomplete
form of reasoning would clearly be more useful here until the contradictions were
dealt with, if ever.

But despite al this, it remains the case that the simplistic answer is by far the
best starting point for thinking about reasoning, evenif weintend to divergefromit.
So while it would be a mistake to identify reasoning in a knowledge-based system
with logically sound and complete inference, it is the right place to begin.

1.3 Theroleof logic

The reason logic is relevant to knowledge representation and reasoning is simply
that, at least according to one view, logic is the study of entailment relations—
languages, truth conditions, and rules of inference. Not surprisingly, we will bor-
row heavily from the tools and techniques of formal symbolic logic. Specifically,
we will use as our first knowledge representation language a very popular logical
language, that of the predicate calculus, or as it sometimes called, the language
of first-order logic (FOL). This language was invented by the philosopher Gottlob
Frege at the turn of the (twentieth) century for the formalization of mathematical
inference, but has been co-opted for knowledge representation purposes.

It must be stressed, however, that FOL itself is also just a starting point. We
will have good reason in what followsto consider subsets and supersets of FOL, as
well as knowledge representation languages quite different in form and meaning.
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Just as we are not committed to understanding reasoning as the computation of
entailments, even when we do so, we are not committed to any particular language.
Indeed, aswe shall see, certain representation languages suggest forms of reasoning
that go well beyond whatever connections they may have ever had with logic.

Wherelogic really does pay off from a knowledge representation perspectiveis
at what Allen Newell hascalled the knowledge level. Theideaisthat we can under-
stand aknowledge-based system at two different levels (at least). At theknowledge
level, we ask questions concerning the representation language and its semantics.
At the symbol level, on the other hand, we ask questions concerning the computa-
tional aspects. Thereareclearly issues of adequacy at each level. Atthe knowledge
level, we deal with the expressive adequacy of a representation language and the
characteristics of its entailment relation, including its computational complexity;
at the symbol level, we ask questions about the computational architecture and the
properties of the data structures and reasoning procedures, including their algorith-
mic complexity.

The tools of formal symbolic logic seem ideally suited for a knowledge level
analysis of aknowledge-based system. In the next chapter, we begin such an anal-
ysis using the language of first-order logic, putting aside for now all computational
concerns.

1.4 Bibliographic notes

15 Exercises
These exercises are all taken from [4].

1. Consider atask requiring knowledge like baking a cake. Examine a recipe
and state what needs to be known to follow the recipe.

2. In considering the distinction between knowledge and belief in this book,
we take the view that belief is fundamental, and that knowledge is simply
belief where the outside world happens to be cooperating (the belief is true,
isarrived at by appropriate means, is held for the right reasons, and so on).
Describe an interpretation of the terms where knowledge istaken to be basic,
and belief isunderstood in terms of it.

3. Explainin what sense reacting to aloud noiseis and is not cognitively pen-
etrable.
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4. It has become fashionable to attempt to achieve intelligent behaviour in Al
systemswithout using propositional representations. Speculate on what such
asystem should do when reading a book on South American geography.

5. Describe some ways in which the first-hand knowledge we have of some
topic goes beyond what we are able to write down in a language. What ac-
counts for our inability to express this knowledge?
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Chapter 2

The Language of First-Order
Logic

Before any system aspiring to intelligence can even begin to reason, learn, plan,
or explain its behaviour, it must be able to formulate the ideas involved. You will
not be able to learn something about the world around you, for example, if it is
beyond you to even express what that thing is. So we need to start with alanguage
of some sort, in terms of which knowledge can be formulated. In this chapter, we
will examine in detail one specific language that can be used for this purpose: the
language of first-order logic, or FOL for short. FOL is not the only choice, but is
merely asimple and convenient one to begin with.

2.1 Introduction

What does it mean to “have” alanguage? Once we have a set of words, or a set of
symbols of some sort, what more is needed? Asfar as we are concerned, there are
three things:

1. syntax: we need to specify which groups of symbols, arranged in what way,
are to be considered properly formed. In English, for example, the string
of words “the cat my mother loves’ is a well-formed noun phrase, but “the
my loves mother cat” is not. For knowledge representation, we need to be
especially clear about which of these well-formed strings are the sentences
of the language, since these are what express propositions.

2. semantics: we need to specify what the well-formed expressions are sup-
posed to mean. Some well-formed expressions like “the hard-nosed decimal

(©2003 R. Brachman andH. Levesque July 17, 2003 16

holiday” might not mean anything. For sentences, we need to be clear about
what idea about the world is being expressed. Without such an account, we
cannot expect to say what believing one of them amounts to.

3. pragmatics. we need to specify how the meaningful expressions in the lan-
guageareto beused. In English, for example, “ Thereissomeoneright behind
you” could be used as awarning to be careful in some contexts, and arequest
to move in others. For knowledge representation, this involves how we use
the meaningful sentences of arepresentation language as part of aknowledge
base from which inferences will be drawn.

These three aspects apply mainly to declarative languages, the sort we use to rep-
resent knowledge. Other languages will have other aspects not discussed here, for
example, what the words sound like (for spoken languages), or what actions are
being called for (for imperative languages).

We now turn our attention to the specification of FOL.

2.2 Thesyntax

In FOL, there are two sorts of symbols: the logical ones, and the non-logical ones.
Intuitively, the logical symbols are those that have a fixed meaning or use in the
language. There are three sorts of logical symbols:

1. punctuation: “(“,“)”, and“.”.

2. connectives: “=", “A”, “Vv”, “3", “¥", and “=". Note the usual interpreta-
tion of these logical symbols: — islogical negation, A islogical conjunction
(“and”), v islogica digunction (“or"), 3 means “there exists. ..,” V means
“forall...”, and =islogica equality. ¥ and 3 are called “quantifiers.”

3. variables: an infinite supply of symbols, which we will denote hereusing =,
y and z, sometimes with subscripts and superscripts.

The non-logical symbols are those that have an application-dependent meaning or
use. In FOL, there are two sorts of non-logical symbols:

1. function symbols, an infinite supply of symbols, which we will denote using
a, b, e, f,g,and h, with subscripts and superscripts.

2. predicate symbols, aninfinite supply of symbols, which wewill denote using
P, () and R, with subscripts and superscripts.

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 17

One distinguishing feature of non-logical symbols is that each one is assumed to
have an arity, that is, a non-negative integer indicating how many “arguments” it
takes. (This number is used in the syntax of the language below.) It is assumed
that there is an infinite supply of function and predicate symbols of each arity. By
convention, «, b, ¢ are only used for function symbols of arity 0, which are called
constants, and ¢ and h are only used for function symbols of non-zero arity. Pred-
icate symbols of arity 0 are sometimes called propositional symbols.

If you think of thelogical symbols asthe reserved keywords of aprogramming
language, then non-logical symbols are like its identifiers. For example, we might
have“Dog” asapredicate symbol of arity 1, “OlderThan” asapredicate symbol of
arity 2, “bestFriend” asafunction symbol of arity 1, and “johnSmith” asa constant.
Note that we aretreating “=" not as a predicate symbol, but asalogica connective
(unlike the way that it is handled in some logic textbooks).

There are two types of legal syntactic expressionsin FOL: terms and formulas.
Intuitively, atermwill be used to refer to something intheworld, and aformulawill
be used to express a proposition. The set of terms of FOL isthe least set satisfying
these conditions:

e every variableisaterm;

o ifty,..., 1, areterms, and f isafunction symbol of arity n,
then f(t1,...,t,) isaterm.

The set of formulas of FOL isthe least set satisfying these constraints:

o ifty,...,t, areterms, and P isapredicate symbol of arity »,
then P(t1,...,t,) isaformula;

o if 11 and ¢, areterms, then ¢, = ¢, isaformula;

o if a and g are formulas, and = isvariable, then —a, (a A 8), (o V §), Vz.a,
and Jz.«a are formulas.

Formulas of the first two types (containing no other simpler formulas) are caled
atomic formulas or atoms.

At this point, it is useful to introduce some notational abbreviations and con-
ventions. First of al, wewill add or omit matched parentheses and periods freely,
and also use square and curly brackets to improve readability. In the case of pred-
icates or function symbols of arity 0, we will usualy omit the parentheses since
there are no arguments to enclose. We will also sometimes reduce the parentheses
by assuming that A has higher precedencethan v (theway x has higher precedence
than +).
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By the propositional subset of FOL, we mean the language with no terms, no
guantifiers, and where only propositional symbols are used. So, for example,

(PA=(QVR)),

where P, @, and R are propositional symbols, would be a formulain this subset.
We also use the following abbreviations:

o (D g)for (—a v j), and
o (= g)for ((a D B)A (S D a))

We also need to discuss the scope of quantifiers. We say that a variable oc-
currence is bound in a formulaif it lies within the scope of a quantifier, and free
otherwise. That is, = appears bound if it appearsin asubformulaVz.« or 3z« of
the formula. So, for example, in aformulalike

Vy.P(z) A Je[P(y) v Q(2)],

the first occurrence of the variable z is free, and the final two occurrences of = are
bound; both occurrences of y are bound. If z isavariable, ¢t isaterm, and o isa
formula, we use the notation o to stand for the formulathat results from replacing
all free occurrences of z in « by ¢. If ¥ is a sequence of variables, ¢is a sequence
of constants of the same length, and « is a formulawhose free variables are among
those in &, then o[Z] means « itself and a[¢] means a with each free z; replaced
by the corresponding c;.

Finally, asentence of FOL isany formulawithout free variables. The sentences
of FOL are what we use to represent knowledge, and the rest is merely supporting
syntactic machinery.

2.3 Thesemantics

As noted above, the concern of semantics is to explain what the expressions of a
language mean. Asfar as we are concerned, this involves specifying what claim a
sentence of FOL makes about the world, so that we can understand what believing
it amounts to.

Unfortunately, thereisabit of aproblem here. We cannot realistically expect to
specify once and for all what a sentence of FOL means, for the simple reason that
the non-logical symbols are used in an application-dependent way. | might use the
constant “john” to mean one individual, and you might use it to mean another. So
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there’s no way we can possibly agree on what the sentence “Happy(john)” claims
about theworld, even if we were to agree on what “Happy” means.

But here is what we can agree to: the sentence “Happy(john)” claims that the
individual named by “john” (whoever that might be) has the property named by
“Happy” (whatever that might be). In other words, we can agree once and for all
on how the meaning of the sentence derives from the interpretation of the non-
logical symbolsinvolved. Of course, what we have in mind for these non-logical
symbols can be quite complex and hard to make precise. For example, our list of
non-logical symbols might include termslike

DemocraticCountry, IsABetterJudgeOfCharacterThan,
favouritelceCreamFlavourOf, puddleOfwater27,

and the like. We should not (and cannot) expect the semantic specification of FOL
to tell us precisely what terms like these mean. What we are after, then, isaclear
specification of the meaning of sentences as a function of the interpretation of the
predicate and function symbols.

To get to such a specification, we take the following (simplistic) view of what
the world could be like:

There are objectsin the world.

For any predicate P of arity 1, some of the objects will satisfy P and
some will not. An interpretation of P settles the question, deciding
for each object whether it has or does not have the property in ques-
tion. (So borderline cases are ruled in separate interpretations: in one,
it has the property; in another it does not.) Predicates of other arity
are handled similarly. For example, an interpretation of a predicate of
arity 3 decides on which triples of objects stand in the ternary relation.
Similarly, afunction symbol of arity 3isinterpreted asamapping from
triples of objectsto objects.

No other aspects of the world matter.

The assumption madein FOL isthat thisisall you need to say regarding the mean-
ing of the non-logical symbols, and hence the meaning of all sentences.

For example, we might imagine that there are obj ects that include people, coun-
tries, and flavours of ice cream. The meaning of “DemocraticCountry” in somein-
terpretation will be no more and no less than those objects that are countries that
we consider to be democratic. We may disagree on which those are, of course,
but then we are simply talking about different interpretations. Similarly, the mean-
ing of “favouritelceCreamFlavourOf” would be a specific mapping from people to
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flavours of ice cream (and from non-people to some other arbitrarily chosen object,
say). Notethat asfar as FOL is concerned, we do not try to say what “Democrat-
icCountry” means the way a dictionary would, in terms of free elections, represen-
tative governments, majority rule, and so on; al we need to say is which objects
are and are not democratic countries. Thisis clearly asimplifying assumption, and
other languages would handle the terms differently.

231 Interpretations

Meanings are typically captured by specific interpretations, and we can now be
precise about them. An interpretation S in FOL isapair (D, Z) where D is any
non-empty set of objectscalled thedomain of theinterpretation, and Z isamapping
caled the interpretation mapping from the non-logical symbols to functions and
relations over D, as described below.

It isimportant to stress that an interpretation need not only involve mathemat-
ical objects. D can be any set, including people, garages, numbers, sentences, fair-
ness, unicorns, chunks of peanut butter, situations, and the universe, among others
things.

The interpretation mapping Z will assign meaning to the predicate symbols as
follows:. to every predicate symbol P of arity n, Z[ P] isan n-ary relation over D;
that is,

I[PICDx---xD.
times
So for example, consider a unary predicate symbol Dog. Here, Z[Dog] would be
some subset of D, presumably the set of dogs in that interpretation. Similarly,
Z[OlderThan] would be some subset of [D x D], presumably the set of pairs of
objectsin D where the first element of the pair is older than the second.

The interpretation mapping Z will assign meaning to the function symbols as

follows: to every function symbol f of arity », Z[ f] is an n-ary function® over D;
that is,
So for example, Z[bestFriend] would be some function [P — D], presumably
the function that maps a person to his or her best friend (and does something rea-
sonable with non-persons). Similarly, Z[johnSmith] would be some element of D,
presumably somebody called John Smith.

Here and subsequently, mathematical functions are taken to be total.
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It is sometimes useful to think of the interpretation of predicates in terms of
their characteristic function. Inthis case, when P isa predicate of arity n, we view
ZI[P] asan n-ary functionto {0, 1}:

I[Pl €[D x---x D — {0,1}].

The relationship between the two specificationsis that atuple of objectsis consid-
ered to bein therelation over D if and only if the characteristic function over those
objects has value 1. This characteristic function also allows us to see more clearly
how predicates of arity O (i.e., the propositiona symbols) are handled. In this case,
Z[P] will be either 0 or 1. We can think of the first one as meaning “false” and the
second “true.” For the propositional subset of FOL, we can ignore D compl etely,
and think of an interpretation as simply being a mapping Z from the propositional
symbolsto either O or 1.

2.3.2 Denotation

Given an interpretation & = (D, 7), we can specify which elements of D are de-
noted by any variable-free term of FOL. For example, to find the object denoted
by the term “bestFriend(johnSmith)” in , we use 7 to get hold of the function
denoted by “bestFriend”, and then we apply that function to the element of D de-
noted by “johnSmith,” producing some other element of D. To deal with terms
including variables, we also need to start with a variable assignment over D, that
is, amapping from the variables of FOL to the elementsof D. Soif p isavariable
assignment and = isavariable, u[z] will be some element of the domain.

Formally, given an interpretation 3 and variable assignment , the denotation
of term ¢, written ||¢||s, ., is defined by these rules:

1. if z isavariable, then ||z||s . = plz];
2. ifty,...,t, areterms, and f isafunction symbol of arity », then
11,5 ta)l
where F = Z[f], and d; = ||t;||s,u-

RN =f(dlv"'sdn)

Observe that according to these recursive rules, ||t||s ,, is always an element of D.

2.3.3 Satisfaction and models

Given an interpretation & = (D,7), and the || - |5, relation defined above, we
can now specify which sentences of FOL are true and which false according to this
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interpretation. For example, “Dog(bestFriend(johnSmith))” would be true in < iff
the following holds. we use Z to get hold of the subset of D denoted by “Dog” and
the object denoted by “bestFriend(johnSmith)”, and then we say that the sentenceis
true when that object isin the set. To deal with formulas containing free variables,
we again use a variable assignment, as above.

More formally, given an interpretation & and variable assignment p, we say
that the formula« is satisfied in S, written , ¢ | a according to these rules:

Assumethat ¢4, ...,t, areterms, P isapredicate of arity n, « and 3
areformulas, and = isavariable.

1 Q,pE P(tg,....t,) iff (d1,...,d,) € P,whereP =Z[P], and
di = [t |55

. 3,,& ': t1 =17 iff ||t1H3-M and th

3,u arethe same element of D;
3, 1 F e iff itisnotthe casethat S, i E a;
LS E@Ap)iff S,pEaand S p E S

.S, E(avp) iff S uFEaorS, uF S (orboth);

o oA W N

. S, p FE e iff S, u' F a, for somevariable assignment 1/ that differsfrom
©onat most z;

7. S, u FVe.a iff S, 4’ Fa, forevery variableassignment ./ that differsfrom
4 onat most .

When theformula « isasentence, it is easy to see that satisfaction does not depend
on the given variable assignment (recall that sentences do not have free variables).
In this case, we write S | « and say that a istruein the interpretation <, or that
« isfalse otherwise. In the case of the propositional subset of FOL, it is sometimes
convenient to write Z[«] = 1 or Z[«] = 0 according to whether Z F « or not. We
will also use the notation S F 5, where S isaset of sentences, to mean that all of
the sentencesin S aretruein . We say in this case that S isalogical model of 5.

24 Thepragmatics
The semantic rules of interpretation above tell us how to understand precisely the

meaning of any term or formula of FOL in terms of adomain and an interpretation
for the non-logical symbols over that domain. What is less clear, perhaps, is why
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anyone interested in Knowledge Representation should care about this. How are
we supposed to use this language to represent knowledge? How is a knowledge-
based system supposed to reason about concepts like “ DemocraticCountry” or even
“Dog” unlessitissomehow given theintended interpretation to start with? And how
could we possibly “give” a system an interpretation, which could involve (perhaps
infinite) sets of honest-to-goodness objects like countries or animals?

241 Logical consequence

To answer these questions, we first turn to the notion of logical consequence. Ob-
serve that although the semantic rules of interpretation above depend on the in-
terpretation of the non-logical symbols, there are connections among sentences of
FOL that do not depend on the meaning of those symbols.

For example, let « and 5 be any two sentences of FOL, and | et y be the sentence
=(8 A —a). Now suppose that S is any interpretation where « is true. Then, by
using the rules above, we can see that v must be also true under thisinterpretation.
This does not depend on how we understand any of the non-logical symbolsin « or
5. Aslong as e comes out true, v will aswell. In a sense, thetruth of v isimplicit
in the truth of «. We say in this case, that v isalogical consequence of «.

More precisely, let 5 be aset of sentences, and o any sentence. We say that «
isalogical consequence of §, or that S logically entails a, which we write 5 F «
iff for every interpretation S, if & F 9 then S | a. In other words, every model
of 5 satisfies . Yet another way of saying thisisthat thereis no interpretation &
where § £ 5 U {-a}. Wesay, in this case, that the set 5 U {-a} isunsatisfiable,

Asaspecia case of this definition, we say that a sentence « islogically valid,
which we write F a, when it isalogica consequence of the empty set. In other
words, « isvalid if and only if, for every interpretation 3, we have that 3  « or,
in still other words, iff the set {—«} isunsatisfiable.

Itisnot too hard to seethat not only is validity aspecial case of entailment, but
finite entailment isalso aspecial case of validity. That is, if § = {a1,...,a,}, then
S F e iff thesentence[(a1 A -+ - A @) D a] isvdid.

242 Whywecare

Now let us re-examine the connection between knowledge-based systems and log-
ical entailment, sincethisisat the root of Knowledge Representation.

What we are after isasystem that can reason. Given something likethe fact that
Fidoisadog, it should be able to conclude that Fido isalso amammal, acarnivore,
and so on. In other words, we are imagining a system that can be told or learn a
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sentence like “Dog(fido)” that is true in some user-intended interpretation, and that
can then come to believe other sentences true in that interpretation.

A knowledge-based systemwill not and cannot have accessto theinterpretation
of the non-logical symbols itself. Aswe noted, this could involve infinite sets of
real objects quite outside the reach of any computer system. So aknowledge-based
systemwill not be ableto decidewhat to believe by using therulesaboveto evaluate
the truth or falsity of sentences in this intended interpretation. Nor can it simply
be “given” the set of sentences true in that interpretation as beliefs, since, among
other things, there will be infinitely many such sentences.

However, suppose a set of sentences ' entails a sentence «. Then we do know
that whatever the intended interpretation is, if .S happens to be true in that inter-
pretation, then so must be . If the user imagines the world satisfying 5 according
to her understanding of the non-logical symbols, then it satisfies « as well. Other
non-entailed sentences may or may not be true, but a knowledge-based system can
safely conclude that the entailed ones are. If wetell our system that “ Dog(fido)” is
true in the intended interpretation, it can safely conclude any other sentence that is
logical entailed, such as “—-Dog(fido)” and “(Dog(fido) vV Happy(john),” without
knowing anything else about that interpretation.

But who cares? These conclusions are logically unassailable of course, but not
the sort of reasoning wewould likely beinterested in. In asense, logical entailment
gets usnowhere, sinceall we are doing isfinding sentencesthat are already implicit
in what we were told.

Aswe said, what we really want is a system that can go from “Dog(fido)” to
conclusions like “Mammal(fido),” and on from there to other interesting animal
properties. Thisis no longer logical entailment, however: there are interpretations
where " Dog(fido)” istrue and “Mammal(fido)” isfalse. For example, let S = (D, T)
be an interpretation where for some dog d, P = {d}, for every predicate P other
than “Dog”, Z[ P] = {}, whereZ[Dog] = {d}, and wherefor every function symbol
A ZIf1d, ..., d) = d. Thisisan interpretation where the one and only dog is not a
mammal. So the connection between the two sentencesis not astrictly logical one.

The key idea of knowledge representation isthis: to get the desired connection
between dogs and mammals, we need to include within the set of sentences S a
statement connecting the non-logical symbolsinvolved. In this case, the sentence

Vz.Dog(z) D Mammal(z)

should be an element of 5. With this universal and “Dog(fido)” in .5, we do get
“Mammal(fido)” asalogical consequence. We will examine claims of logical con-
sequence like this one in more detail later. But for now, note that by including this
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universal asone of the premisesin .5, werule out interpretations like the one above
where the set of dogs is not a subset of the set of mammals. If we then continue
to add more and more sentences like this to .5, we will rule out more and more
unintended interpretations, and in the end, logical consequence itself will start to
behave much more like “truth in the intended interpretation.”

This, then, is the fundamental tenet of knowledge representation:

Reasoning based on logical consequence only allows safe, logically
guaranteed conclusions to be drawn. However, by starting with arich
collection of sentences as given premises, including not only facts
about particulars of the intended application, but also those express-
ing connections among the non-logical symbols involved, the set of
entailed conclusions becomes a much richer set, closer to the set of
sentences true in the intended interpretation. Calculating these entail-
ments thus becomes more like the form of reasoning we would expect
of someone who understood the meaning of the terms involved.

In asense, thisisall thereis to knowledge representation and reasoning; therest is
just details.

2.5 Explicit and implicit belief

The collection of sentences given as premises mentioned above is what we called
a knowledge base or KB in the previous chapter: in our case, a finite set of sen-
tences in the language of FOL. The role of a knowledge representation system, as
discussed before, is to calculate entailments of this KB. We can think of the KB
itself as the beliefs of the system that are explicitly given, and the entailments of
that KB asthe beliefs that are only implicitly given.

Just because we are imagining a “rich” collection of sentences in the KB, in-
cluding the intended connections among the non-logical symbols, we should not
be misled into thinking that we have done all the work, and that there is no real
reasoning left to do. Aswe will seein an example below, it is often non-trivial to
move from explicit to implicit beliefs.

251 Anexample

Consider the following example, illustrated in Figure 2.1. Suppose we have three
coloured blocks stacked on atable, where thetop oneisgreen, the bottom oneisnot
green, and the colour of the middle block is not known. The question to consider
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Figure 2.1: A stack of three blocks

A «~———— (green
B
C «~——— notgreen

is whether there is a green block directly on top of a non-green one. The thing
to observe about this question is that the answer (which happens to be yes) is not
immediately obvious without some thinking.

We can formalize this problem in FOL, using «a, b, and ¢, as the names of the
blocks, and predicate symbols G and O to stand for “green” and “on”. Then the
factswe havein S are

{0(a.0),0(b, ), G(a), ~G(c)}

and thisis al we need. The claim we make hereis that these four facts entail that
there isindeed a green block on top of a non-green one, that is, that 5 = «, where
ais

J23y.G(z) A ~G(y) A O(z, y).

To see this, we need to show that any interpretation that satisfies 5 also satisfies
a. So let & be any interpretation, and assume that S = 5. There are two cases to
consider:

1. Suppose S E G(b). Then because =G/(c) and O(b, ¢) arein .5, we have that
S EG(D) A =G(e) AO(Db,c).
It follows from this that

S E J2Ty.G@) A =G(y) A O(z, ).
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2. Suppose on the other hand that it is not the case that & F G/(b). Then we
havethat S E —G/(b), and because G/(a) and O(a, b) arein S, we have that

S F G(a) A ~G() A O(a, b).
It follows from this that

S F 2Ty Gx) A =G(y) AO(z,y).

So either way, we have that S | «. Thus, o isalogical consequence of 5.

Even though thisis a very simple example, we can see that calculating what is
implicit in a given collection of facts will sometimes involve subtle forms of rea-
soning. Indeed, it iswell known that for FOL, the problem of determining whether
one sentence isalogica consequence of othersisin general unsolvable: no auto-
mated procedure can decide validity, and so no automated procedure can tell usin
all cases whether or not a sentence is entailed.

25.2 Knowledge-based systems

To recap, we imagine that for Knowledge Representation, we will start with a
(large) KB representing what is explicitly known by a knowledge-based system.
This KB could be the result of what the system istold, or perhaps what the system
found out for itself through perception or learning. Our goal is to influence the be-
haviour of the overall system based on what is implicit in this KB, or as close as
possible.

In general, this will require reasoning. By deductive inference, we mean the
process of calculating the entailments of a KB, that is, given the KB, and any sen-
tence «, determining whether or not KB [ a.

We consider a reasoning process to be logically sound if whenever it produces
«, then « is guaranteed to be alogical consequence. This rules out the possibil-
ity of producing plausible assumptions that may very well be true in the intended
interpretation, but are not strictly entailed.

We consider areasoning process to be logically complete if it is guaranteed to
produce a whenever « isentailed. This rules out the possibility of missing some
entailments, for example, when their status is too difficult to determine.

Aswe noted above, no automated reasoning processfor FOL can be both sound
and completein general. However, therelative simplicity of FOL makesit anatural
first step in the study of reasoning. The computational difficulty of FOL is one of
thefactorsthat will lead usto consider various other optionsin subsequent chapters.
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2.6 Bibliographic notes

2.7 Exercises

1. For each of the following sentences, give alogical interpretation that makes
that sentence false and the other two sentences true:

@ VaVyVz[(P(z,y) A Py, 2)) D Pz, 2)];
(b) VaVy[(P(z,y) A P(y,=)) O (= =y)];
(©) Vavy[P(a,y) D P(x,b)].

2. This question involves formalizing the properties of mathematical groupsin
FOL. Recall that aset isconsidered to be agroup relative to abinary function
f and an object ¢ iff (1) f isassociative; (2) e isan identity element for f,
thatis, for any x, f(e, z) = f(x, €) = x; and (3) every element hasan inverse,
that is, for any z, thereisan ¢ suchthat f(z,7) = f(i, «) = e. Formalize these
as sentences of FOLwith two non-logical symbols, afunction symbol f and a
constant symbol e, and prove that the sentenceslogically entail thefollowing
property of groups:

For every z and y, thereisa z such that f(z, z) = y.
Explain how your proof shows the value of = asafunction of 2 and y.

3. This question involves formalizing some simple properties of setsin FOL.
Consider the following three facts:

o No setisan element of itself.

o Asetzisasubset of asety iff every element of = isan element
of y.

e Something is an element of the union of two sets » and y iff
itisan element of = or an element of y.

() Represent the facts as sentences of FOL. As non-logical symbols, use
Sub(xz, y) tomean “z isasubset of y,” E(e, «) to mean “e is an element
of z,” and u(z, y) to mean “the union of = and y.” Instead of using
a specia predicate to assert that something is a set, you may simply
assume that in the domain of discourse (assumed to be non-empty),
everything isa set.

Call the resulting set of sentences 7.
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(b) Show using logical interpretations that 7 entails that = is a subset of
the union of = and y.

(c) Show using logical interpretationsthat 7 does not entail that the union
of 2 and y isequal to theunion of y and z.

(d) Let A beany set. Show using logical interpretationsthat 7 entails that
thereisaset z such that the union of A and = isasubset of A.

(e) Does7 entail that thereis aset » such that for any set = the union of «
and z isasubset of 2? Explain.

(f) Write a sentence which asserts the existence of singleton sets, that is,
for any z, the set whose only element is z. 71 is 7 with this sentence
added.

(g) Provethat 77 isnot finitely satisfiable (again, assuming the domain is
non-empty). Hint: in afinite domain, consider u, the object interpreted
as the union of all the elements in the domain.

(h) Proveor disprovethat 7 entails the existence of an empty set.

4. In a certain town, there are the following regulations concerning the town
barber:

¢ Anyone who does not shave himself must be shaved
by the barber.

o Whomever the barber shaves, must not shave himself.

Show that no barber can fulfill these requirements. That is, formulate the
requirements as sentences of FOL, and show that in any interpretation where
thefirst regulation is true, the second one must be false. (Thisis called the
barber’s paradox and is due to Bertrand Russell.)
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Chapter 3

Expressing Knowledge

The stage is now set for a somewhat more detailed exploration of the process of
creating a knowledge base (KB). Recall that knowledge involves taking the world
to satisfy some property, as expressed by a declarative sentence. A KB will thus
comprise acollection of such sentences, and we take the propositions expressed by
these sentences to be beliefs of our putative agent.

Much of this book is an exploration of different languages that can be used to
represent the knowledge of an agent in symbolic form, with different consequences,
especialy regarding reasoning. Aswe suggested in the previous chapter, first-order
logic (FOL), while by no means the only language for representing knowledge, is
a convenient choice for getting started with the KR enterprise.

3.1 Knowledge engineering

Having outlined the basic principles of knowledge representation and decided on
an initial representation language, we might be tempted to dive right in and begin
the implementation of a set of programs that could reason over a specific KB of
interest. But before doing so, there are key questions about the knowledge of the
agent that need to be considered in the abstract. In the same way that a programmer
who is thinking ahead would first outline an architecture for her planned system,
itis essential that we consider the overall architecture of the system we are about
to create. We must think ahead to what it is we ultimately want (or want our arti-
ficial agent) to compute. We need to make some commitments to the reasons and
times that inference will be necessary in our system’s behavior. And finaly, we
need to stake out what is sometimes called an ontology—the kinds of objects that
will be important to the agent and the properties those objects will be thought to
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have—before we can start populating our agent’s KB. This genera process, which
addresses the KB at the knowledge level, is often called knowledge engineering.

This chapter, then, will be an introductory exercise in knowledge engineering,
intended to be specific enough to make vivid the import of the previous two chap-
ters. There are any number of example domains that we might usetoillustrate how
to use a KR language to build a KB. Here we pick a common and commonsen-
sical world to illustrate the process, with people and places and relationships that
are representative of many of the types of domains that Al systems will address.
Given the complexity of human relations and the kind of behaviors that regular
people have, we can think of this example domain as a “soap opera” world. Think
of asmall town in the midst of a number of scandals and contorted relationships.
This little world will include people, places, companies, marriages (and divorces),
crimes, death, ‘hanky-panky,” and of course, money.

Our task is to create a KB that has appropriate entailments, and the first things
we need to consider are what vocabulary to use and what facts to represent.

3.2 Vocabulary

In creating aKB, it isagood ideato start with the set of domain-dependent predi-
cates and functions that provide the basis for the statement of facts about the KB’s
domain. What sorts of objects will there be in our soap-operaworld?

The most obvious place to start iswith the named individualsthat are the actors
in our human drama. In FOL, these would be represented by constant symbols, like
maryJones, johnQSmith, etc. Wemight need to allow multipleidentifiersthat could
ultimately be found to refer to the sameindividual: at some point in the process our
system might know about a “john,” without knowing whether he isjohnQSmith or
johnPJones, or even the former joannaSmith. Beyond the human players on our
stage, we could of course have animals, robots, ghosts, and other sentient entities.

Another class of named individuals would be the legal entities that have their
own identities, such as corporations (faultylnsuranceCompany), governments (evil-
villeTownCouncil), and restaurants (theRackAndRollRestaurant). Key places need
also be identified: tomsHouse, theAbandonedRailwayCar, norasJacuzzi, etc. Fi-
naly, other important objects need to be scoped out: earring35, butcherknifel,
laurasMortgage (notethat it is common to use the equivalent of numeric subscripts
to distinguish among individual sthat do not have uniquely referring names).

After capturing the set of individuals that will be central to the agent’s world,
it is next essential to circumscribe the basic types of objects that those individuals
are. Thisis usualy done with one-place predicates in FOL, such as Person(z).
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Among the types of unary predicates we will want in our current domain we find
Man, Woman, Place, Company, Jewelry, Knife, Contract, etc. |f we expect to be
reasoning about certain places based on what type of entities they are, such as a
restaurant as aplace to eat that isimportantly different than someone'sliving room
(for example), then object types like Restaurant, Bar, House, and SwimmingPool
will be useful.

Another set of one-place predicatesthat iscrucial for our domain representation
isthe set of attributes that our objects can have. So we need avocabulary of prop-
ertiesthat can hold of individuals, such asRich, Beautiful, Unscrupulous, Bankrupt,
ClosedForRepairs, Bloody, and Foreclosed. The syntax of FOL is limited in that
it does not allow us to distinguish between such properties and the object-types we
suggested a moment ago, such as Man and Knife. This usually does not present a
problem, although if it were important for the system to distingui sh between such
types, the language could be extended to do so.!

The next key predicates to consider are n-ary predicates that express relation-
ships (obviously of crucial interest in any soap-opera world). We can start with
obvious ones, like MarriedTo and DaughterOf, and related ones like LivesAt and
HasCEO. We can then branch out to more esoteric relationshipslike HairDresserOf,
Blackmails, and HadAnAffairwith. And we cannot forget rel ationships of higher ar-
ity than 2, asin LoveTriangle, ConspiresWith, and OccursinTimelnterval.

Finally, we need to capture the important functions of the domain. These can
takemorethan oneargument, but are most often unary, asin fatherOf, bestFriendOf,
and ceoOf. One thing to note is that all functions are taken to be total in FOL. If
we want to alow for the possibility of individuals without friends in our domain,
we can use abinary BestFriend predicate instead of aunary bestFriendOf function.

3.3 Basicfacts

Now that we have our basic vocabulary in place, it is appropriate to start repre-
senting the simple core facts of our soap-operaworld. Such facts are usually rep-
resented by atomic sentences and negations of atomic sentences. For example,
we can use our type predicates, applied to individualsin the domain, to represent
some basic truths. Man(john), Woman(jane), Company(faultylnsuranceCompany),
Knife(butcherknifel). Such type predications would define the basic ontology of

'FOL does not distinguish because in our semantic account, as presented in the previous chapter,
both sorts of predicates will be interpreted as sets of individuals of which the descriptions hold.
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thisworld.?

Once we have set down the types of each of our objects, we can capture some
of the properties of the objects. These properties will be the chief currency in
talking about our domain, since we most often want to see what properties (and
relationships) are implied by a set of facts or conjectures. In our sample domain,
some useful property assertions might be Rich(john), =HappilyMarried(jim), Works-
For(jim,fic), Bloody(butcherknifel), and ClosedForRepairs(marTDiner).

Basic factslike the above yield what amounts to asimple database. These facts
could indeed be stored in relational tables. For example, each type predicate could
be atable with the table's entries being identifiers for all of the known satisfiers of
that predicate. Of course, the details of such a storage strategy would be a symbol-
level, not aknowledge-level issue.

Another set of simple facts that are useful in domain representation are those
dealing with equality. To express the fact that John isthe CEO of Faulty Insurance
Company, we could use an equality and a one-place function: john = ceoOf(fic).
Similarly, bestFriendOf(jim) = john would capture the fact that John is Jim's best
friend. Another use of equalities would be for naming convenience, as when an
individual has more than one name, e.g., fic = faultylnsuranceCompany.

3.4 Complex facts

Many of the facts we would like to express about a domain are more complex than
can be captured using atomic sentences. Thus we need to use more complex con-
structions, with quantifiers and other connectives, to express various beliefs about
the domain.

In the soap-operadomain, we might want to expressthefact that all therich men
in our world love Jane. To do so, we would use universal quantification, ranging
over al of therich individuasin our world, and over al of the men:

Yy[Rich(y) A Man(y) D Loves(y, jane)].

Note that “rich man” here is captured by a conjunction of predicates. Similarly, we
might want to express the fact that in this world all the women, with the possible
exception of Jane, love John. To do so, we would use a universal ranging over all
of the women, and negate an equality to exclude Jane:

Yy[Woman(y) A y 7 jane D Loves(y, john)].

2Note, by the way, that suggestive names are not a form of knowledge representation since they
do not support logical inference. Just using “butcherknifel” as a symbol does not give the system
any substantive information about the object. Thisis done using predicates, not orthography.

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 35

Universals are also useful for expressing very general facts, not even involving any
known individuals. For example,

VaVy[Loves(z, y) D —Blackmails(z, y)]

expresses the fact that no one who loves someone will blackmail the one he or she
loves.

Note that the universal quantifications above could each be expressed without
quantifiers, if al of the individuals in the soap-opera world were enumerated. It
would be tedious if the world were at all large, so the universally quantified sen-
tences are handy abbreviations. Further, as new individuals are born or otherwise
introduced into our soap-opera world, the universals will cover them aswell.

Another type of fact that needs a complex sentence to express it is one that
expresses incomplete knowledge about our world. For example, if we know that
Jane loves one of John or Jim, but not which, we would need to use a disjunction
to capture that belief:

Loves(jane, john) v Loves(jane, jim).

Similarly, if we knew that someone (an adult) was blackmailing John, but not who
it was, we would use an existential quantifier to posit that unknown person:

Jz[Adult(z) A Blackmails(z, john)].

This kind of fact would be quite prevalent in a soap-opera world story, athough
one would expect many such unknowns to be resolved over time.

In contrast to the prior use of universals, the above cases of incomplete knowl-
edge are not merely abbreviations. We cannot write amore complete version of the
information in another form—it just isn’t known.

Another useful type of complex statement about our soap-operadomain iswhat
we might call a closure sentence, used to limit the domain of discourse. So, for
example, we could enumerate if necessary al of the people in our world:

VYz[Person(z) D @ =jane V =johnV z =jimVv .. .].
In asimilar fashion, we could circumscribe the set of all married couples:
YaVy[MarriedTo(z, y) O (z = ethel A y = fred) v .. .].

It will then follow that any pair of individuals known to be different from those
mentioned in the sentence are unmarried. In an even more genera way, we can
carve out the full set of individualsin the domain of discourse:

Ve[z =ficVv 2 =jane V 2 =jim V & = marTDiner v .. .].
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This ensuresthat areasoner would not postulate a new, hitherto unknown object in
the course of its reasoning.

Finaly, it is useful to distinguish formally between all known individuals, with
a set of sentences like jane # john. Thiswould prevent the accidental postulation
that two people were the same, for example, in trying to solve a crime.

3.5 Terminological facts

The kinds of facts we have represented so far are sufficient to capture the ba
sic circumstances in a domain, and give us enough grist for the reasoning mill.
However, when thinking about domains like the soap-opera world, we would typ-
ically aso think in terms of relationships among the predicate and function sym-
bols we have exploited above. For example, we would consider it quite “obvious’
in this domain that if it were asserted that john were a Man, then we should an-
swer “no” to the query, Woman(john). Or we would easily accede to the fact that
MarriedTo(jr,sueEllen) wastrue if it were already stated that MarriedTo(sueEllen,jr)
was. But thereisnothing in our current KB that would actually sanction such infer-
ences. In order to support such common and useful inferences, we need to provide
a set of facts about the terminology we are using.
Terminological facts comein many varieties. Here we look at a sample:

o Digjointness. often two predicates are digoint, and the assertion of one im-
plies the negation of the other, asin

Yz[Man(z) D ~Woman(z)]

e Subtypes: there are many predicates that imply a form of specialization,
wherein one typeis subsumed by another. For example, since asurgeonisa
kind of doctor, we would want to capture the subtype rel ationship:

Vz[Surgeon(z) D Doctor(z)]

Thisway, weshould be abletoinfer thereasonable consequencethat anything
true of doctorsis also true of surgeons (but not vice versa).

o Exhaustiveness: thisisthe converse of the subtype assertion, where two or
more subtypes completely account for a supertype, asin

Vz[Adult(z) D (Man(z) V Woman(z))]
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¢ Symmetry: asin the case of the MarriedTo predicate, some relationships are
symmetric:
Yz, y[MarriedTo(z, y) D MarriedTo(y, z)]

o Inverses: some relationships are the opposite of others:

Y, y[ChildOf(x, y) D ParentOf(y, x)]

o Typerestrictions. part of the meaning of some predicatesisthefact that their
arguments must be of certain types. For example, we might want to capture
the fact that the definition of marriage entails that the partners are persons
and (in most places) of opposite genders:

Yz, y[MarriedTo(z, y) D Person(z) A Person(y) A OppositeSex(z, y)]

o Full definitions: in some cases, we want to create compound predicates that
are completely defined by alogical combination of other predicates. We can
use a biconditional to capture such definitions:

Yz[RichMan(z) = Rich(z) A Man(z)]

As can be seen from these examples, terminological facts are typically captured in
alogical language as universally quantified conditionals or biconditionals.

3.6 Entailments

Now that we have captured the basic structure of our soap-opera domain, it istime
toturn to the reason that we have donethis representation in thefirst place: deriving
implicit conclusions from our explicitly represented KB. Here we briefly explore
thisin an intuitive fashion. Thiswill give us afeel for the consequences of a par-
ticular characterization of a domain. In the next chapter, we will consider how
entailments can be computed in a more mechanical way.

Let us consider all of the basic and complex facts proposed so far in this chapter
to beaknowledge base, called KB. Besides asking simple questions of KB like, “is
John married to Jane?’, we will want to explore more complex and important ones,
such as, “is there acompany whose CEO loves Jane?’ Such aquestion would look
like thisin FOL:

Jz[Company(z) A Loves(ceoOf(z), jane)]?
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What we want to do is find out if the truth of this sentenceis implicit in what we
aready know. In other words, we want to see if the sentence is entailed by KB.

To answer the question, we need to determine whether every logical interpreta-
tion that satisfies KB al so satisfies the sentence. So let usimagine an interpretation
<, and supposethat & = KB. It followsthen that § satisfies Rich(john), Man(john),
and Yy[Rich(y) A Man(y) D Loves(y,jane)], since theseare al in KB. Asaresult,
< [ Loves(john,jane). Now since (john = ceoOff(fic)) isalso in KB, we get that

3 F Loves(ceoOf(fic), jane).

Finally, since
Company(faultylnsuranceCompany)

and
(fic = faultylnsuranceCompany)

are both in KB, we have that
I E Company(fic) A Loves(ceoOf(fic), jane),
from which it follows that
3 | Jz[Company(z) A Loves(ceoOf(z), jane)].

Since this argument goes through for any interpretation <&, we know that the sen-
tence isindeed entailed by KB.

Observe that by looking at the argument we have made, we can determine not
only that there is a company whose CEQO loves Jane, but also what that company
is. In many applications, we will be interested in finding out not only whether
something is true or not, but also which individual s satisfy a property of interest.
In other words, we need answers not only to yes-no questions, but to wh-questions
aswell (who? what? where? when? how? why?).3

L et us consider a second example, which involves a hypothetical. Consider the
guestion, “1f no manisblackmailing John, then is he being blackmailed by someone
heloves?’ Inlogical terms, this question would be formulated this way:

Vz[Man(z) D —Blackmails(xz, john)] D
Jdy[Loves(john, y) A Blackmails(y, john)]?

3In the next chapter we will propose a general mechanism for extracting answers from existential
questions like the above.
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Again we need to determine whether or not the sentence is entailed by KB. Here
we use the easily verified fact that KB | (o D 3) iff KBU {a} F 5. Soletus
imagine that we have an interpretation & such that & = KB, and that

& | Va[Man(z) D —Blackmails(z, john)].
We must show that we then have it that
$ | Jy[Loves(john, y) A Blackmails(y, john)].

To get to this conclusion, there are a number of steps. First of all, we know that
someone is blackmailing John,

S F Ja[Adult(z) A Blackmails(z, john)],
since thisfact isin KB. Also, we havein KB that adults are either men or women,
S E Ve[Adult(z) D (Man(z) V Woman(x))],

and since by hypothesis no man is blackmailing John, we derive the fact that a
woman is blackmailing him:

3 F Je[Woman(z) A Blackmails(z, john)].
Next, as seen in the previous example, we have it that
3 F Loves(john,jane).

So, we have it that some woman is blackmailing John and that John loves Jane.
Could she be the blackmailer? Recall that all the women except possibly Jane love
John,

I F Vy[Woman(y) A y # jane D Loves(y, john)],

and that no one who loves someone will blackmail them,
3 E VaVy[Loves(z, y) D —Blackmails(z, y)].

We can put these two conditional s together and conclude that no woman other than
Jane is blackmailing John:

& FE Vy[Woman(y) A y # jane D —Blackmails(y, john)].

Sincewe know that awomanisin fact blackmailing John, we areforced to conclude
that it is Jane:
S F Blackmails(jane, john).
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Thus, in the end, we have concluded that John loves Jane and she is blackmailing
him,
& [ [Loves(john, jane) A Blackmails(jane, john)],

and o
3 F Jy[Loves(john, y) A Blackmails(y, john)],

asdesired.

Here we have illustrated in intuitive form how a proof can be thought of as
a segquence of FOL sentences, starting with those known to be true in the KB (or
surmised as part of the assumptions dictated by the query), that proceeds logically
using other facts in the KB and the rules of logic, until a suitable conclusion is
reached. In the next chapter, we will examine a different style of proof based on
negating the desired conclusion, and showing that this leads to a contradiction.

To conclude this section, let us consider what is involved with an entailment
question when the answer is no. In the previous example, we made the assumption
that no man was blackmailing John. Now let us consider if thiswas necessary: isit
already implicitin what we haveinthe KB that someone John lovesisblackmailing
him? In other words, we wish to determine whether or not KB entails

Jy[Loves(john, y) A Blackmails(y, john)].

To show that it does not, we must show an interpretation that satisfies KB but
fasifies the above sentence. That is, we must produce a specific interpretation
S = (D,T), and argue that it satisfies every sentence in the KB, as well as the
negation of the above sentence. For the number of sentenceswe havein KB, thisis
ahbigjob sinceall of them must be verified, but the essence of the argument is that
without contradicting anything already in KB, we can arrange < in such away that
John only loves women, and that thereis only one person in D who is blackmailing
John, and it isaman. Thusitisnot already implicit in KB that someone John loves
is blackmailing him.

3.7 Abstract individuals

The FOL language gives us the basic tools for representing facts in a domain, but
in many cases, thereis agreat deal of flexibility that can be exercised in mapping
objects in that domain onto predicates and functions. There is also considerable
flexibility in what we consider to be the individuals in the domain. In this section,
we will seethat it is sometimes useful to introduce new abstract individuals that
might not have been considered in a first analysis. This idea of making up new
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individualsis called reification and is typical, as we shall see in later chapters, of
systems like description logics and frame languages.

To see why reification might be useful, consider how we might say that John
purchased a bike:

Purchases(john,bike) vs.
Purchases(john,sears,bike) vs.
Purchases(john,sears,bike,feb14) vs.
Purchases(john,sears,bike,feb14,$200) wvs. ...

The problem hereisthat it seems that the arity of the Purchases predicate depends
on how much detail we will want to express, which we may not be able to predict
in advance.

A better approach isto take the purchase itself to be an abstract individual, call
it p23. To describe thispurchase at any level of detail we find appropriate, we need
only use 1-place predicates and functions:

Purchase(p23) A agent(p23) = john A object(p23) = bike
A source(p23) = sears A amount(p23) = $200 A ...

For less detail, we simply leave out some of the conjuncts; for more, we include
others. The big advantage is that the arity of the predicate and function symbols
involved can be determined in advance.

Inasimilar way we can capturein areasonablefashion complex rel ationships of
the sort that are common in our soap-operaworld. For example, we might initially
consider representing marriage relationships this way:

MarriedTo(z, y)
but we might also need to consider
PreviouslyMarriedTo(x, )

and
ReMarriedTo(z, ).

Rather than create a potentially endless supply of marriage and remarriage (and
divorce and annulment and . ..) predicates, we can reify marriages and divorces
as abstract individuals, and determine anyone’s current marital status and complete
marital history directly from them:

Marriage(m17) A husband(m17) == A wife(ml17) =y
A date(ml7) =... A withess(m17) =... A ...
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It is now possible to define the above predicates (PreviouslyMarriedTo, etc.) in
terms of the existence (and chronological order) of appropriate marriage and di-
vorce events.

In representing commonsense information like the above, we a'so find that we
need individual s for numbers, dates, times, addresses, etc. Basically, any “object”
about which we can ask awh-question should have an individual standing for it in
the KB, so it can be returned as the result of aquery.

Theidea of reifying abstract individuals leads to some interesting choices con-
cerning the representation of quantities. For example, an obvious representation
for ages would be something like this:

agelnYears(suzy) = 14.

If a finer-grained notion of age is needed in an application, we might prefer to
represent aperson’sage in months (thisis particularly common when talking about
young children):

agelnMonths(suzy) = 172.4

Of course, thereis arelationship between agelnYears and agelnMonths. However,
we have exactly the same relationship between quantities like durationinYears and
durationIinMonths, and between expectedLifelnYears and expectedLifelnMonths.

To capture al these regularities, it might be better to introduce an abstract in-
dividual to stand for a time duration, independent of any units. So we might take
age(suzy) to denote an abstract quantity of time, quite apart from Suzy and 14, and
assert that

years(age(suzy)) = 14

as away of saying what this quantity would be if measured in years. Now we can
write very general facts about such quantities such as

months(z) = 12 x years(z)
to relate the two units of measurement. Similarly, we would have
centimeters(z) = 100 « meters(z).
We could continue in this vein with locations and times. For example, instead of

time(m17) = “Jan 5 1992 4:47:03EST"

“For some purposes amore qualitative view of age might bein order, asin age(suzy)=teenager,
or age(suzy)=minor.
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where we are forced to decide on afixed granularity, we could use
time(m17) = t41 A year(t41l) = 1992 A month(t41) = Jan A ...

where we have reified time points. This type of representation of abstract indi-
viduals for quantities, times, locations, etc., is a common technigque similar to the
reification of eventsillustrated above.

3.8 Other sortsof facts

With the apparatus described so far, we have seen how to represent the basic facts
and individuals of acommonsense domain like our soap-operaworld. Before mov-
ing on to alook at the variationsin different knowledge representation systems and
their associated inference machinery, it is important to point out that there are a
number of other types of facts about domains that we may want to capture. Each of
these is problematical for a straightforward application of first-order logic, but as
we shall seein the remainder of the book, they may be represented with extensions
of FOL or with other KR languages. The choice of the language to use in asystem
or analysiswill ultimately depend on what types of facts and conclusions are most
important for the application.

Among the many types of facts in the soap-opera world that we have not cap-
tured are

o dtatistical and probabilistic facts. These include those that involve portions
of the sets of individual s satisfying a predicate, in some cases exact subsets
and in other cases less exactly quantifiable:

— Half of the companies are located on the East Side.
— Most of the employees are restless.
— Almost none of the employees are completely trustworthy.

o default and prototypical facts. These cite characteristicsthat are usualy true,
or reasonabl e to assume true unless told otherwise:

— Company presidentstypically have secretaries intercepting their phone
cals.
— Cars have four wheels.

— Companies generally do not allow employees that work together to be
married.
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— Birdsfly.

o intentional facts. These express people’'s mental attitudes and intentions.
That is, they can reflect the reality of peopl€e's beliefs but not necessarily
the “real” world itself:

— John believes that Henry istrying to blackmail him.
— Jane does not want Jim to know that she loves him.
— Tom wants Frank to believe that the shot came from the grassy knoll.

Thisisnot the end of what we would like to be able to expressin a KB, of course.
In later chapters, we will want to talk about the effects of actions and will end
up reifying both actions and states of the world. Ultimately, a knowledge-based
system should be able to express and reason with anything that can be expressed
by a sentence of English, indeed anything that we can imagine as being either true
or false. Here we have only looked at simple forms that are easily expressible
in FOL. In subsequent chapters, we will examine other representation languages
with different strengths and weaknesses. First, however, we turn to how me might
compute entailments of aKB in FOL.

3.9 Bibliographic notes

3.10 Exercises

1. (Adapted from from [6], and see follow-up Exercise 2 of Chapter 4)
Consider the following piece of knowledge:

Tony, Mike, and John belong to the Alpine Club. Every member of
the Alpine Club who is not a skier is a mountain climber. Moun-
tain climbersdo not like rain, and anyone who does not like snow
isnot a skier. Mike dislikes whatever Tony likes, and likes what-
ever Tony dislikes.

(a) Provethat the given sentenceslogically entail that thereis amember of
the Alpine Club who is amountain climber but not a skier.

(b) Suppose we had been told that Mike likes whatever Tony dislikes (as
above), but we had not been told that Mikedislikeswhatever Tony likes.
Prove that the resulting set of sentences no longer logically entail that
there is a member of the Alpine Club who is a mountain climber but
not a skier.
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2. Consider the following facts about the EIm Street Bridge Club:

Joe, Slly, Bill, Ellen, are the only members of the club. Joe is
married to Sally. Bill is Ellen’s brother. The spouse of every mar-
ried person in the club isalso in the club.

From these facts, most people would be able to determine that Ellen is not
married.

(8) Represent these facts as sentencesin FOL, and show semantically that
by themselves, they do not entail that Ellen is not married.

(b) Writein FOL someadditional factsthat most people would be expected
to know, and show that the augmented set of sentences now entails that
Ellen is not married.

. Donald and Daisy Duck took their nephews aged 4, 5 and 6 on an outing.
Each boy wore a tee-shirt with a different design on it and of a different
colour. You are also given the following information:

e Huey isyounger than the boy in the green tee-shirt.

¢ The five year-old wore the tee-shirt with the camel design.
o Dewey's tee-shirt was yellow.

e Louie'stee-shirt borethe giraffe design.

¢ The panda design was not featured on the white tee-shirt.

(8) Represent these facts as sentencesin FOL.

(b) Usingyour formalization, isit possible to conclude the age of each boy
together with the colour and design of the tee-shirt they’re wearing?
Show semantically how you determined your answer.

(c) If your answer was ‘no’, indicate what further sentences you would
need to add so that you could conclude the age of each boy together
with the colour and design of the tee-shirt they’ re wearing.

4. A Canadian variant of an old puzzle:

Atraveler in remote Quebec comesto a fork in the road and does
not know which way to go to get to Chicoutimi. Henri and Pierre
are two local inhabitants nearby who do know the way. One of
them always tells the truth, and the other one never does, but the
traveler does not know which iswhich. Isthere a single question
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thetraveler can ask Henri (in French, of course) that will be sure
to tell him which way to go?

We will formalize this problem in FOL. Assume there are only two sorts of
objectsin our domain, inhabitants denoted by the constants henri and pierre,
and French questions, that Henri and Pierre can answer. These questions are
denoted by the following terms:

e gauche, which asksif if the traveler should take the left branch of the
fork to get to Chicoutimi;

e dit oui(x, ¢), which asksif inhabitant = would answer yesto the French
guestion ¢;

e dit_non(z, ¢), which asksif inhabitant = would answer no to the French
guestion ¢;

Obvioudly this is a somewhat impoverished dialect of French, athough a
philosophically interesting one. For example, the term

dit_-non(henri, dit_oui(pierre, gauche)))

represents a French question that might be trandated as “Would Henry an-
swer noif | asked him if Pierrewould say yes| should go to the left to get to
Chicoutimi?” The predicate symbols of our language are the following:

e Truth_teller(z), which holds when inhabitant 2 isatruth teller;

e Answer_yes(z, ¢), which holds when inhabitant = will answer yes to
French question g¢;

¢ True(q), which holds when the correct answer to the question ¢ isyes;
¢ Go left, which holdsif the direction to get to Chicoutimi is to go left.
For purposes of this puzzle, these are the only constant, function, and predi-
cate symbols.
(@) Write FOL sentences for each of the following:

e Oneof Henri or Pierreisatruth teller, and oneis not.

o Aninhabitant will answer yesto a question iff heisa truth teller
and the correct answer is yes, or he is not a truth teller and the
correct answer is not yes.

¢ Thegauche question iscorrectly answered yesiff the proper direc-
tionistogoisleft.
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e Adit oui(x, q) question is correctly answered yes iff z will answer
yes to the question q.
e Adit-non(z, ¢) question is correctly answered yesiff 2 will not an-
swer yesto .
Imagine that these facts make up the entire KB of the traveler.
(b) Show that there is a ground term ¢ such that

KB [ [Answer_yes(henri, t) = Go_left].

In other words, there is a question ¢ that can be asked to Henri (and
thereisan analogous onefor Pierre) that will be answered yesiff proper
direction to get to Chicoutimi isto go | eft.

(c) Show that this KB does not entail which direction to go, that is, show
that there is an interpretation satisfying the KB where Go_left is true,
and another one whereit isfalse.
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Chapter 4

Resolution

In the previous chapter, we examined how FOL could be used to represent knowl-
edge about a simple application domain. We aso showed how logical reasoning
could be used to discover facts that were only implicit in a given knowledge base.
All of our deductive reasoning, however, was done by hand, and relatively infor-
mally. In this chapter, we will examine in detail how to automate a deductive rea-
soning procedure.

At the knowledge level, the specification for an idealized deductive procedure
isclear: given aknowledge base KB, and a sentence «, we would like a procedure
that can determine whether or not KB [ «; aso, if 3[z1, ..., 2,] isaformulawith
free variables among the z;, we want a procedure that can find terms ¢;, if they
exist, such that KB F g[t1,...,t,]. Of course, aswe discussed in Chapter 1, this
is idealized; no computational procedure can fully satisfy this specification. What
we are really after, in the end, is a procedure that does deductive reasoning in as
sound and complete a manner as possible, and in alanguage as close as possibleto
that of full FOL.

One observation about this specification isthat if we take the KB to be afinite
set of sentences{«y, ..., o, }, thenthereareseveral equivalent waysof formulating
the deductive reasoning task:

KB E«
iff El(can---Aay) D al
iff KBU{-a} isnot satisfiable
iff KBU {-a} E-TRUE

where TRUE is any valid sentence, such asVx(x = z). What this means is that if
we have aprocedure for testing the validity of sentences, or for testing the satisfia-
bility of sentences, or for determining whether or not ~TRUE is entailed, then that
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procedure can also be used to find the entailments of afinite KB. Thisissignificant
since the Resolution procedure which we will consider in this chapter isin fact a
procedure for determining whether certain sets of formulas are satisfiable.

In the next section, we begin by looking at a propositional version of Resolu-
tion, the clausal representation it depends on, and how it can be used to compute
entailments. In Section 4.2, we generalize this account to deal with variables and
guantifiers, and show how special answer predicates can be used to find bindings
for variablesin queries. Finaly, in Section 4.3, we review the computational diffi-
cultiesinherent in Resolution, and show some of the refinements to Resol ution that
are used in practice to deal with them.

4.1 Thepropositional case

The reasoning procedure wewill consider in this chapter workson logical formulas
in aspecia restricted form. It is not hard to see that every formula « of proposi-
tional logic can be converted into another formula o’ such that F (¢ = '), and
where o’ is a conjunction of disjunctions of literals, where a literal is either an
atom or its negation. We say that « and o’ are logically equivalent, and that o is
in conjunctive normal form, or CNF. In the propositional case, CNF formulas look
like this:
V-9 A(@VrV=sVp) A(=rVg)

The procedure to convert any propositional formulato CNF isas follows:

1. eliminate D and =, using the fact that these are abbreviations for formulas
using only A, v and —;

2. move - inwards so that it appears only in front of an atom, using the follow-
ing equivalences:
E —a = o
F ~(anp) = (av-p);
'= ﬁ(a \Y /3) = (ﬁ(l A ﬁﬂ)

3. distribute A over v, using the following equivalences:

Flav@ay) = ((Brn)Vva) = (@Vh)A(aVe).

4. collect terms, using the following equivalences:
FE(ava) =q
E(aha) = a.
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The end result of this procedure isalogically equivalent CNF formula (which can
be exponentially larger than the original).> For example, for ((p D ¢) D r), by
applying rule (1) above, we get (—(-p V ¢) V 7); applying rule (2), we then get
((p A —q) V 7); and with rule (3), we get ((p V ) A (=g V 1)), whichisin CNF. In
this chapter, we will mainly deal with formulasin CNF.

Itis convenient to use a shorthand representation for CNF. A clausal formulais
afinite set of clauses, where aclauseisafinite set of literals. The interpretation of
clausal formulas is precisely as formulas in CNF: a clausal formulais understood
asthe conjunction of its clauses, where each clause is understood asthe disunction
of itsliterals, and literals are understood normally. In representing clauses here, we
will use the following notation:

e if p isaliteral then p is its complement, defined by p = —p and =p = p, for
any atom p;

¢ to distinguish clauses from clausal formulas, we will use “[” and “]” as de-
limitersfor clauses, but “{” and “}” for formulas.

For example, [p, —¢, r] isthe clause consisting of three literals, and understood as
thedisiunction (p v =¢ V r), while {[p, =¢, 7], [¢]} isthe clausal formulaconsisting
of two clauses, and understood as ((p V —¢ V ) A ¢q). A clause like [-p] with a
singlelitera iscalled a unit clause.

Notethat the empty clausal formula{} isnot the same as{[]}, the formulacon-
taining just the empty clause. The empty clause([] is understood as arepresentation
of =TRUE (the disjunction of no possibilities), and so {[]} also stands for ~-TRUE.
However, the empty clausal formula{} (the conjunction of no constraints) isarep-
resentation of TRUE.

For convenience, wewill movefreely back and forth between ordinary formulas
in CNF and their representation as sets of clauses.

Putting the comments made at the start of the chapter together with what we
have seen about CNF, we get that as far as deductive reasoning is concerned, to
determine whether or not KB | « it will be sufficient to do the following:

1. put the sentencesin KB and -« into CNF;
2. determine whether or not the resulting set of clausesis satisfiable.

In other words, any question about entailment can be reduced to a question about
the satisfiability of a set of clauses.

*An analogous procedure also exists to convert a formula into a disunction of conjunctions of
literals, which is called disjunctive normal form, or DNF.
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4.1.1 Resolution derivations

To discuss reasoning at the symbol level, it is common to posit what are called
rules of inference, which are statements of what formulas can beinferred from other
formulas. Here, we use asingle rule of inference called (binary) Resolution:

Given aclause of the form ¢3 U {p} containing some literal p, and a
clause of the form ¢, U {p} containing the complement of p, infer the
clause ¢; U ¢, consisting of those literalsin the first clause other than
p and those in the second other than p.2

We say in this casethat ¢1 U ¢ isaresolvent of the two input clauses with respect to
p. For example, from clauses [w, p, ¢] and [s, w, —p], we have the clause [w, s, ¢]
as a resolvent with respect to p. The clauses [p, ¢] and [-p, ~¢] have two resol-
vents: [¢, —¢] with respect to p, and [p, ~p] with respect to ¢. Note that [] isnot a
resolvent of these two clauses. The only way to get the empty clauseis to resolve
two complementary unit clauses like[-p] and [p].

A Resolution derivation of a clause ¢ from a set of clauses S is a sequence of
clauses ¢s, ..., ¢,, where the last clause, ¢, is ¢, and where each ¢; is either an
element of .5 or aresolvent of two earlier clausesin the derivation. Wewrite S - ¢
if thereisa derivation of ¢ from 5.

Why do we care about Resolution derivations? The main point is that this
purely symbol-level operation on finite sets of literals has a direct connection to
knowledge-level logical interpretations.

Observefirst of all that aresolvent is always entailed by the two input clauses.
Suppose we have two clauses ¢1 U {p} and ¢ U {—p}. We claim that

{caU {p}, c2U{-p}} F caU c2.

To see why, let & be any interpretation, and suppose that S F ¢3 U {p} and S |
c2 U {=p}. Therearetwo cases. if S F p, then S £ -p, but since S F ¢ U {—p},
we must havethat S | ¢, and SO0 & F ¢1 U ¢p; similarly, if S ¥ p, then since
S E e1U{p}, wemust havethat S £ ¢q, and so again S F ¢1 U ¢. Either way,
we get that S F ¢1 U cp.

We can extend this argument to prove that any clause derivable by Resolution
from S isentailed by 9, that is, if 5 F ¢, then S F ¢. We show by induction on
the length of the derivation that for every ¢;, S | ¢;: thisisclearly trueif ¢; € .5,
and otherwise, ¢; is aresolvent of two earlier clauses, and so is entailed by them,
as argued above, and henceby S.

2Either ¢1 or ¢z or both can be empty. In the case that ¢1 is empty, c1 U {p} would be the unit
clause[p].
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Figure 4.1: A Resolution procedure
Input: afiniteset S of propositional clauses
Output: satisfiable or unsatisfiable
1. Checkif [] € 9 if so, return unsatisfiable.

2. Otherwise, check if there are two clausesin $', such that they resolve to pro-
duce another clause not aready in ; if not, return satisfiable.

3. Otherwise, add the new resolvent clause to .5, and go back to step 1.

The converse, however, does not hold: we can have S | ¢ without having
S F ¢. For example, let S consist of the single clause [-p] and let ¢ be [—q¢, ¢].
Then § clearly entails ¢ even though it has no resolvents. In other words, asaform
of reasoning, finding Resolution derivations is sound but not complete.

Despite this incompleteness, however, Resolution does have a property that
alowsit to be used without loss of generality to calculate entailments: Resolution
is both sound and complete when ¢ is the empty clause. In other words, there is
atheorem that statesthat 5 F [] iff S | [].2 This meansthat S is unsatisfiable
iff 5 F []. This provides us with away of determining the satisfiability of any set
of clauses, since al we need to do is search for a derivation of the empty clause.
Since this works for any set 5 of clauses, we sometimes say that Resolution is
refutation complete.

4.1.2 An entailment procedure

We are now ready to consider asymbol-level procedurefor determiningif KB £ «.
The idea is to put both KB and -« into CNF, as discussed before, and then to
check if the resulting set .5’ of clauses (for both) is unsatisfiable by searching for a
derivation of theempty clause. Asdiscussed above, 5 isunsatisfiableiff KBU{-a}
isunsatisfiableiff KB | «.. This can be done using the nondeterministic procedure
in Figure 4.1. What the procedure does isto repeatedly add resolvents to the input
clauses 5" until either the empty clause isadded (in which case there isa derivation
of the empty clause) or no new clauses can be added (in which case thereisno such
derivation). Note that thisis guaranteed to terminate: each clausethat gets added to

3This theorem will also carry over to quantified clauses |ater.
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the set isaresolvent of previous clauses, and so contains only literals mentioned in
the original set 5. There are only finitely many clauses with just these literals, and
so eventually at Step 2, we will not be able to find a pair of clauses that resolvesto
something new.

The procedure can be made deterministic quite simply: we need to settle on
a strategy for choosing which pair of clauses to use when there is more than one
pair that would produce a new resolvent. One possibility is to use the first pair
encountered; another isto use the pair that would produce the shortest resolvent. It
might also be agood ideato keep track of which pairs have already been considered
to avoid redundant checking. |f we were interested in returning or printing out a
derivation, we would of course also want to store with each resolvent pointers to
itsinput clauses.

The procedure does not distinguish between clauses that come from the KB,
and those that come from the negation of «, which wewill call the query. Observe
that if we have anumber of queries we want to ask for the same KB, we need only
convert the KB to CNF once and then add clauses for the negation of each query.
Moreover, if we want to add a new fact « to the KB, we can do so by adding the
clausesfor « tothose aready calculated for KB. Thus, to use thistype of entailment
procedure, it makes good sense to keep KB in CNF, adding and removing clauses
as necessary.

L et usnow consider some simple examples of thisprocedurein action. We start
with the following KB:

Toddler

Toddler > Child

Child A Male O Boy
Infant O Child

Child A Female > Girl
Female

We can read these sentences as if they were talking about a particular person: the
personisatoddler; if the personisatoddler thenthe personisachild; if thepersonis
achild and male, then the personisaboy; if the person isan infant, then the person
isachild; if the person is a child and female, then the person is a girl; the person
isfemale. In Figure 4.2, we graphically display a Resolution derivation showing
that the person is agirl, by showing that KB | Girl. Observe that in this diagram
we use a dashed line to separate the clauses that come directly from the KB or the
negation of the query from those that result from applying Resolution. There are
six clauses from the KB, one from the negation of the query (i.e., —Girl), and four
new ones generated by Resolution. Each resolvent in the diagram has two solid
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Figure 4.2: A first example Resolution derivation

[Toddler] [-Child, —Male, Boy]

[-Toddler, Child] [=Infant, Child]

[=Child, =Female, Girl]

chid] - [Female]

[—Girl] negation

[-Female, Girl] of query

lines pointing up to itsinput clauses. The resulting graph will never have cycles,
because input clauses must always appear earlier in the derivation. Note that there
are two clauses in the KB that are not used in the derivation and could be left out
of the diagram.

A second example uses the following KB:

Sun D Mail
(Rain Vv Sleet) > Malil
Rain v Sun

These formulas can be understood astalking about the weather and the mail service
on a particular day. In Figure 4.3, we have a Resolution derivation showing that
KB E Mail. Note that the formula ((RainV Sleet) D Mail) resultsin two clauses on
conversion to CNF. If we wanted to show that KB [# Rain, for the same KB, we
could do so by displaying asimilar graph that containsthe clause[-Rain] and every
possible resolvent, but does not contain the empty clause.

4.2 Handling variablesand quantifiers

Having seen how to do Resolution for the propositional case, we now consider
reasoning with variables, terms, and quantifiers. Again, we will want to convert
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Figure 4.3: A second example Resolution derivation

[-Sleet, Mail]
[Rain, Sun] [-=Sun, Mail] [Mail, —Rain] [-Mail]

[Rain] [-Rain]

\/

[l

formulas into an equivalent clausal form. For simplicity, we begin by assuming
that no existential quantifiers remain once negations have been moved inwards.*

1. eliminate D and =, as before;

2. move - inwards so that it appearsonly in front of an atom, using the previous
equivalences and the following two:
E Voo =

= Jz.na;
E -3Jz.a = V2.-a.

3. standardize variables, that is, ensure that each quantifier is over a distinct
variable by renaming them as necessary. This uses the following equiva-
lences (provided that = does not occur freein «):

E Vy.a = Vo.ol;
E Jdy.a = Jz.0l.

4. eliminate all remaining existentials (discussed later);

5. move universals outside the scope of A and v using the following equiva-
lences (provided that = does not occur freein «):
E (e AVz.8) = (V2.8 Aa) = Va(a A B);
F (avVe.f) = (Ya.fVa) = Va(aV p).

6. distribute A over v, as before;

“We will see how to handle existentials in Section 4.2.3.
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7. collect terms as before.

The end result of this procedureis a quantified version of CNF, auniversally quan-
tified conjunction of disunctions of literals, that is once again logically equivalent
to the origina formula (ignoring existentials).

Again it is convenient to use a clausal form of CNF. We simply drop the quan-
tifiers (since they are al universal anyway), and we are left with a set of clauses,
each of which is aset of literals, each of which is either an atom or its negation.
An atom now is of the form P(ty,...,t,), where the terms ¢; may contain vari-
ables, constants, and function symbols.> Clauses are understood exactly as they
were before, except that variables appearing in them areinterpreted universally. So
for example, the clausal formula

{[P(2), ~R(a, f(0, )], [Qz,9)]}

stands for the CNF formula

VaVy {[P(z) V =R(a, f(b,2)] A Q(z,9)}.

Before presenting the generalization of Resolution, it isuseful to introduce spe-
cial notation and terminology for substitutions. A substitution 4 is a finite set of
pairs{z1/t1,...,x,/t,} wherethe ; aredistinct variablesand the ¢; are arbitrary
terms. If ¢ isasubstitutionand p isaliteral, then pd isthelitera that resultsfromsi-
multaneously replacing each z; in p by ¢;. For example, if 8 = {z/a,y/g(z,b,2)},
and p = P(z, z, f(z,y)), then pd = P(a, z, f(a,g(z,b,2))). Similarly, if cisa
clause, ¢f isthe clause that results from performing the substitution on each literal.
We say that aterm, literal, or clauseis ground if it contains no variables. We say
that aliteral p isaninstance of aliteral p' if for some#d, p = p'6.

421 First-order Resolution

We now consider the Resol ution rule asapplied to clauseswith variables. Themain

idea is that since clauses with variables are implicitly universally quantified, we

want to allow Resolution inferences that can be made from any of their instances.
For example, suppose we have clauses

[P(z,a),~Q(x)] and [~P(b,y), ~R(D, f(y))]-

Then implicitly at |least, we also have clauses

SFor now, we ignore atoms involving equality.
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[P(b,a),~Q(0)] and [-P(b,a),~R(b, f(a))],

whichresolveto [-Q(b), = R(b, f(a))]. Wewill definetherule of Resolution so that
this clause is aresolvent of the two original ones.
So the genera rule of (binary) Resolution is as follows:

Suppose we are given a clause of theform ¢; U {p1} containing some
literal p1, and aclause of theform coU{p2} containing the complement
of aliteral p,. Suppose we rename the variables in the two clauses so
that each clause has distinct variables, and that thereis a substitution ¢
suchthat p16 = p2f. Then, wecaninfer theclause (¢1U ¢2)8 consisting
of those literalsin thefirst clause other than p4 and those in the second
other than p», after applying 6.

We say in this casethat ¢ unifies p; and p,, and that ¢ isaunifier of thetwo literals.

With this new general rule of Resolution, the definition of a derivation staysthe
same, and ignoring equality, we get as before that S - [] iff § £ [1.6

We will use the same conventions as before to show Resolution derivationsin
diagrams, except that we will now show the unifying substitution as a label near
one of the solid lines.”

As an example, consider the following KB:

Va.GradStudent(z) O Student(xz)
Va.Student(z) D HardWorker(z)
GradStudent(sue)

In Figure 4.4, we show that KB | HardWorker(sue). Note that the conversion of
this KB to CNF did not require either existentials or equality.

A dightly more complex derivation is presented in Figure 4.5. Thisis a Reso-
lution derivation corresponding to the three-block problem first presented in Chap-
ter 1: if there are three stacked blocks where the top one is green, and the bottom
oneis not green, is there a green block directly on top of a non-green block? The
KB hereis

On(a,b), On(b,c), Green(a), =Green(c)

where the three blocks are a, b, and c. Note that this KB is aready in CNF. The
query is
J23y.On(x, y) A Green(z) A =Green(y)
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Figure 4.4: An example Resolution derivation with variables

[~Student(z),HardWorker(z)] [~HardWorker(sue)]

[-GradStudent(z), Student(z)]

z/sue .- '

[GradStudent(sue)] [-~Student(sue)]

[-GradStudent(sue)]

[l

whose negation contains no existentials or equalities.

Using a Resolution derivation, it is possible to get answers to queries that we
might think of as requiring computation. To do arithmetic, for example, we can use
the constant zero to stand for 0, and succ to stand for the successor function. Every
natural number can then be written as a ground term using these two symbols. For
instance, the term

succ(succ(succ(succ(succ(zero)))))

standsfor 5. We can usethe predicate Plus(z, y, z) to stand for therelation z+y = z,
and start with a KB that formalizes the properties of addition as follows:

Vz.Plus(zero, z, x)
VaVyVz.Plus(z,y, z) D Plus(succ(z), y, succ(z)).

All the expected relations among triples of numbers are entailed by this KB. For

5For certain pathological cases, we actually require a slightly more general version of Resolution
to get completeness. See Exercise 4.

’Sinceit is sometimesnot obviouswhich literalsin theinput clausesare being resolved, for clarity,
we point to them in the input clauses.
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Figure 4.5: The 3 block problem

[On(b,0)] [-On(z,y), ~Green(z), Green(y)]

[On(a,b)]

z/b,y/e

z/a,y/b

[-Green(b), Green(c)]

[=Green(c)] [-Green(a), Green(b)]
[Green(a)]

[~Green(b)] [Green(b)]

T~

(1

example, in Figure 4.6, we show that 2+ 3 = 5 followsfrom thisk B.8 A derivation
for an entailed existential formulalike

Fu.Plus(2, 3, u),

issimilar, as shown in Figure 4.7. Here, we need to be careful to rename variables
(using v and w) to ensurethat the variablesin theinput clauses are distinct. Observe
that by examining the bindings for the variables, we can locate the value of u: it
is bound to succ(v), where v is bound to succ(w), and w to 3. In other words,
the answer for the addition is correctly determined to be 5. Aswe will seelater in
Chapter 5, thisform of computation, including locating the answersin aderivation
of an existential, is what underlies the Pro1.0G programming language.

4.2.2 Answer extraction

Whileit is often possible to get answers to questions by looking at the bindings of
variablesin aderivation of an existential, in full FOL, the situation is more compli-
cated. Specifically, it can happen that aKB entailssome 3x. P(x), without entailing
P(t) for any specific ¢. For example, in the three-block problem from Figure 4.5,

8For readability, instead of using terms like succ(succ(zero)), we write the decimal equivalent, 2.
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Figure 4.6: Arithmetic in FOL

[-Plus(z,y,z), Plus(succ(z),y,succ(z)) | [~Plus(2,3,5)] )

] z/1,y/3,z/4

[Plus(0,z,2)]
[=Plus(1,3,4)]

z/0,v/3,2/3

[-=Plus(0,3,3)]

the KB entails that some block must be green and on top of a non-green block, but
not which.

One general method that has been proposed for dealing with answersto queries
even in cases like these is the answer-extraction process. Hereistheidea: we re-
place a query such as 3x.P(z) (where z is the variable we are interested in) by
Ju.P(z) A = A(z) where A is a new predicate symbol occurring nowhere else,
called, theanswer predicate. Since A appears nowhereelse, it will normally not be
possible to derive the empty clause from the modified query. Instead, we terminate
the derivation as soon as we produce a clause containing only the answer predicate.

To seethisin action, we begin with an example having a definite answer. Sup-
posethe KB is

Student(john)
Student(jane)
Happy(john)

and we wish to show that some student is happy. The query thenis

Jz.Student(z) A Happy(z).
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Figure 4.7: An existential arithmetic query

[-Plus(z,y,z), Plus(succ(z),y,succ(z)) ] [~Plus(2,3,u)] )

’ z/1,4y/3,u/succ(v), z/v

[Plus(0,z,z)]
[=Plus(1,3,v)]

z/0,v/3,v/suce(w), z/w
[-Plus(0,3,w)]

z/3,w/3

In Figure 4.8, we show a derivation augmented with an answer predicate to derive
who that happy student is. The final clause can be interpreted as saying that “An
answer is John.” A normal derivation of the empty clause can be easily produced
from this one by eliminating all occurrences of the answer predicate.

Observethat in this example, we say that an answer is produced by the process.
There can be many such answers, but each derivation only deals with one. For
example, if the KB had been

Student(john)
Student(jane)

Happy(john)
Happy(jane)
then, in one derivation we might extract the answer jane, and in another, john.
Where the answer extraction process especialy pays off isin cases involving
indefinite answers. Suppose, for example, our KB had been

Student(john)
Student(jane)

Happy(john) V Happy(jane)
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Figure 4.8: Answer predicate with a definite answer

[Student(jane)]
[Happy(john)] [~Happy(z), —Student(z), A(«)]
z/john
[Student(john)] [-Student(john), A(john)]
[ A(john) ]

Figure 4.9: Answer predicate with an indefinite answer

[~Happy(z), —=Student(z), A(«)]

[Student(john)]
z/john

[Student(jane)]

z/jane

[A(jane), —Happy(jane)] [=Happy(john), A(john)]

[Happy(john), Happy(jane)]

[A(jane), Happy(john)]

[A(jane), A(john)]

Then we can till see that there is a student who is happy, although we cannot say
who. If we use the same query and answer extraction process, we get the derivation
in Figure 4.9. In this case, the final clause can be interpreted as saying that “An
answer is either Jane or John”, which is as specific asthe KB allows.

Finally, itisworth noting that the answer extraction process can result in clauses
containing variables. For example, if our KB had been
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Yw.Student(f(a, w))
VyVz.Happy(f(y, 9(2)))

we get aderivation whose fina clauseis[A(f(a, ¢(z)))], which can be interpreted
as saying that “An answer is any instance of the term f(a, g(z)).”

4.2.3 Skolemization

So far, in converting formulas to CNF, we have ignored existentials. For example,
we could not handle factsin aKB like d2Vy3z.P(z, y, ), Since we had no way to
put them into CNF.

To handle existentials and represent such facts, we use the following idea:
since some individuals are claimed to exist, we introduce names for them (called
Skolem constants and Skolem functions, for the logician who first introduced them)
and represent facts like the above using those names. If we are careful not to use
the names anywhere else, then what will be entailed will be precisely what was
entailed by the origina existential. For the above formula, for example, an z is
claimed to exist, so cal it «; moreover, for each y, a z is claimed to exist, call
it f(y). Soinstead of reasoning with daVy3z.P(z,y, ), we useYy.P(a, y, f(¥)),
where ¢ and f are Skolem symbols appearing nowhere else. Informally, if wethink
of the conclusions we can draw from this formula, they will be the same as those
we can draw from the original existential (aslong as they do not mention « or f).

In general, then, in our conversion to CNF, we eliminate all existentials (at step
4) by what is called Skolemization: repeatedly replace an existential variable by
a new function symbol with as many arguments as there are universal variables
dominating the existential. In other words, if we start with

Vaq(... Vool . V(... Jy[...y .10 ) ..,

where existentially quantified y appears in the scope of universaly quantified z1,
z2, x3, and only these, we end up with

Vaa(... Yeo(o.. Vaa(oo. [ fler, e2,23) .02 ) 2o,

where f appears nowhere else.

If avisour origina formula, and o’ istheresult of convertingit to CNFincluding
Skolemization, then we no longer have that F (o = o) as we had before. For
example, 32. P(z) isnot logically equivalent to P(a), its Skolemized version. What
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can be shown, however, isthat « issatisfiable iff o’ is satisfiable, and thisis really
all we need for Resolution.®
Note that Skolemization depends crucially on the universal variablesthat dom-
inatethe existential. A formulalike 32Vy R(z, y) entails Vy3x R(x, ), but the con-
verse does not hold. To show that the former holds using Resolution, we show
that
{F2VyR(z,y), "VyIz R(z,y)}

isunsatisfiable. After conversion to CNF, we get the clauses

{[R((L, y)]v [ﬁR("I"v b)]}

where e and b are Skolem constants, which resolve to the empty clause in one step.
If we were to try the same with the converse, we would need to show that

{=3aVYyR(z,y),VyIzR(z, y)}
was unsatisfiable. After conversion to CNF, we get

{=R (@, g(@))], [R(f (), )]}

where f and ¢ are Skolem functions. Inthiscase, thereisno derivation of the empty
clause (nor should there be) because thetwo literals R(z, g(z)) and R(f(y), y) can-
not be unified.1® So for logical correctness, it is important to get the dependence
of variablesright. In one case, we had R(a, y) where the value of the existential «
did not depend on universal y (i.e., in d2Vy R(x, y)); in the other case, we had the
much weaker R(f(y), y) where the value of the existential « could depend on the
universal (i.e, inVydzR(z, y)).

424 Equality

Sofar, we haveignored formulas containing equality. If weweretosimply treat = as
anorma predicate, we would miss many unsatisfiable sets of clauses, for example,
{a=b,b=¢c,a#c}. Tohandlethese, it is necessary to augment the set of clauses
to ensure that all the special properties of equality are taken into account. What we
require are the clausal versions of the axioms of equality:

SWe do need to be careful, however, with answer extraction, not to confuse real constants (that
have meaning in the application domain) with Skolem constants that are generated only to avoid
existentials.

1070 see this, note that if « is replaced by ¢ and y by 2, then ¢1 would have to be f(t») and ¢,
would have to be ¢(¢1). So ¢1 would have to be f(g(¢1)) which isimpossible.
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reflexitivity: Vo.z = z;

symmetry: VaVy.x =y D y=z;

transitivity: VaVyVz.a =yAy=2z D z =z,

substitution for functions: for every function symbol f of arity n, an axiom

vrlvyl' . v7«nvynTl SN AT =Y D
f(xh .- '7‘rﬂ,) = f(yla .- 72/77)1

substitution for predicates. for every predicate symbol P of arity n, an axiom

VeiVyr - - Ve, Yy, 21 =y A - - A&y =Y D
P(a:l-,---al'm) = P(ylw"ﬂyn)'

It can be shown that with the addition of these axioms, equality can be treated as
a binary predicate, and soundness and completeness of Resolution for the empty
clause will be preserved.

A simple example of the use of the axioms of equality can be found in Fig-
ure 4.10. In thisexample, the KB is

Va.Married(father(x), mother(z))
father(john)=bill

and the query to derive is
Married(bill, mother(john)).

Note that the derivation uses two of the axioms:. reflexitivity, and substitution for
predicates.

Although the axioms of equality are sufficient for Resolution, they do result
in avery large number of resolvents, and their use can easily come to dominate
Resolution derivations. A more efficient treatment of equality is discussed in Sec-
tion 4.3.7.

4.3 Dealing with computational intractability
The success we have had using Resolution derivations should not mislead usinto

thinking that Resolution provides ageneral effective solution to the reasoning prob-
lem.
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Figure 4.10: Using the axioms of equality

[=Married(bill,mother(john))]
[Married(y1,y2), —Married(z1,22), x1 7 y1, z2 7 y2] equality

[father(john)=bill]

[Married(father(z),mother(z))]

[x2 # mother(john), z1 # bill, ﬂMarried(ml,mz))]. [ . [z = 2] equality

[#2 # mother(john), —Married(father(john),z2))]

[mother(john) # mother(john)]

(]

4.3.1 Thefirst-order case

Consider, for example, the KB consisting of asingle formula (again in the domain
of arithmetic):

LessThan(succ(z),y) D LessThan(z,y).

Suppose our query is LessThan(zero,zero). Obviously, this should fail since the
KB does not entail the query (nor its negation). The problem is that if we pose it
to Resolution, we get derivations like the one shown in Figure 4.11. Although we
never generate the empty clause, we might generate an infinite sequence looking
for it. Among other things, this suggests that we cannot ssimply use a depth-first
procedure to search for the empty clause, since we run the risk of getting stuck on
such an infinite branch.

Wemight ask if thereisany way to detect when we are on such abranch, so that
we can give it up and look elsewhere. The answer unfortunately is no. The FOL
languageis very powerful and can be used asafull programming language. Just as
there is no way to detect when a program is looping, there is no way to detect if a
branch will continue indefinitely.

Thisis quite problematic from a KR point of view since it means that there can
be no procedure which, given a set of clauses, returns satisfiable when the clauses
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Figure 4.11: An infinite Resolution branch

[LessThan(z,y), —LessThan(succ(z),y)]
[-LessThan(0,0)]

[-LessThan(1,0)]
z/1,y/0
[-LessThan(2,0)]

*/2,y/0

are satisfiable, and unsatisfiable otherwise.™* However, we do know that Resolution
isrefutation complete: if the set of clausesisunsatisfiable, somebranch will contain
the empty clause (even if some branches may be infinite). So a breadth-first search
is guaranteed to report unsatisfiable when the clauses are unsatisfiable. When the
clauses are satisfiable, the search may or may not terminate.

In this section, we examine what we can do about this issue.

43.2 TheHerbrand Theorem

We saw in Section 4.1 that in the propositional case, we can run Resolution to
completion, and so we never have the non-termination problem. An interesting
fact about Resolution in FOL isthat it sometimes reducesto this propositional case.
Givenaset 5 of clauses, the Herbrand universe of .5 (named after the logician who
first introduced it) isthe set of al ground terms formed using just the constants and
function symbols in §.12 For example if § mentions just constants « and b and
unary function symbol f, then the Herbrand universeis the set

{a,b, f(a), £0), F(f(a)), FCFOD. FUF(f (@), -}

The Herbrand base of 5 is the set of al ground clauses ¢ where ¢ € S and ¢
assigns the variablesin ¢ to termsin the Herbrand universe.

H\We will seein Chapter 5 that thisis also true for the much simpler case of Horn clauses.
2| case S mentions no constant or function symbols, we use a single constant, say a.
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Herbrand's theorem is that a set of clauses is satisfiable iff its Herbrand base
is13 The reason this is significant is that the Herbrand base is a set of clauses
without variables, and so is essentially propositional. To reason with the Herbrand
baseit isnot necessary to use unifiers and so on, and we have a sound and complete
reasoning procedure that is guaranteed to terminate.

Thecatch in this approach (and there must be a catch since no procedure can de-
cide the satisfiability of arbitrary sets of clauses) isthat the Herbrand base will typ-
ically be aninfinite set of propositional clauses. It will however, befinite when the
Herbrand universe isfinite (no function symbols and only finitely many constants
appear in ). Moreover, sometimes we can keep the universe finite by considering
the “type” of the arguments and values of functions, and include a term like f(t)
only if the type of ¢ is appropriate for the function f. For example, if our function
is birthday (taking a person as argument and producing a date), we may be able to
avoid meaningless term like birthday(birthday(john)) in the Herbrand universe.

4.3.3 Thepropositional case

If we can get afinite set of propositional clauses, we know that the Resolution pro-
cedurein Figure 4.1 will terminate. But this does not make it practical. The proce-
dure may terminate, but how long will it take? We might think that this depends on
how good our procedureis at finding derivations. However, in 1985, Armin Haken

proved that there are unsatisfiable propositional clauses ¢y, ..., ¢, such that the
shortest derivation of the empty clause had on the order of 2" steps. This answers
the question definitively: no matter how clever we are at finding derivations, and
even if we avoid al needless searching, any Resolution procedure will still take
exponential time on such clauses since it takes that long to get to the end of the
derivation.

We might then wonder if thisis just a problem with Resolution: might there
not be a better way to determine whether a set of propositional clauses is satisfi-
able? Asit turns out, this question is one of the deepest ones in al of Computer
Science and still has no definite answer. In 1972, Steven Cook proved that the
satisfiability problem was NP-complete: roughly, any search problem where what
is being searched for can be verified in polynomial time can be recast as a propo-
sitional satisfiability problem. Theimportance of this result is that many problems
of practical interest (in areas such as scheduling, routing, and packing) can be for-
mulated as search problems of thisform.!* Thus a good algorithm for satisfiability

This applies to Horn clauses too, as discussed in Chapter 5.
14An exampleisthe so-called Traveling Salesman Problem: given agraph with nodes standing for
cities, and edgeswith numbers on them standing for direct routes between cities that many kilometers
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(which Haken proved Resolution is not) would imply a good agorithm for all of
these tasks. Since so many people have been unable to find good agorithms for
any of them, itisstrongly believed that propositional satisfiability cannot be solved
at al in polynomial time. Proofs, like Haken's for Resolution, however, have been
very hard to obtain.

4.3.4 Theimplications

So what are the implications of these negative results? At the very least, they tell
us that Resolution is not a panacea. For KR purposes, we would like to be able to
produce entailments of aK B for immediate action, but determining the satisfiability
of clauses may simply be too difficult computationally for this purpose.

We may need to consider some other options. Oneisto give more control over
the reasoning processto the user. Thisisathemethat will show up in the procedural
representations in Chapters 5 and 6 and others. Another option is to consider the
possibility of using representation languages that are less expressive than full FOL
or even full propositional logic. Thisisathemethat will show up in Chapters5 and
9, among others. Much of the research in Knowledge Representation and Reason-
ing can be seen as attempts to deal with thisissue, and we will return to it in detail
in Chapter 16.

Ontheother hand, it isworth observing that in some applications of Resolution,
itisreasonable to wait for answers, even for avery long time. Using Resolution to
do mathematical theorem proving, for example to determine whether or not Gold-
bach’s Conjectureor itsnegation follows from the axioms of number theory, isquite
different from using Resolution to determine whether or not an umbrellais needed
whenitlookslikerain. Intheformer case, wemight bewilling to wait for months or
even yearsfor an answer. Thereisan area of Al called automated theorem-proving
whose subject matter is precisely the development of procedures for such mathe-
matical applications.

The best we can hopefor in such applications of Resolution isnot aguarantee of
efficiency or even of termination, but away to search for derivationsthat eliminates
unnecessary steps as much as possible. In the rest of this section, we will consider
strategies that can be used to improve the search in this sense.

apart, determineif thereisaway to visit all the citiesin the graph in less than some given number &
of kilometers.
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435 SAT solvers

In the propositional case, various procedures have been proposed for determining
the satisfiability of aset of clauses more efficiently than the Resol ution procedure of
Figure4.1. Examplesarethe DR, TAB, and L S procedures presented in Exercises6,
7, and 8, respectively. Instead of searching for a derivation that would show a set
of clauses to be unsatisfiable, these procedures search for an interpretation that
would show the clauses to be satisfiable. For this reason, the procedures are called
SAT solvers, and are often applied to clauses that are known to be satisfiable, but
where the satisfying interpretation is not known.

However, the distance between the two sorts of procedures is not that great.
For one thing, the Resolution procedure of Figure 4.1 can be adapted to finding a
satisfying interpretation (see Exercise 9). Furthermore, as discussed in the exer-
cises, the SAT solvers DP and TAB have the property that when they fail to find a
satisfying interpretation, a Resolution derivation of the empty clause can be lifted
directly from atrace of their execution. Thisimplies that no matter how well DP
or TAB work in practice, they must take exponential time on some inputs.

One interesting case is the procedure called GSAT in Exercise 10. This SAT
solver isnot known to be subject to any lower boundsrelated to the Haken result for
Resolution. However, it does have drawbacks of its own: it is not even guaranteed
to terminate with a correct answer in all cases.

436 Most general unifiers

The most important way of avoiding needless search in afirst-order derivation is
to keep the search as general as possible. Consider, for example two clauses ¢; and
¢2, where ¢1 contains the literal P(g(z), f(z), z) and ¢z contains = P(y, f(w), a).
These two literals are unified by the substitution

b1 ={x/b,y/g(). z/a, w/b}

and also by
2 ={x/f(z),y/9(f(2)), z/a, 0] [(2)}.
We may very well be able to derive the empty clause using ¢;; but if we cannot, we
will need to consider other substitutionslike ¢», and so on.
The trouble is that both of these substitutions are overly specific. We can see
that any unifier must give w the same value as z, and y the same as ¢g(z), but we do
not need to commit yet to avalue for z. The substitution

03={y/g(x),z/a,w/x}
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unifies the two literals without making an arbitrary choice that might preclude a
path to the empty clause. It isamost genera unifier.

More precisely, amost general unifier (MGU) 6 of literals p1 and p, isaunifier
that has the property that for any other unifier ¢’, there is a further substitution 6*
such that 8’ = 9-6*15 So starting with  you can always get to any other unifier
by applying additional substitutions. For example, given 63, we can get to 61 by
further applying = /b, and to 6, by applying =/ f(z). Note that an MGU need not
be unique, in that

b4 = {y/g(w)s Z/a’v z/w}

isalso onefor ¢ and cy.

Thekey fact about MGUs isthat (with certain restrictionsthat need not concern
us here) we can limit the Resolution rule to MGUs without loss of completeness.
This helps immensely in the search since it dramatically reduces the number of
resolvents that can be inferred from two input clauses. Moreover, an MGU of a
pair of literals p1 and p» can be calculated efficiently, by the following procedure:

1. startwith 6 = {};
2. exitif p16 = pob;

3. otherwise get the disagreement set, D .S, which isthe pair of terms at the first
place where the two literals disagree;

eg., if p10 = P(a, f(a,g(z2),...) and p2f = P(a, f(a,u,...)),
then DS = {u, g(2)};

4. find avariablev € DS, andatermt € D.S not containing v; if not, fail;
5. otherwise, set 6 to f-{v/t}, and go to step 2.

This procedure runs in O (n?) time on the length of the terms, and an even better
but more complex linear time algorithm exists.

Because MGUs greatly reduce the search and can be calculated efficiently, all
Resol ution-based systems implemented to date use them.

437 Other refinements

A number of other refinements to Resolution have been proposed to help improve
the search.

5By §-6* we mean the substitution such that for any literal p, p(9-6*) = (p8)8*, that is, we apply
6 to p and then apply ™ to the result.
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Clause elimination Theideais to keep the number of clauses generated as small

as possible, without giving up completeness, by using the fact that if thereis
aderivation to the empty clause at all, then there is one that does not use the
clause in question. Some examples are:

e pureclauses: these are clauses that contain some literal p such that p
does not appear anywhere;

¢ tautologies: these are clauses that contain both p and p, and can be
bypassed in any derivation;

e subsumed clauses: these are clauses for which there already exists an-
other clause with a subset of the literals (perhaps after a substitution).

Ordering strategies Theideaisprefer to perform Resolution stepsin afixed order,

trying to maximizethe chance of deriving theempty clause. Thebest strategy
found to date (but not the only one) is unit preference, that is, to use unit
clauses first. This is because using a unit clause together with a clause of
length & always produces a clause of length £ — 1. By going for shorter and
shorter clauses, the hopeisto arrive at the empty clause more quickly.

Set of support InaKR application, evenif the KB and the negation of aquery are

unsatisfiable, we still expect the KB by itself to be satisfiable. It therefore
makes sense not to perform Resolution steps involving only clauses from
the KB. The set of support strategy saysthat we are only allowed to perform
Resolution if at least one of the input clauses has an ancestor in the negation
of the query. Under the right conditions, this can be done without loss of
compl eteness.

Special treatment of equality We examined above oneway to handle equality us-

ing the axioms of equality explicitly. Because these can generate so many
resolvents, a better way isto introduce a second rule of inferencein addition
to Resolution, called Paramodulation:

Suppose we are given aclause ¢ U {t = s} where ¢t and s are
terms, and aclause ¢, U { p[t'] } containing someterm¢'. Suppose
we rename the variables in the two clauses so that each clause
has distinct variables, and that there is a substitution ¢ such that
td = t'0. Then, we can infer the clause ({¢1 U ¢2 U p[s] })8 which
eliminates the equality atom, replaces ' by s, and then performs
the @ substitution.
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With thisrule, it isno longer necessary to include the axioms of equality, and
what would have required many steps of Resolution involving those axioms,
canbedoneinasingle step. Using the previous example above, it isnot hard
to seethat from

[father(john) = bill] and [Married(father(x), mother(z))],

we can derive the clause [Married(bill, mother(john))] in a single Paramodul a-
tion step.

Sorted logic The idea here is to associate sorts with all terms. For example a

variable 2 might be of sort Male, and the function mother might be of sort
[Person — Female]. We might also want to keep a taxonomy of sorts, for
example, that Woman is asubsort of Person. With thisinformation in place,
we can refuseto unify P(s) with P(t) if the sortsof s and ¢ areincompatible.
The assumption here isthat only meaningful (with respect to sorts) unifica-
tions can ever lead to the empty clause.

Connection graph In the connection graph method, given a set of clauses, we

precompute a graph with edges between any two unifiable literals of oppo-
site polarity, and labeled withthe MGU of thetwo literals. In other words, we
start by pre-computing all possible unifications. The Resolution procedure,
then, involves selecting a link, computing a resolvent clause, and inheriting
links for the new clause from its input clauses after substitution. No unifi-
cation isdone at “run time.” With this, Resolution can be seen as akind of
state-space search problem — find a sequence of links that ultimately pro-
duces the empty clause — and any technique for improving a state-space
search (such as using a heuristic function) can be applied to Resolution.

Directional connectives A clause like [-p, ¢], representing “if p then ¢”, can be

used in a derivation in two ways:. in the forward direction, if we derive a
clause containing p, we then derive the clause with ¢; in the backward direc-
tion, if we derive aclause containing —¢, we then derive the clause with —p.
Theideawith directional connectivesisto mark clausesto be used in one or
the other direction only. For example, given afact in aKB like

Yz .BattleShip(z) D Gray(z)

we may wish to use this only in the forward direction, since it is probably a
bad ideato work on deriving that something is gray by trying to derive that
itisabattleship. Similarly, afact like
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4.4
45

Vz.Person(z) D Has(z, spleen)

might be used only in the backward direction since it is probably a bad idea
to derive having a spleen for every individual derived to be a person. This
form of control over how facts are used is the basis for the procedura repre-
sentation languages which will be discussed extensively in Chapter 6. From
alogica point of view, however, great care is needed with directional con-
nectives to ensure that completenessisnot lost.

Bibliographic notes

Exercises

. Determine whether the following sentence is valid using Resolution:

FaVyVz((P(y) 5 Q(2)) O (P(r) O Q(x))).

. (Follow-up to Exercise 1 of Chapter 3)

Use Resolution with answer extraction to find the member of the Alpine Club
who is a mountain climber but not a skier.

. (Adapted from [3])

Victor has been murdered, and Arthur, Bertram, and Carleton are the only
suspects (meaning exactly one of them is the murderer). Arthur says that
Bertram was the victim’s friend, but that Carleton hated the victim. Bertram
saysthat he wasout of town theday of the murder, and besideshe didn’t even
know the guy. Carleton saysthat he saw Arthur and Bertram with the victim
just before the murder. You may assume that everyone — except possibly for
the murderer —istelling the truth.

(a8) UseResolutionto find the murderer. In other words, formalize thefacts
asaset of clauses, provethat thereisamurderer, and extract hisidentity
from the derivation.

(b) Suppose we discover that we werewrong: we cannot assume that there
was only a single murderer (there may have been a conspiracy). Show
that in this case, the facts do not support anyone'sguilt. In other words,
for each suspect, present alogical interpretation that supports al the
facts but where that suspect isinnocent and the other two are guilty.
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4. (Seefollow-up Question 3 of Chapter 5)

The general form of Resolution with variables presented hereis not complete
asit stands, even for deriving the empty clause. In particular, note that the
two clauses

[P(=), P(»)] and [-P(u), = P(v)]

are together unsatisfiable.
(a) Argue that the empty clause cannot be derived from these two clauses.
A dlightly more general rule of Resolution handles cases such as these:

Suppose that C'1 and € are clauses with disjoint atoms. Suppose that
there are sets of literals Dy, C (1 and D, C (5 and a substitution 6
suchthat D16 = {p} and D,8 = {p}. Then, we conclude by Resolution
theclause: (C1 — D1)8 U (C2 — D2)f.

Theform of Resolution considered here simply took D; and D5 to be single-
ton sets.

(b) Show arefutation of thetwo clauseswith this generalized form of Res-
olution.

(c) Another way to obtain completenessisto leave the Resolution rule un-
changed (that is, dealing with pairs of literals rather than pairs of sets
of literals as above), but to add a second rule of inference, sometimes
called factoring, to make up the difference. Present such arule of in-
ference and show that it properly handles the above example.

In the remaining questions of this chapter, we consider a number of procedures for
determining whether or not a set of propositiona clauses is satisfiable. In most
cases, we also would like to return a satisfying interpretation, if one exists.

5. Indefining proceduresfor testing satisfiability, it is useful to havethe follow-

ing notation. When €' isa set of clauses, and m is aliteral, define C' o m to
be the following set of clauses

Cem={c|lceCmg¢cm¢ctU{(c—m)|ceC,m¢c,mEc}.

For example, if C' = {[p, ¢],[p, a, b],[p, c],[d, €]}, thenwe get that C e p =
{la.b].[c].[d,e]} and C e p = {[q], [d, e]}.
Prove the following two properties of Resolution derivations:
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Figure 4.12: The DP procedure

input: aset of clauses
output: arethe clauses satisfiable, YES or NO?

procedure DP(C)
if C'isempty then return YES
if C' contains[] then return NO
let p be some atom mentioned in '
if DP(C' e p) = YESthen return YES
otherwise return DP(C' o p)
end

(& If C'em derivesclause cin k steps, then C' derives ¢* in k steps, where
c* iseither ¢ itself or the clause c U [m].

(b) If C e pderives[]inny stepsand C e p derives[] in n; steps, then '
derives[] in no morethan (ng + ny + 1) steps.

6. A very popular procedure for testing the satisfiability of a set of proposi-
tional clausesisthe Davis-Putnam procedure (henceforth DP), shownin Fig-
ure 4.12, and named after the two mathematicians who first presented it.16

(a) Sketch how DP could be modified to return a satisfying assignment (as
aset of literals) instead of Y ES when the clauses are satisfiable.

(b) The main refinements to this procedure that have been proposed in the
literature involve the choice of the atom p. As stated, the choice isleft
to chance. Argue why it is useful to do at least the following: if C
contains asingleton clause [p] or [p], then choose p as the next atom.

(c) Another refinement isthefollowing: onceit is established that C' isnot
empty and does not contain [], check to seeif C' mentions some literal
m but not itscomplement 7. Inthiscase, wereturn DP(C' e m) directly
and do not bother with C' e 7. Explain why thisis correct.

(d) Among all known propositional satisfiability procedures, recent exper-
imental results suggest that DP (including the refinements mentioned

8The version considered here is actually closer to the variant presented by Davis, Logemann and
Loveland sans Putnam.
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above) isthe fastest onein practice. Somewhat surprisingly, it is possi-
ble to prove that DP can take an exponential number of steps on some
inputs. Use the results from Question 5 and Haken'’s result mentioned
in Section 4.3.3 to prove an exponential lower bound on the running
time of DP. Hint: Prove by induction on £ that if DP(C') returns NO
after k steps, then (' derives [] by Resolution in no more than & steps.
(e) As stated, the choice of the next atom p is left to chance. However,

a number of selection strategies have been proposed in the literature,
such as, choosing an atom p where

e p appearsin the most clausesin ', or

o p appearsin the fewest clausesin ', or

o p isthe most balanced atom in C' (the number of positive occur-

rencesin C'is closest to the number of negative occurrences), or

¢ pistheleast balanced atomin ', or

o p appearsin the shortest clause(s) in C.
Choose any two of the above selection strategies, implement two ver-
sions of DR, and compare how well they run (in terms of the number
of recursive calls) on some hard test cases. To generate some sets of
clausesthat are known to be hard for DP (see[5] for details), randomly
generate about 4.2n clauses of length 3, where r isthe number of atoms.
(Each clause can be generated by choosing three atoms at random and
flipping the polarity of each with a probability of .5.)

7. Up until recently, a very popular way of testing the satisfiability of a set of

propositional clauses was the tableau method. Rather than computing resol-
vents, the procedure TAB in Figure 4.13 tries to construct an interpretation
L that satisfies a set of clauses C' by picking literals from each clause.
In this question, we begin by showing that the TAB procedure, like the DP
procedure of Question 6, must haveexponential running time on someinputs.
First we usethe notation C' b, ¢ to mean that clause ¢ (or asubset of it) can be
derived by Resolution from the set of clauses C' in V steps (or less). Observe
that if C' by, coand C U {c1} hw, 2, then C' Ky, .y c2, just by stacking the
two derivations together.

(& Provethatif C U {c} kv [], thenC U {(cU ¢)} k',
(b) Prove using part (a) and the observation above that if my, ..., m; are
literals, and for each 7, C' U {[m,]} k, [], then

CU{lma,...,mel} by [

www.manaraa.com



(©2003 R. Brachman andH. Levesgue July17, 2003 79

Figure 4.13: The TAB procedure

input: aset of clauses '
output: arethe clauses satisfiable, YES or NO?

procedure TAB(C) = TAB1(C,{})

procedure TABL(C, )
if C'isempty then return YES
if I contains some m and 7 then return NO
otherwise, let ¢ beany clausein '
for m € edo
if TAB1({c € C'|m ¢ ¢}, LU {m})=YES
then return YES
end for
return NO
end

(c) Proveby inductionon N and using part (b) that if TABL(C' {11, ...,1;})
returns NO after atotal of N procedure calls, then thereisa Resolution
refutation of (C' U {[l1],...,[l.]}) that takesat most N steps.

(d) Asin Question 6, use Haken's result from Section 4.3.3 and part (c)
to prove that there is a set of clauses C' for which TAB(C) makes an
exponential number of recursive procedure calls.

Finally, we consider an experimental question:

(e) Asmentioned in Question 6, it was shown in [5] that the DP procedure
often runs for a very long time with about 4.2n randomly generated
clausesof length 3 (where n isthe number of atomsin the clauses). With
fewer than 4.2n clauses, DP usually terminates quickly; with more,
again DP usually terminates quickly.

Confirm (or refute) experimentally that the tableau method TAB also
exhibitsthe same easy-hard-easy pattern around 4.2n on sets of clauses
randomly generated as in Question 6.
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Figure 4.14: The LS procedure

input: aset of clauses ', over n atoms
output: arethe clauses satisfiable, YES or NO?

procedure LS(C) = LSK(C,Zo,n/2) or LSI(C,Z1,n/2)

procedure LSY(C, Z, d)
if Z F ¢, forevery ¢ € C,then return YES
if d < Othenreturn NO
if [ € C then return NO
otherwise, let ¢ beany clausein C suchthat 7 £ ¢
for m € cdo
if LSI(C e m,Z,d — 1)=YES
then return YES
end for
return NO
end

8. Another method was proposed in [2] for testing the satisfiability of a set of

propositional clauses. The procedure LS (for local search) tries to find an
interpretation that satisfies a set of clauses by searching to within a certain
distance from a given set of start points. In the simplest version, we consider
two start points: the interpretation Zo which assigns al atoms false; and the
interpretation Z; which assigns all atoms true. It is not hard to see that ev-
ery interpretation lies within a distance of »/2 from one of these two start
points, where n isthe number of atoms, and where the distance between two
interpretations is the number of atoms where they differ (the Hamming dis-
tance). The procedureis shown in Figure 4.14 using the C' e m notation from
Question 5.

Note: The correctness of the procedure depends on the following fact (dis-
cussed in [2]): inthefinal step, suppose ¢ € C' isaclause not satisfied by 7.
Then there is an interpretation within distance d of Z that satisfies €' iff for
someliteral m € ¢, thereisan interpretation within distance d — 1 of Z that
satisfiesC' e m.
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Figure 4.15: The RES-SAT procedure

input: aset of clauses C' over n atoms
output: an interpretation satisfying ¢’

procedure RES-SAT(C)
T={}
fori:=1ton
if thereisaclausec € R suchthat -¢ C T U {p;}
then T:=T U {-p;}
ese T:=T U {p;}
end for
return T
end

Confirm (or refute) experimentally that the LS method al so exhibits the same
easy-hard-easy pattern noted in Question 7.

. Insome applications we are given a set of clauses that is known to be satisfi-
able, and our task isto find an interpretation that satisfies the clauses. We can
use variants of the procedures presented in Questions 6, 7, or 8to do this. But
we can also use Resolution itself. First we generate R = REY(5), the set of
all resolventsderivablefrom 5. Then, werun the procedure RES-SAT shown
in Figure 4.15.

Notethat —c refersto the set of literalsthat are the complements of thosein c.
Also, wearetreating an interpretation asaset of literals 7" containing exactly
one of p; or —p;, for each atom p;.

(a) Show an example where this procedure would not correctly locate a
satisfying interpretation if the original set .5 were used instead of R in
the body.

(b) Given that the procedure works correctly for some set R, prove that it
would also work correctly on just the minimal elements of R, that is,
on those clausesin R for which no proper subset isaclausein R.

(c) Provethat theprocedure correctly findsasatisfying interpretation when
R = REY(S). Hint: Begin by showing that
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Figure 4.16: The GSAT procedure

input: aset of clauses €', and two parameters, tries and flips
output: an interpretation satisfying €', or failure

procedure GSAT(C, tries, flips)
for s :=1to tries do
T := arandomly generated truth assignment
for j :=1to flips do
if ZEC thenreturnZ
p :=an atomic symbol such that a changein itstruth
assignment gives the largest increase in the total
number of clausesin C' that are satisfied by 7
7 =7 with the truth assignment of p reversed
end for
end for
return “no satisfying interpretation found”

For any T, if for no clause ¢ € R do we havethat -¢ C T, then
there cannot be clauses ¢; and ¢ in R such that -¢; C 7' U {p}
and ~¢o; C T U {~p}.

Then useinduction to do the rest.

10. In[7], aprocedure called GSAT is presented for finding interpretations for

satisfiable sets of clauses. This procedure, shown in Figure 4.16, seems to
have some serious drawbacks: it does not work at al on unsatisfiable sets
of clauses, and even with satisfiable ones, it is not guaranteed to eventually
return an answer. Nonetheless, it appears to work quite well in practice.

The procedure uses two parameters: flips determines how many times the
atoms in Z should be flipped before starting over with a new random inter-
pretation; tries determines how many times this process should be repeated
before giving up and declaring failure. Both parameters need to be set by
trial and error.

Implement GSAT and compareits performance to one of the other satisfiabil-
ity procedures presented in these exercises on some satisfiabl e sets of clauses
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of your own choosing. Note that one of the properties of GSAT is that be-
cause it counts the number of clauses not yet satisfied by an interpretation,
it isvery sensitive to how a problem is encoded as a set of clauses (that is,
logically equivalent formulations could have very different properties).
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Chapter 5

Reasoning with Horn Clauses

In the previous chapter, we saw how a Resolution procedure could in principle
be used to calculate entailments of any first-order logical KB. But we also saw
that inits most general form, Resolution ran into serious computational difficulties.
Although refinements to Resolution can help, the problem can never be completely
eliminated. Thisis a consequence of the fundamental computational intractability
of first-order entailment.

Inthischapter, wewill exploretheideaof limiting ourselvesto only acertainin-
teresting subset of first-order logic, where the Resol ution procedure becomes much
more manageable. Wewill also seethat from arepresentation standpoint, the subset
in question is till sufficiently expressive for many purposes.

5.1 Horn clauses

In a Resol ution-based system, clauses end up being used for two different purposes.
First, they are used to express ordinary disunctionslike

[Rain, Sleet, Snow].

This isthe sort of clause we might use to expressincomplete knowledge: thereis
rain or sleet or snow outside, but we don’'t know which. But consider a clause like

[=Child, —=Male, Boy].

While this can certainly be read as a disjunction, namely, “either someone is not
a child, or is not male, or is a boy,” it is much more naturally understood as a
conditional: “if someone is a child and is male then that someoneis aboy.” It is
this second reading of clauses that will be our focus in this chapter.
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We call a clause like the above—containing at most one positive literal—a
Horn clause. When there is exactly one positive literalin the clause, it is called
a positive (or definite) Horn clause. When there are no positive literals, the clause
is called a negative Horn clause. In either case, there can be zero negative literals,
and so the empty clause is a negative Horn clause. Observe that a positive Horn
clause [-p1, ..., pa, ¢] can beread as “if p; and ... and p,, then ¢.” We will
sometimes write a clause like this as

PIN...APn = ¢

to emphasize this conditional, “if-then” reading.

Our focus in this chapter will be on using Resolution to reason with if-then
statements (which are sometimes called “rules’). Full first-order logic is concerned
with digunction and incomplete knowledge in a more general form which we are
putting aside for the purposes of this chapter.

5.1.1 Resolution derivationswith Horn clauses

Given aResolution derivation over Horn clauses, observethat two negative clauses
can never be resolved together, since al of their literals are of the same polarity. If
we are able to resolve a negative and a positive clause together, we are guaranteed
to produce a negative clause: the two clauses must be resolved with respect to the
one positive literal in the positive clause, and so it will not appear in the resolvent.
Similarly, if weresolve two positive clausestogether, we are guaranteed to produce
a positive clause: the two clauses must be resolved with respect to one (and only
one) of the positiveliterals, so the other positive literal will appear in the resolvent.
In other words, Resolution over Horn clauses must alwaysinvolveapositiveclause,
and if the second clause is negative, the resolvent is negative; if the second clause
is positive, theresolvent is positive.

Lessobvious, perhaps, is the following fact: suppose S isaset of Horn clauses
and S F ¢, where c isanegative clause. Then thereis guaranteed to be aderivation
of ¢ whereall the new clausesin the derivation (i.e., clausesnot in .5') are negative.
The proof is detailed and laborious, but the main idea is this. suppose we have a
derivation with some new positive clauses. Take the last one of these, and call it
¢’. Since ¢’ isthe last positive clause in the derivation, all of the Resolution steps
after ¢’ produce negative clauses. We now change the derivation so that instead
of generating negative clauses using ¢’, we generate these negative clauses using
the positive parents of ¢’ (which is where al of the literalsin ¢/ come from—c’
must have only positive parents, since it is a positive clause). We know we can
do this because in order to get to the negative successor(s) of ¢/, we must have a
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clause somewhere that can resolve with it to eliminate the one positive literal in ¢’
(call that clause d and the literal p). That p must be present in one of the (positive)
parents of ¢’; so we just use clause d to resolve against the parent of ¢/, thereby
eliminating p earlier in the derivation, and producing the negative clauses without
producing ¢’. The derivation still generates ¢, but this time without needing ¢’. If
we repeat this for every new positive clause introduced, we eliminate all of them.

We can go further: suppose S is a set of Horn clausesand S + ¢, where ¢ is
again anegative clause. Then thereis guaranteed to be aderivation of ¢ where each
new clause derived is not only negative, but isaresolvent of the previousonein the
derivation and an original clausein 5. The reason isthis: by the above argument,
we can assume that each new clause in the derivation is negative. This means that
it has one positive and one negative parent. Clearly, the positive parent must be
from the original set (since al the new ones are negative). Each new clause then
has exactly one negative parent. So starting with ¢, we can work our way back
through its negative ancestors, and end up with anegative clausethat isin 5. Then
by discarding al the clauses that are not on this chain from ¢ to 5, we end up with
aderivation of the required form.

These observations lead us to the following conclusion:

Thereisaderivation of anegative clause (including the empty clause)
from a set of Horn clauses 5 iff there is one where each new clause
in the derivation is a negative resolvent of the previous clause in the
derivation and some element of 5.

We will ook at derivations of thisform in more detail in the next section.

5.2 SLD Resolution

The observations of the previous section lead usto consider a very restricted form
of Resolution that is sufficient for Horn clauses. Thisisaform of Resolution where
each new clause introduced is a resolvent of the previous clause and a clause from
the original set. This pattern showed up repeatedly in the examples of the previous
chapter,! and isillustrated schematically in Figure 5.1.

Let us be alittle more formal about this. For any set .S of clauses (Horn or
not), an SLD derivation of a clause ¢ from 5 is a sequence of clauses ¢y, ¢z, ...,
¢y, Suchthat e, = ¢, ¢1 € 5, and ¢;+1 isaresolvent of ¢; and some clause of 5. We
write ' g, ¢ if thereisan SLD derivation of ¢ from 5. Notationally, because of its
structure, an SLD derivation issimply atype of Resolution derivation where we do

The pattern appearsin Figure 4.4 of the previous chapter, but not Figure 4.5

(©2003 R. Brachman andH. Levesque July 17, 2003 88

Figure 5.1: The SLD Resolution pattern

€1

not explicitly mention the elements of 5 except for ¢1.2 We know that at each step
of the way, the obvious positive parent from .5 can beidentified, so we can leave it
out of our description of the derivation, and just show the chain of negative clauses
fromeq toc.

Inthe general case, it should beclear that if ' tg [] then S+ []. The converse,
however, is not true in general. For example, let 5 be the set of clauses [p, ¢],
[=p, 4], [p, —¢], and [-p, =¢]. A quick glance at these clauses should convince us
that 5 is unsatisfiable (whatever values we pick for p and ¢, we cannot make all
four clauses true at the same time). Therefore, S F []. However, to generate [] by
Resolution, the last step must involve two complementary unit clauses[p] and [p],
for some atom p. Since S contains no unit clauses, it will not be possible to use an
element of 5 for this last step. Consequently thereisno SLD derivation of [] from
S5, even though S I [].

In the previous section we argued that for Horn clauses, we could get by with
Resolution derivationsof acertain shape, wherein each new clausein thederivation
was anegative resolvent of the previous clause in the derivation and some element
of 5; we have now called such derivations SLD derivations. So while not the case
for Resolution in general, it isthe case that if . isaset of Horn clauses, then 5 + []

2The name SLD stands for Selected literals, Linear pattern, over Definite clauses.
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iff 5 kgp []. Soif S isHorn, then it is unsatisfiable iff S kg, []. Moreover, we
know that each of the new clauses ¢, .. ., ¢, can be assumed to be negative. So ¢,
has a negative and a positive parent, and thus ¢; € .S’ can be taken to be negative as
well. Thusin the Horn case, SLD derivations of the empty clause must begin with
anegative clausein the original set.

To see an example of an SLD derivation, consider the first example of the pre-
vious chapter. We start with a KB containing the following positive Horn clauses:

Toddler

Toddler > Child

Child A Male D Boy
Infant > Child

Child A Female > Girl
Female

and wish to show that KB [ Girl, that is, that there is an SLD derivation of [] from
KB together with the negative Horn clause [—~Girl]. Since thisisthe only negative
clause, it must bethe ¢1 in the derivation. By resolving it with the fifth clausein the
KB, we get [-Child, -Female] as ¢,. Resolving this with the sixth clause, we get
[—Child] as ¢3. Resolving thiswith the second clause, we get [-Toddler] as 4. And
finally, resolving thiswith thefirst clause, we get [] asthefina clause. Observethat
all the clauses in the derivation are negative. To display this derivation, we could
continue to use Resol ution diagrams from the previous chapter. However, for SLD
derivations, it is convenient to use a special-purpose terminology and format.

521 Goal trees

All the literalsin al the clausesin aHorn SLD derivation of the empty clause are
negative. We are looking for positive clauses in the KB to “eliminate” these nega-
tiveliteralsto produce the empty clause. Sometimes, thereisaunit clauseinthe KB
that eliminatesthe literal directly. For example, if aclause like [-Toddler] appears
in the derivation, then the derivation isfinished, since thereis a positive clause in
the KB that resolveswithit to produce the empty clause. We say in this casethat the
goal Toddler is solved. Sometimes there is apositive clause that eliminates the lit-
eral but introduces other negative literals. For example, with a clause like [-Child]
inthe derivation, we continue with the clause[~Toddler], having resolved it against
the second clause in our knowledge base ([—Toddler, Child]). We say in this case
that the goal Child reduces to the subgoal Toddler. Similarly, the goal Girl reduces
to two subgoals: Child and Female, since two negativeliterals are introduced when
it isresolved against the fifth clause in the KB.
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Figure 5.2: An example goal tree

Girl

T

Child Female

l

Toddler

So arestatement of the SLD derivation isasfollows: we start with the goal Girl.
This reduces to two subgoals, Child and Female. The goal Female is solved, and
Child reduces to Toddler. Finally, Toddler is solved.

We can display this derivation using what is called a goal tree. We draw the
original goal (or goals) at the top, and point from there to the subgoals. For a
complete SLD derivation, theleaves of thetree (at the bottom) will be the goalsthat
are solved (see Figure 5.2). This allows usto easily see the form of the argument:
we want to show that Girl is entailed by the KB. Reading from the bottom up, we
know that Toddler is entailed since it appears in the KB. This means that Child is
entailed. Furthermore, Female is aso entailed (since it appears in the KB), so we
conclude that Girl is entailed.

This way of looking at Horn clauses and SLD derivations, when generalized
to deal with variables in the obvious way, forms the basis of the programming lan-
guage proLOG. We dready saw an example of a ProLoG style-definition of ad-
dition in the previous chapter. Let us consider another exampleinvolving lists. For
our purposes, list terms will either be variables, the constant nil, or a term of the
form cons(t1, t2) where t; is any term and ¢, is alist term. We will write clauses
defining the Append(z, y, z) relation, intended to hold when list = is the result of
appending list y to list «:

Append(nil, y,y)
Append(z,y, z) = Append(cons(w, x), y, cons(w, z))

If we wish to show that this entails

Append(cons(a,cons(b,nil)), cons(c,nil), cons(a,cons(b,cons(c,nil))))
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Figure 5.3: A goal tree for append

Append(cons(a,cons(b,nil)), cons(c,nil), cons(a,cons(b,cons(c,nil))))

l

Append(cons(b,nil), cons(c,nil), cons(b,cons(c,nil)))

|

Append(nil, cons(c,nil), cons(c,nil))

we get the goal tree in Figure 5.3. We can aso use a variable in the goa and
show that the definition entails 3u.Append(cons(a,cons(b,nil)), cons(c,nil), ). The
answer « = cons(a,cons(b,cons(c,nil))) can be extracted from the derivation di-
rectly. Unlike ordinary Resolution, it is not necessary to use answer predicates
with SLD derivations. Thisisbecauseif 5 isaset of Horn clauses, then ' | Jz.«
iff for sometermt, S F of.

5.3 Computing SLD derivations

We now turn our attention to procedures for reasoning with Horn clauses. Theidea
is that we are given a KB containing a set of positive Horn clauses representing
if-then sentences, and we wish to know whether or not some atom (or set of atoms)
isentailed. Equivalently, we wish to know whether or not the KB together with the
clause consisting of one or more negative literasis unsatisfiable. Thus the typical
case, and the one we will consider here, involves determining the satisfiability of a
set of Horn clauses containing exactly one negative clause.®

5.3.1 Back-chaining

A procedure for determining the satisfiability of aset of Horn clauses with exactly
one negative clause is presented in Figure 5.4. This procedure starts with a set
of goals as input (corresponding to the atoms in the single negative clause) and

31t is not hard to generalize the procedures presented here to deal with more than one negative
clause. See Exercise 4. Similarly, the procedures can be generalized to answer entailment questions
where the query is an arbitrary (non-Horn) formulain CNF.
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Figure 5.4: A recursive back-chaining SLD procedure

Input: afinitelist of atomic sentences, ¢, ..., ¢,
Output: yes or no according to whether agiven KB entails all of the ¢;

SOLVE[(]L LR qn] =
If n = O then return yes
For each clause ¢ € KB, do
Ife= [Ql* TPLy ey _‘pm]
and &)LVE[})]_ vy Py G2y -y qn]
then return yes
end for
Return no

attempts to solve them. If there are no goals, then it is done. Otherwise, it takes
the first goal ¢1 and looks for a clausein KB whose positive litera is ¢;. Using the
negative literalsin that clause as subgoals, it then callsitself recursively with these
subgoals together with the rest of the original goals. If thisissuccessful, it isdone;
otherwise it must consider other clauses in the KB whose positive literal is ¢;. If
none can be found, the procedure returns no, meaning the atoms are not entailed.

Thisprocedure is called back-chaining since it works backwards from goals to
factsinthe KB. It isalso called depth-first sinceit attemptsto solvethe new goals p;
beforetackling theold goals ¢;. Findly, itiscalled left-to-right sinceit attemptsthe
goasg; inorder 1,2, 3, etc. This depth-first Ieft-to-right back-chaining procedure
isthe one normally used by rroLoG implementations to solve goals, athough the
first-order case obvioudly requires unification, substitution of variables and so on.

This back-chaining procedure aso has a number of drawbacks. First, observe
that even in the propositional case it can go into an infinite loop. Suppose we have
the tautologous [p, —p] in the KB.# In this case, agoal of p can reduce to a subgoal
of p, and so on, indefinitely.

Even if it does terminate, the back-chaining algorithm can be quite inefficient,
and do a considerable amount of redundant searching. For example, imagine that
we have 2n aoms pg, . ..p,—1 and qo, . .., ¢,—1, and the following 4n — 4 clauses:
forO< i< n,

Pi-1 = Di

“This corresponds to the PROLOG program “p : - p. "
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Figure 5.5: A forward-chaining SLD procedure
Input: afinitelist of atomic sentences, ¢1, . .., ¢
Output: yes or no according to whether agiven KB entails al of the ¢;
1. if all of the goals ¢; are marked as solved, then return yes

2. checkif thereisaclause[p, =p1, ..., 7 p,] in KB, such that all of its negative
atoms py, ..., p, are marked as solved, and such that the positive atom p is
not marked as solved

3. if thereis such aclause, mark p as solved and go to step 1

4. otherwise, return no

Pi-1 = ¢
¢i-1 = Pi
¢i-1 = ¢

For any ¢, both SOLVE[p;] and SOLVE[¢;] will eventualy fail, but only after at
least 2 steps. The proof is a simple induction argument.> This means that even
for a reasonably sized KB (say 396 clauses when n = 100), an impossibly large
amount of work may be required (over 21% steps).

Given this exponential behaviour, we might wonder if thisis a problem with
the back-chaining procedure, or another instance of what we saw in the last chapter
where the entailment problem itself was simply too hard in its most general form.
Asit turns out, thistimeit isthe procedure that is to blame.

5.3.2 Forward-chaining

In the propositional case, there is a much more efficient procedure to determine if
aHorn KB entails aset of atoms, given in Figure5.5. Thisis aforward-chaining
procedure since it works from the facts in the KB towards the goals. The ideais
to mark atoms as “ solved” as soon as we have determined that they are entailed by
theKB.

5The claim is clearly true for i = 0. For the goal p«, where k > 0, we need to try to solve both
pr—1 and gr_1. By induction, each of these take at least 2 ~* steps, for atotal of 2* steps. The case
for ¢ isidentical.
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Suppose, for example, we start with the Girl example of above. At the outset
Girl is not marked as solved, so we go to step 2. At this point, we look for a clause
satisfying thegiven criteria. The clause[Toddler] isone such sinceall of itsnegative
literals (of which there are none) are marked as solved. So we mark Toddler as
solved, and try again. This time we might find the clause [Child, ~Toddler], and
so we can mark Child as solved, and try again. Continuing in this way, we mark
Female and finally Girl as solved and we are done.

Whilethis procedure appearsto take about the same effort asthe back-chaining
one, it hasmuch better overall behaviour. Note, in particular, that each timethrough
the iteration we need to find a clause in the KB with an atom that has not been
marked. Thus, wewill iterate at most as many times asthere are clausesin the KB.
Each such iteration step may require us to scan the entire KB, but the overall result
will never be exponentia. In fact, with a bit of care in the use of data structures,
a forward-chaining procedure like this can be made to run in time that islinear in
the size of the KB, as shown in Exercise 1.

5.3.3 Thefirst-order case

Thus, in the propositional case at least, we can determine if aHorn KB entails an
atom in a linear number of steps. But what about the first-order case? Unfortu-
nately, even with Horn clauses, we still have the possibility of aprocedure that runs
forever. Theexamplein Figure4.11 of the previous chapter where aninfinite branch
of resolvents was generated only required Horn clauses. Whileit might seemthat a
forward-chaining procedure could deal with first-order examples like these, avoid-
ing the infinite loops, this cannot be: the problem of determining whether a set of
first-order Horn clauses entails an atom remains undecidable. So no procedure can
be guaranteed to always work, despite the fact that the propositional caseis so easy.
Thisisnot too surprising since rroLoG isafull programming language, and being
ableto decideif an atom is entailed would imply being able to decide if arroLOG
program would halt.

Aswith non-Horn clauses, the best that can be expected in thefirst-ordedr case
isto give control of the reasoning to the user to help avoid redundancies and infinite
branches. Unlike the non-Horn case however, Horn clauses are much easier to
structure and control in thisway. In the next chapter, we will see some examples
of how this can be done.

www.manaraa.com



(©2003 R. Brachman andH. Levesgue July17, 2003 95

5.4 Bibliographic notes

55 Exercises

1. Write, test, and document a program that determines the satisfiability of a
set of propositional Horn clauses by forward-chaining and that runsin linear
time, relative to the size of the input. Use the following data structures:

(a) aglobal variable STACK containing alist of letters known to be true,
but waiting to be propagated forward.

(b) for each clause, a letter CONCLUSION which is the positive literal
appearing in the clause (or NIL if the clause contains only negative
literals), and a number REMAINING which is the number of letters
appearing negatively in the clause that are not yet known to be true.

(c) for each letter, aflag VISITED indicating whether or not the letter has
been propagated forward, and a list ON-CLAUSES of al the clauses
where the letter appears negatively.

You may assumethe input isin suitable form. Include in the documentation
an argument as to why your program runs in linear time. (If you choose to
use Lisp property listsfor your data structures, you may assume that it takes
constant time to go from an atom to any of its properties.)

2. Asnoted in Chapter 4, Herbrand’s theorem allows us to convert afirst-order
satisfiability problem into a propositional (variable-free) one, although the
size of the Herbrand base, in general, is infinite. One way to deal with an
infinite set .5 of clauses, isto look at progressively larger subsets of it to see
if any of them are unsatisfiable, in which case 5 must be as well. |n fact,
the converse is true: if S is unsatisfiable, then some finite subset of S is
unsatisfiable too. Thisis called the compactness property of FOL.

One way to generate progressively larger subsets of S isas follows:

For any term ¢, let |¢| be defined as O for variables and
constants, and 1 + max|t;| for terms f(t1, ..., t,).

Now for any set ' of formulas, define 5. to be those
elements « of .5 such that every term ¢ of a has |t < k.

(a) Write and test a program which when given afinite set S of first-order
clauses and a positive number £, returns as value H;., where H isthe
Herbrand base of 5.
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(b) When the original set S is Horn, then for any &, your program returns
a finite set of propositional Horn clauses. These can be checked for
satisfiability using a propositional program like the one in Question 1.
Briefly compare this way of testing the satisfiability of 5 to the more
standard way using SLD Resolution, asin Prolog.

3. Consider the more general version of Resolution discussed in Question 4 of
Chapter 4. Isthat generalization required for SLD-resolution? Explain.

4. In this question, we will explore the semantic properties of propositional
Horn clauses. For any set of clauses .5, define Zs to be the interpretation
that satisfies an atom p iff 5 E p.

(a) Show that if S isaset of positiveHorn clauses, thenZs E 5.
(b) Giveanexampleof aset of clauses S whereZg £ S.

(c) Supposethat 5 isaset of positive Horn clauses and that ¢ is anegative
Horn clause. Show that if Zs # ¢ then 5 U {c} is unsatisfiable.

(d) Supposethat S5 isaset of positive Horn clauses and that 7 is a set of
negative ones. Using part (c) above, show that if S U {c} issatisfiable
forevery ¢ € T',then S U 1" is satisfiable also.

(e) Inthe propositional case, the normal Prolog interpreter can be thought
as taking a set of positive Horn clauses S (the program) and a single
negative clause ¢ (the query) and determining whether or not S U {c}
issatisfiable. Use part (d) above to conclude that Prolog can be used to
test the satisfiability of an arbitrary set of Horn clauses.

5. In this question, we will formalize a fragment of high school geometry. We
will use a single binary predicate symbol, which we write here as =. The
objects in this domain are points, lines, angles, and triangles. We will use
constants only to name the points we need, and for the other individuas,
we will use function symbols that take points as arguments: first, afunction
which given two points, is used to name the line between them, which we
write here as AB, where A and B are points; next, a function which given
three points, names the angle between them, which we writehereas / ABC';
and finally, a function which given three points, names the triangle between
them, which we write hereas AABC.

Here are the axioms of interest:

e * jsan equivalence relation.
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e XY ®¥YVX.

o /IXYZ=/ZYX.

o If AXYZ = AUVW, then the corresponding lines and
anglesarecongruent (XY = UV, /XY Z = /UVW  etc.).

e SAS: f XY ¥ UV, /XYZ > /UVW,andY Z = VW,
then AXY Z 2 AUVW.

(a) Show that these axioms imply that the base angles of an isosceles tri-
angle must be equal, that is, that

Axioms U AB ¥ AC E LABC ¥ [ACB.

Since the axioms can be formulated as Horn clauses, and the other two
sentences are atomic, it is sufficient to present an SLD-derivation.

(b) The geometry theorem can also be proven by constructing the midpoint
of the side BC (cal it D), and showing that AABD = AACD (by
using SSS, the fact that two triangles are congruent if the corresponding
sides are al congruent). What difficulties do you foresee in automated
reasoning with constructed points like this?
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Chapter 6

Procedural Control of Reasoning

Theorem-proving methods, like Resol ution, are general, domain-independent ways
of reasoning. A user can expressfactsin full FOL without having to know how this
knowledge will ultimately be used for inference by an automated theorem-proving
(ATP) procedure. The ATP mechanism will try all logically permissible uses of
everything in the knowledge base in looking for an answer to a query.

Thisis a double-edged sword, however. Sometimes, it is not computationally
feasible to try all logically possible ways of using what is known. Furthermore,
we often do have an idea about how knowledge should be used or how to go about
searching for aderivation. When we understand the structure of adomain or aprob-
lem, we may want to avoid using facts in every possible way or in every possible
order. In cases like these, we would like to communicate guidance to an automatic
theorem-proving procedure based on properties of the domain. This may bein the
form of specific methodsto use, or perhaps merely what to avoid in trying to answer
aquery.

For example, consider a variant on a logical language where some of the con-
nectives are to be used only in one direction, as suggested at the end of Chapter 4.
Instead of asimple implication symbol, for example, we might have aforward im-
plication symbol that suggests only going from antecedent to consequent, but not
the reverse. If we used the symbal, “—,” to represent this one-way implication,
then the sentence, (Battleship(z) — Gray(z)), would alow a system to conclude
in the forward direction for any specific battleship that it was gray, but would pre-
vent it from trying to show that something was gray by trying to show that it wasa
battleship (an unlikely prospect for most gray things).

More generally, there are many cases in knowledge representation where we as
users will want to control the reasoning process in various domain-specific ways.
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As noted in Chapter 4, thisis often the best we can do to deal with an otherwise
computationally intractable reasoning task. In this chapter, we will examine how
knowledge can be expressed to provide control for the simple case of the back-
chaining reasoning procedure we examined in Chapter 5.

6.1 Factsandrules

In aclausal representation scheme like those we considered in the chapter on Horn
logic, we can often separate the clausesin a KB into two components. a database
of facts, and a collection of rules. The facts are used to cover the basic truths of
the domain, and are usually ground atoms; the rules are used to extend the vocab-
ulary, expressing new relations in terms of basic facts, and are usually universally
guantified conditionals. Both the basic facts and the (conclusions of) rules can be
retrieved by the sort of unification matching we have studied.
For example, we might have the following simple knowledge base fragment:

Mother(jane, billy)
Father(john, billy)
Father(sam, john)

Parent(z,y) < Mother(z, y)
Parent(z,y) < Father(z,y)
Child(z,y) < Parent(y, «)

We can read the latter sentence, for example, as “z isachild of y if y isa parent
of z.” Inthis case, if we ask the knowledge base if John is the father of Billy, we
would find the answer by matching the base fact, Father(john, billy), directly. If we
ask if John isaparent of Billy, then we would need to chain backward and ask the
KB if John was either the mother of Billy or the father of Billy (the latter would of
course succeed). If we were to ask whether Billy isachild of John, then we would
have to check whether John was a parent of Billy, and then proceed to the mother
and father checks.

Becauserulesinvolve chaining, and the possibleinvocation of other ruleswhich
can inturn cause more chaining, the key control issue we need to think about is how
to make the most effective use of the rulesin a knowledge base.
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6.2 Ruleformation and search strategy

Let's consider defining the notion of Ancestor in terms of the predicate Parent.
Here are three logically equivalent ways to express the relationship between the
two predicates:

1. Ancestor(z,y) < Parent(z, y)
Ancestor(z,y) < Parent(z, z) A Ancestor(z, y)

2. Ancestor(z,y) < Parent(z, y)
Ancestor(z,y) < Parent(z,y) A Ancestor(z, z)

3. Ancestor(z, y) < Parent(z, y)
Ancestor(z,y) < Ancestor(z, z) A Ancestor(z, y)

In the first case, we see that someone « is an ancestor of someone else y if z isa
parent of y, or if there is a third person > who is a child of z and an ancestor of
y. So, for example, if Sam is the father of Bill, and Bill is the great-grandfather
(an ancestor) of Sue, then Sam is an ancestor of Sue. The second case l0oks at the
situation where Sam might be the great-grandfather of Fred, who isa parent of Sue,
and therefore Sam is an ancestor of Sue. In the third case, we observe that if Sam
is the great-grandfather of George who isin turn a grandfather of Sue, then again
Samis an ancestor of Sue. Whiletheir forms are different, aclose look reveals that
al three of these yield the same results on all questions.

If we are trying to determine whether or not someone is an ancestor of some-
one else, in al three cases we would use back-chaining from an initial Ancestor
goal, such as Ancestor(sam,sue), which would ultimately reduce to a set of Parent
goals. But depending on which version we use, the rules could lead to substantially
different amounts of computation. Consider the three cases:

1. thefirst version of Ancestor above suggests that we start from Sam and ook
“downward” in the family tree; in other words (assuming that Sam is not
Sue's parent), to find out whether or not Ancestor(sam, sue) is true, we first
look for a z that is Sam'’s child: Parent(sam, z). We then check to seeif that
z isan ancestor of Sue: Ancestor(z, sue).

2. the second option (again, assuming that Samisnot Sue's parent) suggeststhat
we start searching “upward” in the family tree from Sue, looking for some =
that is Sue's parent: Parent(z, sue). Once we find one, we then check to see
if Sam isan ancestor of that parent: Ancestor(sam, z).
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3. the third option suggests a search in both directions, looking at individua
Parent relationships both up and down at the sametime.

The three search strategies implied by these (logically equivalent) representations
are not equivalent in terms of the computational resources needed to answer the
query. For example, suppose that people have on average 1 child, but 2 parents.
With the first option, as we fan out from Sam, we search a tree downward that has
about d nodes where d is the depth of the search; with the second option, as we fan
out from Sue, we search atree upward that has 27 nodeswhere d isthe depth. So as
d gets larger, we can seethat thefirst option would require much less searching. If,
on the other hand, people had more than 2 children on average, the second option
would be better. Thus we can see how the structure of a particular domain, or
even a particular problem, can make logically equivalent characterizations of the
rules quite different in their computational impact for a back-chaining derivation
procedure.

6.3 Algorithm design

The same kind of thinking about the structure of rules plays a significant role in
awide variety of problems. For example, familiar numerical relations can be ex-
pressed in formsthat are logically equivalent, but with substantially different com-
putational properties.

Consider the Fibonacci integer series, wherein each Fibonacci number is the
sum of the previous two numbers in the series. Assuming that the first two Fi-
bonacci numbers are 1 and 1, the serieslooks like this:

1,1,235,8,13,21, 34, ...

Onedirect and obviousway to characterizethis seriesiswith the following two base
factsand arule, using atwo-place predicate, Fibo(n, v), intended to hold when v is
the " Fibonacci number:

Fibo(0, 1)
Fibo(1,1)
Fibo(s(s(n)), v) < Fibo(n,y) A Fibo(s(n), z) A Plus(y, z, v)

This says explicitly that the zeroth and first Fibonacci numbers are both 1, and by
the rule, that the (n + 2)™ Fibonacci number is the sum of the (n + 1) Fibonacci
number > and the n™ Fibonacci number y. Note that we use a three-place relation
for addition: Plus(y, z,v) meansv =y + z.
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This simple and direct characterization has significant computational draw-
backs if used by an unguided back-chaining theorem prover. In particular, it gen-
erates an exponential number of Plus subgoals. Thisis because each application of
therule callsFibo twice, once each on the previoustwo numbersin the series. Most
of this effort isredundant since the call on the previous number makesafurther call
on the number before that—which has already been pursued in a different part of
the proof tree by the former step. That is, Fibo(12, —) invokes Fibo(11, —) and
Fibo(10, —); the call to Fibo(11, —) then calls Fibo(10, —) again. The resulting ex-
ponential behaviour makes it virtually impossible to calculate the 1001 Fibonacci
number using these clauses.

Andternative (but still recursive) view of the Fibonacci seriesusesafour-place
intermediate predicate, F. The definitionisthis:

Fibo(n,v) < F(n,1,0,v)
FO,y,2,9)
F(s(n), y,7,v) < Plus(y,z,s) A F(n,s,y,v)

Here, F(n, y, z, v) will count down from » using y to keep track of the current Fi-
bonacci number, and = to keep track of the previous one before that. Each time we
reduce n by 1, we get anew current number (the sum of the current and previous Fi-
bonacci numbers), and we get a new previous number (which was the current one).
At the end, when n is 0, the final result v isthe current Fibonacci number y.1 The
important point about this equivalent characterization is that it avoids the redun-
dancy of the previous version and requires only alinear number of Plus subgoals.
Calculating the 100t Fibonacci number in this case is quite straightforward.

So in a sense, looking for computationally feasible ways of expressing defini-
tions of predicates using rules is not so different from looking for efficient algo-
rithms for computational tasks.

6.4 Specifying goal order

When using rules to do backchaining, we can try to solve subgoals in any order;
al orderings of subgoals are logically permissible. But as we saw in the previous
sections, the computational consegquences of logically equivalent representations
can be significant.

Consider this simple example:

To provethat F(n, 1, 0, ») holdswhen v isthe » Fibonacci number, we show by induction on n
that F(n, y, z, v) holdsiff v is the sum of y timesthe »™ Fibonacci number and z timesthe (n — 1)%
Fibonacci number.
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AmericanCousin(z, y) < American(z) A Cousin(z, y)

If we are trying to ascertain the truth of AmericanCousin(fred, sally), there is not
much difference between choosing to solve the first subgoa (American(fred)) or
the second subgoal (Cousin(fred, sally)) first. However, there isabig difference if
we are looking for an American cousin of Sally: AmericanCousin(z, sally). Our
two options are then,

1. find an American and then check to seeif sheisacousin of Saly; or
2. find acousin of Sally and then check to see if sheisan American.

Unless Sally has alot of cousins (more than several hundred million), the second
method will be much better than the first.

Thisillustrates the potential importance of ordering goals. We might think of
the two parts of the definition above as suggesting that when we want to gener-
ate Sally’s American cousins, what we want to do is to generate Sally’s cousins
one at a time, and test to see if each is an American. Languages like ProLOG,
which are used for programming and not just general theorem-proving, take order-
ing constraints seriously, both of clausesand of theliteralswithinthem. InrroLOG
notation,

G- G, & ..., G.
stands for
G< G NGy AN... NG,

but goals are attempted exactly in the presented order.

6.5 Committing to proof methods

An appropriate PROLOG rendition of our American cousin case would take care of
the inefficiency problem we pointed out above:

aneri canCousi n(X,Y) :- cousin(XY), anerican(X).

In aconstruct like this, we need to alow for goal backtracking, since for agoa of,
say, AmericanCousin(z, sally), we may need to try American(z) for various values
of z. In other words, we may need to generate many cousin candidates before we
find one that is American.

But sometimes, given a clause of the form
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G:- T, S

goa T is needed only as a test for the applicability of subgoal .5, and not as a
generator of possibilitiesfor subgoal .S to test further. In other words, if 7' succeeds,
then we want to commit to 5 as the appropriate way of achieving goal . So, if 9
were then to fail, we would consider goa & as having failed. A consequence of
thisis that we would not look for other ways of solving 7", nor would we look for
other clauses with ¢ asthe head.

In PROLOG, this type of test/fail control is specified with the cut symbol, ‘! .
Notationally, we would have arroLoG clause that looks like this:

G- Ty, T2 ooy Ty, !y G, &, ..., G,

which would tell the interpreter to try each of the goalsin this order, but if al the
T succeed, to commit to the (&; asthe only way of solving Gi.

A clear application of thisconstruct isin theif-then-else construct of traditional
programming languages. Consider, for example, defining a predicate Expt(a, n, v)
intended to hold when » = «™. The obvious way of calculating «™ (or reasoning
about Expt goals) requires n — 1 multiplications. However, there is a much more
efficient recursive method that only requires about log,(») multiplications: if » is
even, we continue recursively with o2 and n/2 replacing « and =, respectively;
otherwise, if » is odd, we continue recursively with «? and (n — 1)/2 and then
multiply the result by «. In other words, we are imagining a recursive procedure
with an if-then-else of the form

if niseven
then do one thing
else do another

The details need not concern us, except to note the form of the clauses we would
use to define the predicate:

Expt(a, 0, 1)
Expt(a,n,v) < n > 0 A Even(n) A Expt(a?,n/2,v)
Expt(e, n,v) < n > 0 A =Even(n) A

Expt(a?, (n — 1)/2,2) A v =av’

The point of this example is that we need to use dightly different methods based
on whether n is even or odd. However, we would much prefer to test whether = is
even only once: weshould attempt the goa Even(n) andif it succeedsdo onething,
and if it fails do another. The goal —Even(n) should in reality never be considered.
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A related but less serious consideration is the test for n = 0: if » = 0 we should
commit to the first clause; we should not have to confirm that » > 0 in the other
two clauses.

In PrOLOG both of these concerns can be handled with the cut operator. We
would end up with a proLoG definition like this:

expt (A 0,V) - I, Vv=1.
expt (A N V) :- even(N), !, ...whattodowhenn iseven.
expt (A, N, V) :- ...whattodowhennisodd.

Note that we commit to the first clause when n = 0 regardiess of the value of « or
v, but we only succeed when » = 1. Thus, while

expt (A N V) - N=O, !, V=1,
is correct and equivalent to the first clause,
expt (A 0,1) :- I,
would be incorrect. In general, we can see that something like

G:- P !',] R
G:- S

islogicaly equivalent to “if P holds then R implies ¢, and if =P holds then S
implies G,” but that it only considers the P once.

A less algorithmic example of the use of the cut operator might be to define a
NumberOfParents predicate: for Adam and Eve, the number of parentsisO, but for
everyoneelse, itis2:

nunber O Parent s(adam V) :- !, V=0.
nunber O Parent s(eve, V) :- !, V=0.
nunber O Parent s(P, 2) .

Inthis case, we do not need to confirm in thethird clause that the person in question
isnot Adam or Eve.

6.6 Controlling backtracking
Another application of the rroLoOG cut operator involves control of backtracking

on failure. At certain pointsin a proof, we can have an idea of which steps might
be fruitful and which stepswill come to nothing and waste resourcesin the process.
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Imaginefor example, that we aretrying to show that Janeisan American cousin
of Billy. Two individuals can be considered to be (first) cousins if they share a
grandparent but are not siblings:

Cousin(z,y) < (z Zy) A —Sibling(z,y) A
GParent(z,z) A GParent(z, y)

Suppose that in trying to show that Jane is an American cousin of Billy, we find
that Henry is a grandparent of both of them, but that Jane is not American. The
question iswhat happens now. If it turns out that Elizabeth is also a grandparent of
both Jane and Billy, we will find this second z on backtracking, and end up testing
whether Jane is American a second time. Thiswill of course fail once more since
nothing has changed.

What this example shows is that on failure, we need to avoid trying to redo a
goal that was not part of the reason we are failing. It was not the choice of grand-
parent that caused the trouble here, so thereis no point in reconsidering it. Yet this
is precisely what proLOG backtracking would do.2 To get the effect we want in
PROLOG, we would need to represent our goal as

cousin(jane,billy), !, american(jane)

In other words, once we have found away to show that Janeisacousin of Billy (no
matter how), we should commit to whatever result comes out of checking that she
is American.

Asasecond example of controlling backtracking, consider the following defi-
nition of membership in alist:

Member(z,!) < FirstElement(z, )
Member(z,[) < RemainingElements(l, ") A Member(z, ")

with the auxiliary predicates FirstElement and RemainingElements defined in the
obvious way. Now imagine that we are trying to establish that some object « isan
element of some (large) list ¢ and has property (). That is, we have the goal

Member(a, ¢) A Q(a).

If the Member(a, ¢) subgoal were to succeed but ()(«) fail, it would be silly to
reconsider Member(«, ¢) to seeif « also occurslater in thelist. In ProLOG, we can
control this by using the goa

2A more careful but time-consuming version of backtracking (called dependency-directed back-
tracking) avoids the redundant steps here automatically.
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menber(a,Q, !, q(a).

More generaly, if we know that the Member predicate will only be used to test for
membership in alist (and not to generate elements of alist), we can useaPROLOG
definition like this:

menber (X, L) :- firstElenent(X L), !.
menber (X, L) :- remaini ngE ements(L,L1),
menber ( X, L1) .

Thisguaranteesthat onceamembership goal succeeds (inthefirst clause) by finding
asublist whose first element isthe item in question, the second clause, which looks
farther down the list, will never be reconsidered on failure of a later goal. For
example, if wehad alist of our friendsand some goal needed to check that someone
(e.g., George) was both afriend and rich, we could ssimply write

menber (geor ge, Friends), rich(george)

without having to worry about including a cut. The definition of nenber assures
usthat once an element isfound in thelist, if asubsequent test liker i ch fails, we
won't go back to see if that element occurs somewhere later in the list and try that
failed test again.

6.7 Negation asfailure

Perhaps the most interesting ideato come out of the study of the procedural control
of reasoning isthe concept of negation as failure. Procedurally, we can distinguish
between two types of “negative” situationswith respect to agoa G-

e being able to solve the goal -G or
¢ being unable to solve the goa G'.

In the latter case, we may not be able to find afact or rule in the KB asserting that
(7 isfase, but perhaps we have run out of optionsin trying to show that (7 istrue.
In general, wewould liketo be ableto tell areasoner what it should do after failing
to prove agodl.

We begin by introducing a new type of goal not(G), which is understood to
succeed when the goa G fails, and to fail when the goal G succeeds (quite apart
from the status of —(). In PrROLOG, not behaves asif it were defined like this:

not(g :- G !, fail. % fail if & succeeds
not( G . % otherwise succeed
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Thistype of negation asfailureisonly useful when failureisfinite. If attempting to
prove 7 resultsin an infinite branch with an infinite set of resolventsto try, then we
cannot expect a goa of not((7) to terminate either. However, if there are no more
resolvents to try in a proof, then not(G) will succeed.

Negation asfailureisespecially useful in situationswherethe collection of facts
and the rules express complete knowledge about some predicate. If, for example,
we have an entire family represented in a KB, we could definein PrOLOG

noChildren(X) :- not(parent(XY)).

We know that someone has no children if we cannot find any in the database. With
incomplete knowledge, on the other hand, we could fail to find any children in the
database simply because we have not yet been told of any.

Another situation where negation as failure is useful is when we have a com-
plete method for computing the complement of a predicate we care about. For
example, if wehave arule for determining if anumber is prime, we would not need
to construct another one to show that a number is not prime; instead we can use
negation as failure:

conmposite(N) :- N > 1, not(primeNunber(N)).

In this case, failure to prove that a number greater than 1 is prime is sufficient to
conclude that the number is composite.

Declaratively, not has the same reading as conventional negation, except when
new variables appear in the goal. For example, the ProLoG clause for Composite
above can be read as saying that

for every number =, if n > 1 and n isnot a prime number,
then n is composite.

However, the clause for NoChildren before that should not be read as saying that
for every x and y, if « is not a parent of y, then = has no children.

For example, suppose that the goal Parent(sue, jim) succeeds, but that the goal
Parent(sue, george) fails. Althoughwe do want to conclude that Sueisnot aparent
of George, we do not want to conclude that she has no children. Logically, therule
needsto beread as

for every x, if for every y, « isnot a parent of y, then 2 hasno children.

Note that the quantifier for the new variable y in the goa has moved inside the
scope of the “if.”
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6.8 Dynamic databases

In this chapter we have considered a KB consisting of acollection of ground atomic
facts about the world and universally quantified rules defining new predicates. Be-
cause our most basic knowledge is expressed by the elementary facts, we can think
of them as a database representing a snapshot of the world. It is natural, then, as
properties of the world change over time, to think of reflecting these changes with
additions and deletionsin the database. The removed facts are areflection of things
that are no longer true, and the added facts are areflection of things that have newly
become true.

With this more dynamic view of the database, it is useful to consider three dif-
ferent procedural interpretationsfor abasic rulelike Parent(z, y) < Mother(z, y):

1. if-needed: whenever we have a goa matching Parent(z, i), we can solve it
by solving Mother(x, y). Thisis ordinary back chaining. Proceduraly, we
wait to make the connection between mothers and parents until we need to
prove something about parents.

2. if-added: whenever a fact matching Mother(z, y) is added to the database,
we aso add Parent(z, y) to the database. This is forward chaining. In this
case, the connection between mothers and parentsis made as soon aswelearn
about anew mother relationship. A proof of a parent relationship would then
be more immediate, but at the cost of the space needed to store facts that may
never be used.

3. if-removed: whenever something matching Parent(x, ¢) isremoved from the
database, we should aso remove Mother(z, y). This is the dual of the if-
added case. But thereis amore subtleissue here. If the only reason we have
a parent relationship in the database is because of the mother relationship,
then if we remove that mother relationship, we should remove the parent one
aswell. To do this properly, we would need to keep track of dependenciesin
the database.

Interpretation (1) above is of course the mainstay of PrRoOLOG; interpretations (2)
and (3) above suggest the use of “demons,” which are proceduresthat actively mon-
itor the database and trigger—or “fire’—when certain conditions are met. There
can be more than one such demon matching a given change to the database, and
each demon may end up further changing the database, causing still more demons
to fire, in a pattern of spreading activation. This type of processing underlies the
production systems of Chapter 7.
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6.8.1 ThePLANNER approach

The practical implications of giving the user more direct control over the reasoning
process have led over the years to the development of a set of programming lan-
guages based on ideaslike the oneswe have covered above. TherroLoG language
isof course well known, but only covers some of these possibilities. A Lisp-based
language called PLANNER was invented at about the same time as proLoG, and
was designed specifically to givethe user fine-grained control of atheorem-proving
process.
Themainideasin P.ANNER relevant to our discussion here are these:3

e Theknowledge base of arLANNER application isadatabase of simplefacts,
using a notation like (Mother susan john) and (Person john).

¢ Therules of the system are formulated as a collection of if-needed, if-added,
and if-removed procedures, each consisting of a pattern for invocation (e.g.,
(Mother 2 y)) and a body, which is a program statement to execute once the
invocation pattern is matched.

e Each program statement can succeed or fail:

— (goal p), (assert p), and (erase p) specify, respectively, that a goal
should be established (proven or made true), that a new fact should
be added to the database, and that an old fact should be removed from
the database;

— (and s1 ...s,), wherethe s; are program statements, is considered to
succeed if all the s; succeed, alowing for backtracking among them;

— (not s) is negation asfailure;

— (for p s), perform program statement s for every way goal p succeeds;
— (finalize s), smilar to the PrRoLOG cut operator;

— alot more, including all of Lisp.

Hereisasimple PLANNER example:

(proc if-needed (clearTable)
(for (on z table)
(and (erase (on x table)) (goal (putaway x)))))

(proc if-removed (on z y) (print = “isno longer on” y))

3We are simplifying the original syntax somewhat.
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Thefirst procedureisinvoked whenever the goal clearTable needsto betrue, that is,
in the blocks world of this example, the table needs to be free of objects. To solve
thisgoal, for each item found on the table, we remove the statement in the database
that reflects its being on the table, and solve the goal of putting that item away
somewhere. We do not here show how those goals are solved, but presumably they
could trigger an action by arobot arm to put the item somewhere not on the table,
and subsequently to assert the new location in the database. The second procedure
just aertsthe user to achange in the database, printing that the item is no longer on
the surface it was removed from.

The type of program considered in PLANNER sSuggests an interesting shift in
perspective on knowledge representation and reasoning. Instead of thinking of
solving a goa as proving that a condition is logically entailed by a collection of
facts and rules, we think of it as making conditions hold, using some combina-
tion of forward and backward chaining. This is the first harbinger of the use of
a representation scheme to support the execution of plans; hence the name of the
language.* We also see a shift away from rules with a clear logical interpretation
(as universally quantified conditionals) towards arbitrary procedures, and specifi-
caly, arbitrary operations over adatabase of facts. These operationscan correspond
to deductive reasoning, but they need not. Although pLANNER itself is no longer
used,®> we will seethat this dynamic view of rules persists in the representation for
production systems of the next chapter.

6.9 Bibliographic notes

6.10 Exercises

The exercises here al concern generalizing Horn derivations to incorporate nega-
tion as failure. For these questions, assume that a KB consists of alist of rules of
theform (¢ < as,...,a,) wheren > 0, ¢ isan atom, and each «; is either of the
form p or not(p), where p isan atom. The ¢ in this caseis called the conclusion of
therule, and the a; make up the antecedent of therule.

1. The forward-chaining procedure presented in Chapter 5 for Horn clause sat-
isfiability can be extended to handle negation as failure, by marking atoms
incrementally with either aY (when they are known to be solved), or with an
N (when they are known to be unsolvable), using the following procedure:

“We will reconsider theissue of planning from alogical perspectivein Chapter 15.
SUsers of the language eventually wanted even more control, and gravitated towards using its
implementation language and some of its data structures.
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For any unmarked letter ¢,
o if thereisarule (¢ — ay,...,a,) € KB, where al
the positive a; are marked Y and all the negative a;
are marked N, then mark ¢ with v;
o if for everyrule (¢ — as,...,a,) € KB, some pos-
itive a; ismarked N or some negative «; is marked
Y, then mark ¢ with N.

(&) Show how the procedure would label the atomsin the following KB:

a «—

b — a

cC « b

d < not(c)

e —¢c, g

f Hd, e

f < not(b), g

g < not(h), not(f)

(b) Give an example of a KB where the above procedure fails to label an
atom as either Y or N, but where the atom isiintuitively Y, according to
negation asfailure.

(c) A KB isdefined to be strongly stratified iff there is afunction f from
atoms to numbers such that for every rule (¢ <— a1, ..., a,) € KB, and
forevery 1 < i < n, wehavethat f(¢q) > f(a;), where f(not(p;)) =
f(p:). (In other words, the conclusion of arule is aways assigned a
higher number than any atom used positively or negatively in the an-
tecedent of therule)) Isthe example KB of part (a) strongly stratified?

(d) Prove by induction that the above procedure will 1abel every atom of a
strongly stratified KB.

(e) A KB is defined to be weakly stratified iff there is a function ¢ from
atoms to numbers such that for every rule (¢ < a1, ...,a,) € KB, and
forevery 1 < i < n, g(q) > ¢(a;), where in this case, g(not(p;)) =
1+ g(p;). (Inother words, the conclusion of aruleisalways assigned a
number no lower than than any atom used positively in the antecedent
of therule, and higher than any atom used negatively in the antecedent
of therule.) Isthe example KB of part (a) weakly stratified?

(f) Give anexample of aweakly stratified KB where the procedure above
failsto label an atom.
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(g) Assume you are given a KB that is weakly stratified and you are also
given the function ¢ in question. Sketch a forward-chaining procedure
that uses the ¢ to label every atom in the KB either Y or N.

2. Write, test, and document a program that performs the forward-chaining of

the previous question and that runsin linear time, relative to the size of the
input. You should use data structures inspired by those of Question 1 of
Chapter 5. Includein thedocumentation an argument asto why your program
runsin linear time. Show that your program works properly on at least the
KB of the previous question.

. There are many ways of making negation as failure precise, but one way is

as follows: we try to find a set of “negative assumptions” we can make,
{not(q1), ..., not(q,)}, such that if we were to add these to the KB and
use ordinary logical reasoning (now treating a not(p) as if it were a new
atom unrelated to p), the set of atoms we could not derive would be exactly

{q17 SRR qn}-
More precisely, we define a sequence of sets as follows

No={}
N+ = {not(q) | KBU Ny ¢}

Thereasoning procedurethenisthis: wecalculatethe Ny, and if the sequence
converges, that is, if N+ = Ny for some k, then we consider any atom p
such that not(p) ¢ N, to be derivable by negation as failure.

(a) Show how this procedure works on the KB of Question 1, by giving the
values of Ny.
(b) Giveanexample of a KB where the procedure does not terminate.

(c) Explain why the procedure does the right thing for KBs that are pure
Horn, that is, do not contain the not operator.

(d) Suppose aKB isweakly stratified wrt ¢, as defined in Question 1. For
any pair of natural numbers k and r, define NV (k, r) by

N(k,r)={not(q) € Ni|g(g) <}
It can be shown that for any % and any atom p where g(p) = r

KBUN, Ep iff KBUN(,r)Ep.
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C)

In other words, for aweakly stratified KB, when trying to prove p, we
need only consider negative assumptions whose ¢ valueis lower than
p. Usethisfact to provethat for any k& and » wherer < &k, N(k+1,7) =
N(k+ 2, 7). Hint: provethis by induction on k. In the induction step,
thiswill require assuming the claim for k& (whichisthat for any r < k,
N(k+1,r)=N(k+2,r)) and then proving the claim for £ + 1 (which
isthat forany r < k+1, N(k+2,r)= N(k+3,7).)

Use part (d) to concludethat the negation asfailure reasoning procedure
above aways terminates for a KB that is weakly stratified.
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Chapter 7

Rulesin Production Systems

We have seen from our work on Horn clauses and procedura systemsin previous
chapters that the concept of an if-then conditional or rule— if P istruethen @ is
true — is central to knowledge representation. While the semantics of the logical
formula (P D Q) issimple and clear, it suggests that arule of this sort is no more
than aform of digunction: either P isfalse or () istrue. However, aswe saw in
the previous chapter, from a reasoning point of view, we can look at theserulesin
different ways. In particular, arule can be understood procedurally as either

e moving from assertions of P to assertions of ), or
¢ moving from goals of () to goals of P.

We can think of these two cases this way:
(assert P) = (assert ()

(goal Q) = (goal P)

While both of these arise from the same connection between P and (), they empha-
size the difference between focusing on assertion of facts and seeking the satisfac-
tion of goals. We usually call the two types of reasoning that they suggest,

¢ data-directed reasoning, i.e., reasoning from P to @, and
o goal-directed reasoning, i.e., reasoning from ) to P.

Data-directed reasoning might be most appropriate in a database-like setting, when
assertionsare madeand it isimportant to follow theimplications of those assertions.
Goal-directed reasoning might be most appropriate in a problem-solving situation,

(©2003 R. Brachman andH. Levesque July17, 2003 118

where a desired result is clear, and the means to achieve that result—the logical
foundations for a conclusion—are sought.

Quite separately, we can aso distinguish the mechanical direction of the com-
putation. Forward-chaining computationsfollow the“=-" in the forward direction,
independent of the emphasis on assertion or goal. Backward-chaining reasoning
goes in the other direction. While the latter is amost always oriented toward goal -
directed reasoning and the former toward data-directed reasoning, these associa-
tionsare not exclusive. For example, using the notation of the previous chapter, we
might imagine procedures of the following sort:

e (proc if-added (myGoal ()) ... (assert (myGoal P))...)
e (proc if-needed (myAssert P) ... (goal (myAssert@))...)

In the former case, we use forward chaining to do a form of goal-directed reason-
ing: (myGoal ) isaformulato be read as saying that @) isagoal; if thisis ever
asserted (that is, if we ever find out that ¢) isindeed agoal), we might then assert
that P isaso agoa. In acomplementary way, the latter case illustrates away to
use backward chaining to do a form of data-directed reasoning: (myAssert P) isa
formulato beread as saying that P isan assertion in the database; if thisis ever a
goal (that is, if we ever want to assert P in the database), we might then also have
the goal of asserting () in the database. Thislatter example suggests how it is pos-
sible, for example, to do data-directed reasoning in PrROLOG, abackward-chaining
system.

In the rest of this chapter, we examine a new formalism, production systems,
used extensively in practical applications, and which emphasizes forward chaining
over rulesasaway of reasoning. Wewill see examples, however, wherethe reason-
ing is data-directed, and others where it is goal-directed. Applications built using
production systems are often called rule-based systems as a way of highlighting
this emphasis on rules in the underlying knowledge representation.

7.1 Production Systems— Basic Operation

A production system! is a forward-chaining reasoning system that uses rules of a
certain form called production rules (or simply, productions) asits representation of
general knowledge. A production system keeps an ongoing memory of assertions
in what is caled its working memory (or WM). The WM is like a database, but
more volatile; it is constantly changing during the operation of the system.

IMany variants have been proposed; the version we present here is representative.
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A production rule is atwo-part structure comprising an antecedent set of con-
ditions which, if true, causes a consequent set of actions to be taken. We usually
write arulein thisform:

| F conditions THEN actions

The antecedent conditions are tests to be applied to the current state of the WM.
The conseguent actions are a set of actions that modify the WM.

The basic operation of a production system isacycle of three steps that repeats
until no more rules are gpplicable to the WM, at which point the system halts. The
three parts of the cycle are as follows:

1. recognize: find which rules are applicable, i.e. those rules whose antecedent
conditions are satisfied by the current working memory;

2. resolve conflict: among the rulesfound in thefirst step (called aconflict set),
choose which of the rules should “fire,” i.e. get achance to execute;

3. act: change the working memory by performing the consequent actions of
all the rules selected in the second step.

As stated, this cycle repeats until no more rules can fire.

7.2 Working Memory

Working memory is composed of aset of working memory elements (WMEs). Each
WME isatuple of the form,

(type attribute;: value; ... attribute,: value,),
wheretype, attribute;, and value; areall atoms. Here are some examples of WMEs:
o (person age:27 home:toronto)
e (goal task:putDown importance:5 urgency: 1)
e (student name:john department: computerScience)

Declaratively, we understand each WME as an existential sentence:

Ju: [ type(z) A attributey(z) = value; A attributex(z) = value; A ...
A attribute, (z) = value, ]
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Notethat theindividual about whom the assertionis madeisnot explicitly identified
inaWME. If we choose to do so, we can identify individual s by using an attribute
that is expected to be unique for theindividual. For example, we might useaWME
of theform (person identifier: 777-55-1234 name: janeDoe ...). Note aso that the
order of attributesin aWME is not significant.

The example WMES above represent objectsin an obvious way. Relationships
among objects can be handled by reification.2 For example, something like

(basicFact relation: olderThan firstArg: john secondArg: mary)

might be used to say that John is older than Mary.

7.3 Production Rules

Aswe mentioned, the antecedent of a production ruleis aset of conditions. If there
is more than one condition, they are understood conjunctively, thet is, they all have
to be true for the rule to be applicable. Each condition can be positive or negative
(negative conditions will be expressed as —cond), and the body of each is atuple
of thisform:

(type attribute;: specification, ... attributey: specification,),

where each specification is one of the following:

e anatom

e avariable

e an evaluable expression, within “[ 1"

o atest, within“{}”

¢ the conjunction (A), disunction (V), or negation () of a specification.

Here are two examples of rule conditions:

(person age:[n + 4] occupation: x)

2The technique of encoding n-ary relationships using reified objects and a collection of unary
functions was discussed in Section 3.7 of Chapter 3.
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Thiscondition issatisfied if thereisa WME whose typeis person and
whose age attribute is exactly n + 4 (where n is specified el sewhere).
The result binds the occupation value to z, if = is not aready bound,;
if  isdready bound, then the occupation value in the WME needs to
be the same asthe value of .

—(person age: {< 23 A > 6})

This condition is satisfied if there isno WME in the WM whose type
isperson and whose age value is between 6 and 23.

Now, to be more precise about the applicability of rules, arule is considered
applicable if there are values for all the variables in the rule such that al the an-
tecedent conditions are satisfied by the current WM. A positive condition is sat-
isfied if there is a matching WME in the WM; a negative condition is satisfied if
there is no matching WME. A WME matches a condition if the types are identi-
cal and for each attribute/specification pair mentioned in the condition, there is a
corresponding attribute/value pair in the WME, where the val ue matches the spec-
ification (under the given assignment of variables) in the obvious way. Of course,
the matching WME may have attributes that are not mentioned in the condition.

Note that for a negated condition, there must be no element in the entire WM
that matches it. This interpretation is negation as failure, asin pProLOG-type sys-
tems (see Chapter 5). We do not need to prove that such a WME could never exist
in WM—it just has to be the case that no matching WME can be found at the time
the rule is checked for applicability.

The consequent sides of production rules are treated a little differently. They
have a strictly procedural interpretation, and each action in the action set is to be
executed in sequence, and can be one of the following:

e ADD pattern: this means that a new WME specified by pattern is added
directly to the WM.

e REMOVEi: 7isaninteger, and this meansto remove (completely) from WM
the WME that matched the i-th condition in the antecedent of therule. This
construct is not applicableif that condition was negative.

e MODI FY i (attribute specification): this means to modify the WME that
matched the ¢-th condition in the antecedent, by replacing its current value
for attribute by specification. MODI FY isalso not applicable to negative con-
ditions.
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Notethat inthe ADDand MODI FY actions, any variablesthat appear refer to theval -
ues obtai ned when matching the antecedent of therule. For example, the following
rule might be used in an ordinary logical reasoning situation:

| F (student name: ) THEN ADD (person name: )

In other words, if there isa WME of type student, with any name (and bind that
nameto z), then add to WM an element of type person, with the same name. This
is a production rule version of the conditional ¥« (Student(z) D Person(z)), here
used in a data-directed way. This conditional could also be handled in a very dif-
ferent way with arule like this:

| F (assertion predicate: student)
THEN MODI FY 1 (predicate person)

In this case, we lose the original fact stated in terms of student, and replaceit with
one using the predicate person.

The following example implements a simple database update. It assumes that
some rule has added a WME of type birthday to the WM at the right time:

| F (person age:z name:n) (birthday who:n)
THEN MODI FY 1 (age [« +1])
REMOVE 2

Note that when the WME with the person’s age is changed, the birthday WME is
removed, so that the rule will not fire a second time.

The REMOVE action is also used on occasion to deal with control information.
We might use a WME of type control to indicate what phase of a computation we
arein. Thiscan beinitialized in the following way:

I F (starting)
THEN REMOVE 1
ADD (control phase:1)

We could subsequently change phases of control with something like this:

I F (control phase:z) ... other appropriateconditions ...
THEN MODI FY 1 (phase [z +1])
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7.4 A First Example

In order toillustrate a production system in action, consider the following task. We
havethree bricks, each of different size, sitting in aheap. We havethreeidentifiable
positions in which we want to place the bricks with a robotic “hand”; call these
positions 1, 2, and 3. Our god is to place the bricks in those positionsin order of
their size, with the largest in position 1 and the smallest in position 3.

Assume that when we begin, working memory has the following elements:

(counter value:1)

(brick name: A size: 10 position: heap)
(brick name: B size: 30 position: heap)
(brick name: C size:20 position: heap)

In this case, the desired outcomeisbrick B in position 1, brick C in position 2, and
brick A in position 3.

We can achieve our goal with two production rules that work with any number
of bricks. Thefirst one will place the largest currently available brick in the hand,
and the other one will place the brick currently in the hand into the next position,
going through the positions sequentially:

1. I F (brick position:heap name:n size: s)
—(brick position: heap size: {> s})
—(brick position: hand)

THEN MODI FY 1 (position hand)

In other words, if there isabrick in the heap, and there is no bigger brick in
the heap, and there is nothing currently in the hand, put the brick in the hand.

2. | F (brick position: hand)
(counter value: i)
THEN MODI FY 1 (position 7)
MODI FY 2 (value [i + 1])

When there is a brick in the hand, this rule places it in the next position in
sequence given by the counter, and increments the counter.

In this example, no conflict resolution is necessary, since only one rule can fire at
atime: the second rule requires there to be a brick in the hand, and the first rule
requires there to be none.

Itisfairly smpleto trace the series of rule firings and actions in this example.
Recall that when we start, all bricks are in the heap, and none are in the hand. The
counter isinitially set to 1.
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1. Rule 2 is not applicable, since no brick isin the hand. Rule 1 attempts to
match each of the three WMEs of type brick in WM, but only succeeds for
brick B, sinceit is the only one for which no larger brick exists in the heap.
When Rule 1 matches, n isbound to B and s to 30. The result of thisrule’s
firing, then, is the modification of the brick B WME to be:

(brick name: B size: 30 position: hand)

2. Now that thereisabrick inthe hand, Rule 1 cannot fire. Rule 2 isapplicable,
with i being set to 1. Rule 2's firing results in two modifications, one to the
brick B WME (position now becomes 1) and one to the counter WME:

(brick name: B size: 30 position: 1)
(counter value: 2)

3. Brick B no longer has its position as the heap, so now Rule 1 matches on
brick C, whose position is modified as aresullt:

(brick name: C size:20 position: hand)

4. Inastep similar to step 2 above, Rule 2 causes brick C to now be in position
2 and the counter to be reset to 3:

(brick name: C size:20 position: 2)
(counter value: 3)

5. Now A is the only brick left in the heap, so Rule 1 matches its WME, and
moves it to the hand:

(brick name: A size: 10 position: hand)
6. Rule 2 fires again, thistime moving brick A to position 3:

(brick name: A size: 10 position: 3)
(counter value: 4)

7. Now that there are no bricksin either the heap or the hand, neither Rule 1 nor
Rule 2 is applicable. The system halts, with the final configuration of WM
asfollows:

(counter value: 4)

(brick name: A size: 10 position: 3)
(brick name: B size: 30 position: 1)
(brick name: C size:20 position: 2)
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7.5 A Second Example

Next we look at an example of a dightly more complex computation that is easy
to do with production systems; we present a set of rules that computes how many
daysthere are in any given year. In this example, working memory will have two
simple control elements in it: (wantDays year: n) will be our starting point and
express the fact that our goal isto calculate the number of daysin theyear n. The
WME (hasDays days: m) will expressthe result when the computation isfinished.
Finally, we will useaWME of type year to break the year down into its value mod
4, mod 100, and mod 400. Here are the five rules that capture the problem:

1. | F (wantDays year:n)
THEN REMOVE 1
ADD (year mod4: [n%4] mod100: [2%100] mod400: [n%400])

2. | F (year mod400:0)
THEN REMOVE 1
ADD (hasDays days: 366)

3. I F (year mod100:0 mod400: {# 0})
THEN REMOVE 1
ADD (hasDays days: 365)

4. | F (year mod4:0 mod100: {# 0})
THEN REMOVE 1
ADD (hasDays days: 366)

5. | F (year mod4:{#0})
THEN REMOVE 1
ADD (hasDays days: 365)

This rule set is structured in a typical way for goal-directed reasoning. The first
rule initializes WM with the key values for a year that will lead to the calculation
of the length of the year in days. Onceit fires, it removes the wantDays WME and
is never applicable again. Each of the other four rules check for their applicable
conditions, and once one of them fires, it removesthe year WME, so that the entire
system halts. Each antecedent expresses acondition that only it can match, soagain
no conflict resolution is needed (and the order is aso irrelevant).

Itis easy to see how this rule set works. If theinput is 2000, then we start with
(wantDays year: 2000) in WM. The first rule fires, which then adds to WM the
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WME (year mod4: 0 mod100: 0 mod400: 0). This matches only Rule 2, yielding
(hasDays days: 366) at the end. If the input is 1900, the first rule adds the WME
(year mod4:0 mod100:0 mod400: 300), which then matches only Rule 3, for a
valueof 365. If theinput is 1996, we get (year mod4: 0 mod100: 96 mod400: 396),
which matches only Rule 4, for avalue of 366.

7.6 Conflict Resolution

Depending on whether we are doing data-directed reasoning or goal-directed rea-
soning, we may want to fire different numbers of rules, in case more than onerule
is applicable. In a data-directed context, we may want to fire all rules that are
applicable, to get al consequences of a sentence added to working memory; in a
goal-directed context, we may prefer to pursue only a single method at atime, and
thus wish to fire only onerule.

In cases where we do want to eliminate some applicable rules, there are many
conflict resolution strategies for arriving at the most appropriaterule(s) tofire. The
most obvious one is to choose an applicable rule at random. Here are some other
common approaches:

e order: pick thefirst applicable rulein order of presentation. Thisisthetype
of strategy that PrRoL.OG uses and is one of the most common ones. Produc-
tion system programmers would take this strategy into account when formu-
lating rule sets.

o specificity: select the applicable rule whose conditions are most specific.
One set of conditions is said to be more specific than another if the set of
WNMs that satisfy it is a subset of those that satisfy the other. For example,
consider the three rules

| F (bird) THEN ADD (canFly)
| F (bird weight: {>100}) THEN ADD (cannotFly)
| F (bird) (penguin) THEN ADD (cannotFly)

Here the second and third rules are both more specific than the first. If we
have a bird that is heavy or that is a penguin, then the first rule applies, but
the others should take precedence. (Note that if the bird is a penguin and
heavy, another conflict resolution criteria might till have to come into play
to help decide between the second and third rules.)

e recency. select an applicable rule based on how recently it has been used.
There are different versions of this strategy, ranging from firing the rule that
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matches on the most recently created (or modified) WME to firing the rule
that has been least recently used. The former could be used to make sure a
problem solver staysfocussed on what it wasjust doing (typical of depth-first
search); the latter would ensure that every rule getsafair chanceto influence
the outcome (typical of breadth-first search).

o refractoriness. do not select arule that has just been applied with the same
values of itsvariables. This prevents the looping behaviour that results from
firing arule repeatedly because of the sasme WME. A variant forbidsre-using
agiven rule-WME pair. Either therefractoriness can disappear automatically
after afew cycles, or an explicit “refresh” mechanism can be used.

Asimplied in our penguin example above, non-trivia rule systems often need to
use more than one conflict resolution criterion. For example, the ops5 production
rule system uses the following criteria for selecting the rule to fire amongst those
that are found to be applicable:

1. discard any rule that has just been used for that value of variables;

2. order the remaining instances in terms of recency of WME matching the first
condition, and then the second condition, and so on;

3. order the remaining rules by number of conditions;
4., if thereis still a conflict, select arbitrarily among the remaining candidates.

One interesting approach to conflict resolution is provided by the soAr system.
This system is a general problem solver that attempts to find a path from a start
state to agoal state by applying productions. It treats selecting which ruleto fire as
deciding what the system should do next. Thus, if unable to decide on which rule
to fire at some point, SOAR Sets up a new meta-goal to solve, namely the goal of
selecting which rule to use, and the processiterates. When this meta-goal is solved
(which could in principle involve meta-meta-goals etc.), the system has made a
decision about which base goal to pursue, and therefore the conflict is resolved.

7.7 Making Production Systems Mor e Efficient

Early production systems, implemented in a straightforward way, ended up spend-
ing inordinate amounts of time (as much as 90%) in rule matching. Surprisingly,
this remained true even when the matching was implemented using sophisticated
indexing and hashing.
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Figure 7.1: A sample RETE network

a: type = person

/a:age<14 «: occupation = doctor

3: father ~ name

|

RULE23

But two key observations led to an implementation breakthrough: first, that
the WM was modified only very slightly on each rule-firing cycle, and second,
that many rules shared conditions. The idea behind what came to be caled the
rETE algorithmwas to create a network from the rule antecedents. Since the rules
in a production system don’t change during its operation, this network could be
computed in advance. During operation of the production system, “tokens’ repre-
senting new or changed WMEs are passed incrementally through the network of
tests. Tokens that make it al the way through the network on any given cycle are
considered to satisfy all of the conditionsof arule. At each cycle, anew conflict set
can then be calculated from the previous one and any incremental changes made to
WM. Thisway, only avery small part of the WM is re-matched against any rule
conditions, drastically reducing the time needed to cal culate the conflict set.

A simple example will serveto illustrate. Consider arule like the following:

| F (person name:z age: {< 14} father:y)
(person name:y occupation: doctor)
THEN

Thisrulewould cause the r T E network of figure 7.1 to be created. The network
has two types of nodes. “alpha” nodes, which represent simple, self-contained
tests, and “ beta” nodes, which take into account the fact that variables create con-
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straints between different parts of an antecedent. Tokensfor all new WMEs whose
type was person would enter the network at the topmost (alpha) node. If the age
of the person was not known to be less than 14, or the person was not known to
be a doctor, there the token would sit until one of the relevant attributes was mod-
ified by arule. A person WME whose age was known to be less than 14 would
pass down to the age apha node; one whose occupation was doctor would pass
to the other apha node in the figure. In the case where a pair of WMEs residing
at those alpha nodes also shared a common value between their respective father
and name attributes, a token would pass through the lower beta node expressing
the constraint, indicating that this rule was now applicable. For tokens left sitting
in the network at the end of acycle, any modificationsto the corresponding WMEs
would cause areassessment, to seeif they could pass further down the network, or
combine with other WMEs at abetanode. Thusthe work at each step is quite small
and incremental .

7.8 Applicationsand Advantages

Production systems are a general computational framework, but one based origi-
nally on the observation that human experts appear to reason from “rules of thumb”
in carrying out tasks. The production system architecture was the first reasoning
system to attempt to model explicitly not only the knowledge that people have, but
a so the reasoning method peopl e use when performing mental tasks. Here, for ex-
ample, is aproduction rule that suggests one step in the procedure a person might
usein carrying out a subtraction:

| F (goal is: getUnitDigit)
(minuend unit: d)
(subtrahend unit: {> d})
THEN REMOVE 1
ADD (goal is: borrowFromTens)

What was especially interesting to researchersin this area of psychology was the
possibility of modeling the errors or misconceptions people might havein symbolic
procedures of this sort.

Subsequently, what was originally a descriptive framework for psychological
modeling was taken up in a more prescriptive fashion in what became known as
expert systems. Expert systems, now a core technology in the field, use rulesas a
representation of knowledge for problems that ordinarily take human expertise to
solve. But because human experts seem to reason from symptoms to causes (and
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similarly in other diagnosis and reasoning problems) in a heuristic fashion, pro-
duction rules seem to be able to handle significant problems of great consegquence,
ranging from medical diagnosis, to checking for credit-worthiness, to configuration
of complex products. We will ook briefly at some of these rule-based systemsin
the next section below.

There are many advantages claimed for production systems when applied to
practical complex problems. Among the key advantages, these are usually cited:

e modularity: inaproduction rule framework, each rule works independently
of the others. This allows new rules to be added or old rules to be removed
incrementally inarelatively easy fashion. Thisisespecially useful for knowl-
edge acquisition and for debugging.

¢ fine-grained control: production systems have a very simple control struc-
ture. There are no complex goal or control stacks hidden in the implementa-
tion, among other things.

e transparency: because rules are usually derived from expert knowledge or
observation of expert behaviour, they tend to use terminology that humans
can resonatewith. In contrast to formalismslike neural networks, the reason-
ing behavior of the system can be traced and explained in natural language.

In reality—especially when the systems get large and are used to solve complex
problems—these advantages tend to wither. With hundreds or even thousands of
rules, it is deceptive to think that rules can be added or removed with impunity.
Often, more complex control structures than one might suppose are embedded in
the elements of WM (remember attributes like phase and counter from above) and
invery complex rule antecedents. But production rules have been used successfully
on avery wide variety of practical problems, and are an essential element of every
Al researcher’s toolkit.

7.9 Some Significant Production Rule Systems

Given the many years that they have been used and the many problems to which
they have been applied, there are many variants on the production system theme.
While it is impossible to survey here even all of the important developments in
the area, one or two significant contributions are worth mentioning. Among other
systems, work on MmycIN and xcoN has influenced virtually all subsequent work
inthe area.
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Mycin was developed at Stanford in the 1970's to aid physicians in the di-
agnosis of bacterial infections. After working with infectious disease specialists,
the myciN team built a system with approximately 500 production rules for recog-
nizing roughly 100 causes of infection. While the system operated in the typica
forward-chaining manner of production systems (using the recognize/resolve/act
cyclewestudied above), it performed itsreasoning in agoal-directed fashion. Rules
looked for symptomsin WM and used those symptomsto build evidencefor certain
hypotheses.

Hereisasimplified version of atypical mycIn rule:

I F
the type of = is primary bacteremia
the suspected entry point of = is the gastrointestinal tract
the site of the culture of « is one of the sterile sites
THEN
thereis evidence (0.8) that « is bacteroides

Mycin aso introduced the use of other static data structures (not in WM) to
augment the reasoning mechanism; theseincluded things likelists of organismsand
clinical parameters. But perhaps the most significant development was the intro-
duction of alevel of certainty in the accumulation of evidence and confidencein hy-
potheses. Sincein medical diagnosisnot all conclusions are obvious, and many dis-
eases can produce the same symptoms, mycin worked by accumulating evidence
and trying to ascertain what was the most likely hypothesis, given that evidence.
The technical means for doing this was what were called certainty factors, which
were numbers from 0 to 1 attached to the conclusions of rules; these allowed the
rank ordering of aternative hypotheses. Since rules could introduce these numeric
measures into working memory, and newly considered evidence could change the
confidence in various outcomes, MmycCIN had to specify a set of combination rules
for certainty factors. For example, the conjunction of two conclusions might take
the minimum of the two certainty factorsinvolved, and their digunction might im-
ply the maximum of the two.3

Inavery different line of thinking, researchers at Carnegie-Mellon produced an
important rule-based system called xcon (originally called R1). Thesystemwasin
use for many years at what was the Digital Equipment Corporation for configuring
computers, starting with its vax line of products. The most recent versions of the
system had over 10,000 rules, covering hundreds of types of components. This

3We address uncertainty and its relationship to other numerical means of combining evidencein
Chapter 12.
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system was the main stimulus for widespread commercia interest in rule-based

expert systems. Substantial commercial development, including the formation of

several new companies, has subsequently gone into the business of configuring

complex systems, using the kind of technology pioneered by xcoN.
Hereisasimplified version of atypical xcon rule:

I F
the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
there is space available for the power supply
there is no available power supply
the voltage and frequency of the components are known
THEN
add an appropriate power supply

Xcon wasthefirst rule-based system to segment a complex task into sections,
or “contexts,” to allow subsets of the very large rule base to work completely in-
dependently of one another. It broke the configuration task down into a number of
major phases, each of which could proceed sequentially. Each rule would typically
include a condition like (control phase: 6) to ensure that it was applicable to just
one phase of the task. Then specia context switching rules, like the kind we saw at
the end of Section 7.3, would be used to move from one phase of the computation
to another. Thistype of framework allowed for more explicit emulation of standard
control structures, although again, one should note that this type of architectureis
not ideal for complex control scenarios.

While grouping rulesinto contextsis auseful way of managing the complexity
of large knowledge bases, we now turn our attention to an even more powerful
organizational principle, object orientation.

7.10 Bibliographic notes

711 EXxercises

1. Consider the following strategy for playing tic-tac-toe:

Put your mark in an available square that satisfies thefirst of these
conditions:

(i) asguarethat givesyou threein arow
(ii) asguare that would give your opponent three in arow
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(iii) asguarethat is a double row for you

(iv) asguare that would be adouble row for your opponent
(v) acenter square

(vi) acorner square

(vii) any square

Intheabove, adoublerow squarefor aplayer isan available squarethat gives
the player two in arow on two distinct lines (where the third square of each
lineis still available, obviously).

(a) Encodethisstrategy asaset of production rules, and state what conflict
resolution is assumed.
Assumptions: To simplify matters, you may assume that there are el-
ements in WM of the form (line sql 7 sq2 j sg3 k), for any three
squares+, j, k, that form a straight line in any order. You may also as-
sume that for each occupied sguare, there is an element in WM of the
form (occupied square ¢ player p) where p is either X or O. Finally,
assume an element of the form (want-move player p), that should be
replaced once a move has been determined by something of the form
(move player p square ).

(b) It isimpossible to guarantee a win at tic-tac-toe, but it is possible to
guarantee adraw. Describe a situation where your ruleset failsto chose
the right move to secure a draw.

(c) Suggest asmall addition to your ruleset that is sufficient to guarantee a
draw.

2. In the famous Towers of Hanoi problem, you are given 3 pegs A, B, and C,

and n disks of different sizes with holesin them. Initially al the disks are
located on peg A arranged in order, with the smallest one at the top. The
problem isto get them all to peg C, but where only the top disk on a peg can
be moved, adisk can only be moved from one peg to another, and at no time
can adisk be placed on top of asmaller disk.

While this problem has an elegant recursive solution, it also has a less well
known iterative solution as follows. First, we arrange the pegsin acircle, so
that clockwise we have A, B, C, and then A again. Following this, assuming
we never move the same disk twice in arow, there will always only be one
disk that can belegally moved, and wetransfer it to thefirst peg it can occupy,
moving in aclockwise direction, if n iseven, and counter-clockwise, if n is
odd.
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Write a collection of production rules that implement this procedure. Ini-
tialy, the working memory will have elements (on peg A disk 1), for each
disk ¢, and an element (solve). When your rules stop firing, you should have
(on peg C disk 1), for each disk ¢, and (done) in working memory.

. This question concerns performing subtraction using a production system.

Assumethat WM initialy contains information to deal with individual digits
in the following form:

(DIGIT-MINUS top n bot m ans & borrow b), where n and m are
any digits, and if n > m, thenk isn — mand b isO, else k is
10+n —mandbisl.

For example, (DIGIT-MINUS top 7 bot 3 ans 4 borrow 0) would be in WM,
aswould (DIGIT-MINUS top 3 bot 7 ans 6 borrow 1). The working memory
aso specifies the first and second arguments of a subtraction problem (the
subtrahend and minuend):

(TOP-NUM pos i digit d left j) and (BOT-NUM pos i digit d left j),
where d is adigit, and i and j are indices indicating the current
position of the digit and its neighbour to the left, respectively.

For example, if the subtrahend were 465, the WM would contain

(TOP-NUM pos 0 digit 5 left 1)
(TOP-NUM pos 1 digit 6 left 2)
(TOP-NUM pos 2 digit 4 left 3)

Finaly, the WM contains the goal (START). Your job isto write acollection
of production rules which removes (START) and eventually stops with addi-
tional elementsin WM of theform (ANS-NUM pos i digit d left j), indicating
digit by digit what the answer of the subtraction is. Be sure to specify which
conflict resolution strategy you areusing; you may use any strategy described
in thetext. You may not use any arithmetic operatorsin your rules.
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Chapter 8

Object-Oriented Representation

One property shared by all of the representation methods we have considered so
far is that they are flat: each piece of representation is self-contained and can be
understood independently of any other. Recall that when we discussed logical rep-
resentations in Chapter 3, we observed that information about a given object we
might care about could be scattered amongst any number of seemingly unrelated
sentences. With production system rules and the proceduresin procedural systems,
we have the corresponding problem: knowledge about a given object or type of
object could be scattered around the knowledge base.

As the number of sentences or procedures in a KB grows, it becomes critical
to organize them in some way. As we have seen, in a production system, rule sets
can be organized by their context of application. But this is primarily a control
structure convenience for grouping items by when they might execute. A more
representationally motivated approach would be to group facts or rules in terms of
the kinds of objects they pertain to. Indeed it isvery natural to think of knowledge
itself not as a mere collection of sentences, but rather as structured and organized
in terms of what the knowledge is about, the objects of knowledge. In this chapter,
we will examine a procedural knowledge representation formalism that is object-
oriented in thisway.

8.1 Objectsand frames

The objects that we care about rangefar and wide, from physical objectslike houses
and people, to more conceptual objects like courses and trips, and even to reified
abstractions like events and relations. Each of these types of object has its own
parts, some physical (roof, doors, rooms, fixtures, etc.; arms, torso, head, etc.),
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and some more abstract (coursetitle, teacher, students, meeting time, etc.; destina-
tion, conveyance, departure date, etc.). The parts are constrained in various ways.
the roof has to be connected to the walls in a certain way, the departure date and
the first leg of a trip have to be related, and so on. The constraints between the
parts might be expressed procedurally, such as by the registration procedure that
connects a student to a course, or the procedure for reserving an airline seat that
connects the second leg of atrip to thefirst. And some types of objects might have
procedures of other sortsthat are crucia to our understanding of them: procedures
for recognizing bathroomsin houses, for reserving hotel rooms on trips, and so on.
In general, in a procedural object-oriented representation system, we consider the
kinds of reasoning operations that are relevant for the various types of objectsin
our application, and we design procedures to deal with them.

In one of the more seminal papersin the history of Knowledge Representation,
Marvin Minsky in 1975 suggested the idea of using object-oriented groups of pro-
ceduresto recognize and deal with new situations. Minsky used the term frame for
the data structure used to represent these situations. While the original intended
application of frames as a knowledge representation was for recognition, the idea
of grouping related procedures in this way for reasoning has much wider applica-
bility. Among its more natural applications we might find the kind of relationship
recognition common in story understanding, data monitoring in which we look for
key situations to arise, and propagation and enforcement of constraintsin planning
tasks.

8.2 A basicframeformalism

To examinetheway frames can be used for reasoning, it will help usto have aformal
representation language to express their structure. For the sake of discussion, we
will keep the language simple, although extremely elaborate frame languages have
been developed.

8.2.1 Genericand individual frames

For our purposes, there are two type of frames: individual frames used to repre-
sent single objects, and generic frames, used to represent categories or classes of
objects. Anindividual frameisanamed list of “buckets’ into which values can be
dropped. The buckets are called slots, and the items that go into them are called
fillers. Individua frames are similar to the working memory elements of produc-
tion systems seen in the previous chapter. Schematically, anindividual framelooks
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likethis:

(Frame-name
<slot-namel fillerl>
<sdlot-name2 filler2>

)

The frame and slot names are atomic symbols; the fillers are either atomic values
(like numbers or strings) or the names of other individua frames.

Notationally, the names of generic frames appear here capitaized, while indi-
vidual frames will be in lower case. Slot names will be capitalized and prefixed
with a“:”. For example, we might have the following frames:

(tripLeg123
<:INSTANCE-OF TripLeg>
<:Destination toronto> ...)

(toronto
<:INSTANCE-OF CanadianCity >
<:Province ontario>
<:Population 4.5M> ...)

Individual frames also have a specia distinguished slot called :INSTANCE-OF
whose filler is the name of a generic frame indicating the category of the object
being represented. We say that the individual frame is an instance of the generic
one, so, in the above, toronto is an instance of CanadianCity.

Genericframes, intheir simplest form, haveasyntax that issimilar toindividual
frames:

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>)

In this case, dot fillers are the names of either generic frames (like Canadian-
Province) or individua ones (like canada). Instead of an :INSTANCE-OF dlot,
generic frames can have a distinguished slot called :1S-A, whose filler is the name
of amore general generic frame. We say that the generic frame is a specialization
of the more general one, e.g., CanadianCity is a specialization of City.

Slotsof genericframes canalso haveattached proceduresassociated withthem.
In the simple case we consider here, there are two types of attached procedures,
IF-ADDED and | F-NEEDED, which areobject-oriented versions of theif-added and
if-needed procedures from Chapter 6. The syntax isillustrated in these examples:
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(Table
<:Clearance [IF-NEEDED ComputeClearanceFromLegs]> ...)

(Lecture
<:DayOfWeek WeekDay >
<:Date [IF-ADDED ComputeDayOfWeek]> ...)

Note that aslot can have both afiller and an attached procedure in the same frame.

8.2.2 Inheritance

As we will see below, much of the reasoning that is done with a frame system
involves creating individua instances of generic frames, filling some of the slots
with values, and inferring some other values. The :INSTANCE-OF and :1S-A slots
have a special role to play in this process. In particular, the generic frames can be
used tofill in valuesthat are not mentioned explicitly in the creation of theinstance,
and they can also trigger additional actions when ot fillers are provided.

For example, if we ask for the :Country of the toronto frame above, we can
determine that it is canada by using the :INSTANCE-OF dlot, which points to
CanadianCity, where that value is given. The process of passing information from
generic frames down through their specializations and eventually to their instances
is called inheritance of properties (the “child” frames inherit properties from their
“parents’), and we say that toronto inherits the :Country property from Canadi-
anCity. If we had not provided afiller for the :Province of toronto, we would still
know by inheritance that we were looking for an instance of CanadianProvince
(which could be useful in arecognition task). Similarly, if we had not provided a
filler for :Population, but we also had the following frame,

(City
<:Population NonNegativeNumber> ...)

then by using both the :INSTANCE-OF slot of toronto and the :IS-A slot of Cana-
dianCity, we would know by inheritance that we were looking for an instance of
NonNegativeNumber.

The inheritance of attached procedures works analogoudly. If we create an in-
stance of Table above, and we need to find the filler of the :Clearance slot for that
instance, we can use the attached | F-NEEDED procedure to compute the clearance
of that table from the height of itslegs. This procedure would also be used through
inheritanceif we created an instance of the frame MahoganyCoffeeTable, wherewe
had the following:
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(CoffeeTable
<:IS-A Table> ...)

(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

Similarly, if we create an instance of the Lecture frame from above with a lecture
date specified explicitly, the attached | F-ADDED procedure would fireimmediately
to calculate the day of the week for the lecture, filling the slot :DayOfweek. If we
later changed the :Date dlot, the :DayOfWeek slot would again be changed by the
same procedure.

One of the distinguishing features of the inheritance of propertiesin frame sys-
temsisthat it isdefeasible. By thiswe mean that we use an inherited value only if
we cannot find afiller otherwise. So adot filler in ageneric frame can be overrid-
den explicitly initsinstances and in its specializations. For example, if we havea
generic frame like

(Elephant
<:IS-A Mammal>
<:EarSize large>
<:Color gray> ...)

we are saying that instances of Elephant have acertain :EarSize and :Color property
by default. We might have the following other frames:

(raja
<:INSTANCE-OF Elephant>
<:EarSize small> ...)

(RoyalElephant
<:IS-A Elephant>
<:Color white> ...)
(clyde
<:INSTANCE-OF RoyalElephant> ...)

In this case, raja inherits the gray color of elephants, but has small ears; clyde in-
herits the large ears from Elephant via RoyalElephant, but inherits the white color
from RoyalElephant, overriding the default from Elephant.

Normally in frame systems, all values are understood as default values, and
nothing is done automatically to check the validity of an explicitly provided filler.
So, for example, nothing stops us from creating an individual frame like
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(city135
<:INSTANCE-OF CanadianCity >
<:Country holland>)

It is aso worth mentioning that in many frame systems, individual frames are al-
lowed to be instances of (and generic frames are alowed to be specializations of)
more than one generic frame. For example, we might want to say that

(AfricanElephant
<:IS-A Elephant>
<:IS-A AfricanAnimal> ...)

with properties inherited from both generic frames. This of course complicates
inheritance considerably since the values from Elephant may conflict with those
from AfricanAnimal. We will further examine this more general form of inheritance
in Chapter 10.

8.2.3 Reasoning with frames

The procedures attached to frames give us aflexible, organized framework for com-
putation. Reasoning within aframe system usually starts with the system’s “recog-
nizing” an object as an instance of a generic frame, and then applying procedures
triggered by that recognition. Such procedure invocations can then produce more
data or changes in the knowledge base that can cascade to other procedure calls.
When no more procedures are applicable, the system halts.

More specifically, the basic reasoning loop in a frame system has these three

steps:

1. auser or external system using the frame system as its knowledge represen-
tation declares that an object or situation exists, thereby instantiating some
generic frame;

2. any dotfillersthat are not provided explicitly but can beinherited by the new
frame instance are inherited;

3. for each dot with afiller, any IF-ADDED procedure that can be inherited is
run, possibly causing new slotsto befilled, or new frames to be instantiated,
and the cycle repeats.

If the user, the external system, or an attached procedure requiresthefiller of aslot,
then we get the following behavior:
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1. if thereisafiller stored in the slot, then that value is returned;

2. otherwise, any IF-NEEDED procedurethat can beinherited isrun, calculating
the filler for the slot, but potentially also causing other slots to be filled, or
new frames to be instantiated, as above.

If neither of these produce a result, then the value of the slot is considered to be
unknown. Notethat in thisaccount, theinheritance of property valuesisdoneat the
time the individual frame is created, but IF-NEEDED procedures, which calculate
property values, are only invoked as required. Other schemes are possible.

The above comprises the local reasoning involving asingle frame. When con-
structing a frame knowledge base, one would aso think about the global struc-
ture of the KB and how computation should produce the desired overall reasoning.
Typicaly, generic frames are created for any major object-type or situation-type
required in the problem-solving. Any constraints between slots are expressed by
the attached IF-ADDED and | F-NEEDED procedures. Asin the procedural systems
of Chapter 6, itisup to the designer to decide whether reasoning should be donein
adata-directed or goal-directed fashion.

In the above account, default values are filled in whenever they are available
on dots. It isworth noting that in the original, psychological view that first gave
rise to frames, defaults were considered to play amajor rolein scene, situation, and
object recognition; it was felt that people were prone to generalize from situations
they had seen before, and that they would assume that objects and situations were
“typical”—had key aspects taking on their normal default values—unless specific
featuresin the individual case were noticed to be exceptional.

Overall, given the constraints between dots that are enforced by attached pro-
cedures, we can think of aframe knowledge base asasymbolic “ spreadsheet,” with
constraints between the objects we care about being propagated by attached proce-
dures. But the procedures in a frame KB can do a lot more, including invoking
complex actions by the system.

8.3 Anexample: using framesto plan atrip

We now turn our attention to devel oping an exampleframe system, to see how these
representations work in practice. Thisis aform of knowledge engineering that is
quite different from thelogical approach considered in Chapter 3. The example will
be part of aschemefor planning trips. We will see how the “ symbolic spreadsheet”
style of reasoning in frame systems is used. This might be particularly useful in
supporting the documentation one often uses in acompany for reporting expenses.
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Figure 8.1: Sketch of structure of atrip

A

IodglngStayl?a IodglngStayl?b

The basic structure of our representation involves two main types of frames:
Trip and TravelStep. A Trip will have a sequence of TravelSteps, linked together
by appropriate slots. A TravelStep will usually terminate in a LodgingStay, except
when there are two travel legsin asingle day, and for the last leg of atrip.

In order to make the correspondences work out correctly (and be able to keep
track of what isrelated to what), aLodgingStay will use slotsto point toitsarriving
TravelStep and its departing TravelStep. Similarly, TravelSteps will indicate the
LodgingStays at their origin and destination. Graphically, for atrip with three legs
(instances of TravelStep), we might sketch the relationshipsasin Figure 8.1.

Using the obvious slot names, a Trip in genera will look like this:

(Trip
<:FirstStep TravelStep>
<:Traveler Person>
<:BeginDate Date>
<:EndDate Date>
<:TotalCost Price>

)
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A specific Trip, say, trip17, might look like this:

(trip17
<:FirstStep travelStepl7a>
<:Traveler ronB>
<:BeginDate 11/13/98>
<:EndDate 11/18/98>
<:TotalCost $1752.45>

=)

In general, instances of TravelStep and LodgingStay will share some properties
(e.g., each has abeginning date, an end date, a cost, and a payment method), so for
representational conciseness, we might posit a more general category, TripPart, of
which the two other frames would be specializations:

(TripPart
<:BeginDate Date>
<:EndDate Date>
<:Cost Price>
<:PaymentMethod FormOfPayment>
)
(LodgingStay
<:IS-A TripPart>
<:Place City>
<:LodgingPlace LodgingPlace>
<:ArrivingTravelStep TravelStep>
<:DepartingTravelStep TravelStep>

)
(TravelStep
<:ISA TripPart>
<:Origin City>

<:Destination City>
<:OriginLodgingStay LodgingStay>
<:DestinationLodgingStay LodgingStay>
<:Means FormOfTransportation>
<:DepartTime Time>

<:ArrivalTime Time>

<:NextStep TravelStep>
<:PreviousStep TravelStep>

)
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Thisgivesusour basic overall structurefor atrip. Next we embellish the frame
structure with various defaults, and proceduresthat will help us enforce constraints.
For example, our trips might most often be made by air, in which case the default
filler for the :Means dlot of a TravelStep should be airplane:

(TravelStep
<:Means airplane> ...)

We might also make a habit of paying for parts of tripswith a Visa credit card:

(TripPart
<:PaymentMethod visaCard> ...)

However, perhaps because of the insurance provided by a certain credit card, we
may prefer American Express for travel steps, overriding this default:

(TravelStep
<:PaymentMethod americanExpressCard> ...)

Asindicated earlier, not all inherited fillers of slotswill necessarily be specified as
fixed values; it may be more appropriate to compute them from the current circum-
stances. For example, it would be appropriate to automatically set up the origin of a
travel step as our homeairport, say Newark, aslong as there was no previoustravel
step—in other words, Newark is the default airport for the beginning of atrip. To
do this we introduce two pieces of notation:

o if 2 refersto anindividual frameand y to adot, then zy refersto thefiller of
the slot for the frame;!

e SELF will be away to refer to the frame currently being processed.
Thus, our travel step description would look like this:
(TravelStep
<:Origin
[IF-NEEDED
{i f no SELF:PreviousStep

t hen newark
el se SELF:PreviousStep:Destination}]> ...)

INote that we do not write « : y since we are assuming that the slot y already beginswith a“:”.
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This attached procedure saysthat for any TravelStep, if wewant its origin city, use
the destination of the previous TravelStep, or newark if there is none.

Another useful thing to do with atravel planning symbolic spreadsheet would
be to compute the total cost of atrip from the costs of each of its parts:

(Trip
<:TotalCost
[IF-NEEDED
{l et result — 0;
| et © — SELF:FirstStep;
repeat
{i f exists z:NextStep
t hen
{result — result + 2:Cost
i f exists z:DestinationLodgingStay t hen
result — result + z:DestinationLodgingStay:Cost;
x < x:NextStep}
el se return result + 2:Cost}}]> ...)

ThisIF-NEEDED procedure (written in a suggestive pseudo-code) iterates through
the travel steps, starting at the trip’s :FirstStep. At each step, it adds the cost of the
stepitself (x:Cost) to the previousresult, andif thereisa subsequent step, the cost of
the lodging stay between those two steps, if any (z:DestinationLodgingStay:Cost).

Another useful thing to expect an automatic travel documentation system to do
would be to create a skeletal lodging stay instance each time anew travel leg was
added. The following IF-ADDED procedure does a basic form of this:

(TravelStep
<:NextStep
[IF-ADDED
{i f SELF:EndDate ¥ SELF:NextStep:BeginDate
then
SELF:DestinationLodgingStay «
SELF:NextStep:OriginLodgingStay «—
create new LodgingStay
wi t h :BeginDate = SELF:EndDate
and with :EndDate = SELF:NextStep:BeginDate
and with :ArrivingTravelStep = SELF
and with :DepartingTravelStep = SELF:NextStep

S |
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Note that the first thing done is to confirm that the next travel leg begins on a dif-
ferent day than the one we are starting with ends; presumably no lodging stay is
needed if the two travel legsjoin on the same day.

Note also that the default :Place of aLodgingStay (and other fillers) could also
be calculated as another piece of automatic processing:

(LodgingStay
<:Place [IF-NEEDED
{SELF:ArrivingTravelStep:Destination}]> ...)

This might be afairly weak default, however, and its utility would depend on the
particular application. It is quite possible that a traveller’s preferred default city
for lodging is different than the destination city for the arriving leg of thetrip (e.g.,
flights may arrive in San Francisco, but | may prefer as a default to stay in Palo
Alto).

8.3.1 Usingtheexampleframes

We now consider how the various frame fragments we have created might work
together in specifying atrip. Imaginethat we proposeatrip to Toronto on December
21, 2006, returning home the following day. First, we create an individual frame
for the overall trip (call it trip18), and one for the first leg of the trip:

(trip18
<:INSTANCE-OF Trip>
<:FirstStep travelStep18a>)
(travelStep18a
<:INSTANCE-OF TravelStep>
<:Destination toronto>
<:BeginDate 12/21/06>
<:EndDate 12/21/06>>)

Since we know we are to return home the next day, we create the second leg of the
trip:

(travelStep18b
<:INSTANCE-OF TravelStep>
<:Origin toronto>
<:BeginDate 12/22/06>
<:PreviousStep travelStepl8a>)
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To complete theinitia setup, travelStep18a will need its :NextStep dlot filled with
travelStep18b.

As a consequence of the initial setup of the two instances of TravelStep—in
particular, the assignment of travelStep18b as the :NextStep of travelStepl8a—a
default LodgingStay is automatically created to represent the overnight stay be-
tween those two legs of the trip (using the IF-ADDED procedure on the :NextStep
dot):

(lodgingStay18a
<:INSTANCE-OF LodgingStay>
<:BeginDate 12/21/06>
<:EndDate 12/22/06>
<:ArrivingTravelStep travelStep18a>
<:DepartingTravelStep travelStep18b>)

Notethat the| F-NEEDED procedurefor the :Place slot of LodgingStay would infer
adefault filler of toronto for lodgingStay18a, if required. Once we have established
the initial structure, we can see how the :Means dot of either step would be filled
by default, and a query about the :Origin slot of the first step would produce an
appropriate default value, asin Figure 8.2.

Asafind illustration, imagine that we have over the course of our trip filled
in the :Cost dots for each of the instances of TripPart. If we ask for the :TotalCost
of the entire trip, the IF-NEEDED procedure defined above will come into play
(assuming the totalCost slot has not already been filled manually). Given the fina
state of the trip as expressed in Figure 8.2, the calculation proceeds as follows:

e resultisinitialized to 0, and z isinitialized to travelStep18a, which makes
x:NextStep be travelStep18b;

o thefirst timethrough ther epeat loop, result is set to the sum of result (0),
the cost of = ($321.00), and the cost of the :DestinationLodgingStay of the
current step (lodgingStay18a) ($124.75); = isthen set to travelStep18b;

¢ the next time through, since = (travelStep18b) has no following step, the
loop is broken and the sum of result ($445.75) and the cost of = ($321.00) is
returned.

So agrand total of $766.75 is taken to be the :TotalCost of trip18.
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Figure 8.2: Thetravel example with lodging stay

trip18
:FirstStep
L l ,,,,,, travelStepl8a travelStep18b
:BeginDate 12/21/06 :BeginDate 12/22/06 :
:EndDate 12/21/06 3 i :EndDate 12/22/06
:Means airplane ! ' :Means airplane
:Origin  newark 3 | :Origin toronto
:Destination toronto - :Destination newark
:NextStep : » | NextStep
:PreviousStep | «————— :PreviousStep
:DepartureTime 7:05am ! ! :DepartureTime
:ArrivalTime :ArrivalTime
1 :Cost $321.00 ! '+ :Cost $321.00
: :DestinationLodgingStayl : © :OriginLodgingStay

| :ArrivingTraveIStepI |
| :DepartingTravelStep !
:BeginDate 12/21/06
:EndDate 12/22/06
:City toronto
:Cost $124.74
:LodgingPlace deltaChelsea

lodgingStay18a

8.4 Beyond thebasics

The trip planning example considered above istypical of how frame systems have
been used: start with a sketchy description of some circumstance and embellish it
with defaults and implied values. The IF-ADDED procedures can make updates
easier and help to maintain consistency; the IF-NEEDED procedures allow values
to be computed only when they are needed. Thereisatradeoff here, of course, and
which type of procedure to use in an application will depend on the potential value
to the user of seeing implied values computed up front, versus the value of waiting
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to do computation only as required.

8.4.1 Other usesof frames

There are other types of applications for frame systems. One would be to use a
frame system to provide a structured, knowledge-based monitoring function over
adatabase. By hooking the frames to items in a database, changes in values and
newly-added values could be detected by the frame system, and new frame in-
stances or implied slot val ues could be computed and added to the database, without
having to modify the DBM Sitself to handle rules. In some ways, this combination
would act like an expert system. But database monitors are probably more natu-
rally thought of as object-centered (generic frames could line up with relations in
the schema, for example), in which case aframe representation is a better fit than a
flat production system.

Other uses of frame systems come closer to the original thinking about psycho-
logically-oriented recognition processes espoused by Minsky in 1975. These in-
clude, for example, structuring views of typical activities of charactersin stories.
The frame structures for such activities have been called scripts, and have been
used to recognize the motivations of characters in the stories, and to set up expec-
tations for their later behavior. More general commonsense reasoning of the sort
that Minsky envisioned would use local cues from a situation to suggest potentially
relevant frames, which in turn would set up further expectations that could drive
investigation procedures.

Consider for example, a situation where many people in a room were holding
what appeared to be wrapped packages, and balloons and cake were in evidence.
This would suggest a birthday party, and prompt us to look for the focal person at
the party (akey dot of the birthday party frame), and to interpret the meaning of
lit candles in a certain way. Expectations set up by the suggested frames could be
used to confirm the current hypothesis (that this is a birthday party). If they were
subsequently violated, then an appropriately represented “differential diagnosis’
attached to theframe could | ead the system to suggest other candidate frames, taking
the reasoning in a different direction. For example, no candles on the cake could
suggest aretirement or anniversary party.

8.4.2 Extensionstotheframeformalism

Aswith other knowledge representation formalisms, frame systems have been sub-
ject to many extensions to handle ever more complex applications. Here we briefly
review some of these extensions.
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Other procedures. An obviousway to increase the expressiveness and utility
of the frame mechanism is to include other types of procedures. The whole point
of object-oriented reasoning is to determine the sort of questions appropriate for a
type of object, and to design procedures to answer them. For trips, for example,
we have only considered two forms of questions, exemplified by “What isthe total
cost of atrip?’ (handled by an IF-NEEDED procedure) and “What should | do if
| find out about a new leg of atrip?’ (handled by an IF-ADDED procedure). But
other questions that do not fit these two patterns are certainly possible, such as
“What should | doif | cancel aleg of atrip?’ (requiring some sort of “if-removed”
procedure), or “How do | recognize an overly expensive trip?’ (along the lines of
the birthday party recognition example above), or “What do | need to look out for
in an overseastrip?’ and so on.

Multiple slot fillers: In addition to extending the repertoire of procedures at-
tached to a frame knowledge base, we can also expand the types of slots used to
express parts and features of objects. One obvious extension is to alow sets of
framesto fill dots. Procedures attached to the slot could then operate on the entire
set of fillers, and constraints on the cardinality of these sets could be used in rea-
soning, aswe will seein the description logics of Chapter 9. One complication this
raises concernsinheritance: with multiple slot fillers, we need to know whether the
fillers of aslot given explicitly should or should not be augmented by other fillers
through inheritance.

Other dlot facets. So far, we have seen that both default fillers and procedures
can be associated with a slot. We can imagine dealing with other aspects of the
relationship between asot and aframe. For example, we might want to be able to
insist that instances of a generic frame provide afiller of a certain type (or perhaps
check the validity of the provided filler with a procedure), rather than being merely
adefault. Another possibility isto state preferences we might have regarding the
filler of adot. Preferences could be used to help select afiller among a number of
competing inherited values.

Meta-frames: Generic frames can sometimes usefully be considered to bein-
stances of higher-level meta-frames. For example, generic frames like Canadi-
anCity and NewJerseyCity represent atype of city defined by a geographic region.
So we might think of them as being instances (not specializations) of a meta-frame
like GeographicalCityType. We might have something like

(GeographicalCityType
<:IS-A CityType>
<:DefiningRegion GeographicalRegion>
<:AveragePopulation NonNegativeNumber> ...)
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An instance of thisframe, like CanadianCity, would have a particular value for the
:DefiningRegion slot, namely canada. The filler for the :AveragePopulation slot
for CanadianCity could be calculated by an IF-NEEDED procedure, by iterating
through all the Canadian cities. Observe that individua cities themselves do not
have a defining region or an average population. So we need to ensure that frames
liketoronto do not inherit these slots from CanadianCity. The usual way thisisdone
is to distinguish the “member” dlots of a generic frame, which apply to instances
(members) of the frame (like the :Country of a CanadianCity), from the “own”
dlots of the frame, which apply to the frame itself (like the AveragePopulation of
CanadianCity).

8.4.3 Object-driven programming with frames

Frame-structured knowledge bases are the first instance we have seen of an object-
oriented representation. Careful attention to the mapping of generic framesto cat-
egories of objectsin adomain of interest can yield a simple declarative knowledge
base, emphasizing taxonomies of objects and their structural relationships. How-
ever, as we have seen, attached procedures can be a useful adjunct to a pure object-
oriented representation structure, and in practice, we are encouraged to take advan-
tage of their power to build a complex, highly procedural knowledge base. In this
case, what is known about the connections among the various symbols used is ex-
pressed through the attached procedures, just asit wasin the procedural and produc-
tion systems of previous chapters. While there is nothing intrinsically wrong with
this, it does mean moving away from the original declarative view of knowledge—
taking the world to be one way and not another—presented in the first chapter.
The shift to amore procedural view of frames moves us close to conventional
object-oriented programming (OOP). | ndeed frame-based representati on languages
and OOP systems were developed concurrently, and share many of the same in-
tuitions and techniques. A procedural frame system shares the advantages of a
conventional OOP system: definition is done primarily by specialization of more
general classes, control islocalized, methods can beinherited, encapsulation of ab-
stract procedures is possible, etc. The main difference is that frame systems tend
to have a centralized, conventional control regime, whereas OOP systems have
objects acting as small, independent agents sending each other messages. Frame
systems tend to work in a cycle: instantiate a frame and declare some slot fillers,
inherit values from more general frames, trigger appropriate forward-chaining pro-
cedures, and then, when quiescent, stop and wait for the next input; OOP systems
tend to be more decentralized and less patterned. As a result, there can be some
applications for which a frame-based system can provide some advantages over a
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more generic OOP system, for example, inthe style of applicationsthat we touched
on above. But if the primary use of aframe system is as an organizing method for
procedures, this contrast should be examined carefully to be sure that the system is
best suited to the task.

In Chapter 9 we will continue our investigation of object-oriented knowledge
representation, but now without procedures, inamorelogical and declarative form.

8.5 Bibliographic notes

8.6 Exercises

1. Imagine aframe-based travel-planning assistant, as discussed in thetext. Let
us focus on two frames, LodgingStay (which represents a hotel stay in acity
whileon atrip) and TravelStep (which represents any travel from one city to
another). A LodgingStay has a lodgingCity, in which the lodging is located,
an arrivingTravelStep, and a departingTravelStep, both of which are Travel-
Steps. A TravelStep has an origin and a destination, each of which isacity,
apossible preLodgingStay, and a possible postLodgingStay, each of which
isaLodgingStay. For smplicity, assume that there is always a LodgingStay
between any two TravelSteps.

Writein English some combination of IF-NEEDED and/or | F-ADDED proce-
dures that could be attached to the city slots of the various LodgingStay and
TravelStep frames to keep them consistent. Statements like “set the lodg-
ingCity of my preLodgingStay to be the same asthis one” in aprocedure are
fine. Make sure that a change to one of these city slots does not cause an
infinite loop.

In the the remaining exercises, we consider two possible frame-based applications:

Classroom scheduler Imagine we want to build a program that helps schedule
rooms for classes of various size at a university, using the sort of frame tech-
nology (frames, slots, and attached procedures) discussed in the text. Slots of
frames might be used to record when and where aclassisto be held, the ca-
pacity of aroom, etc., and | F-ADDED and other procedures might be used to
encode constraintsaswell astofill inimplied valueswhen the KB is updated.

In this problem, we want to consider updating the KB in several ways: (1)
asserting that a class of agiven sizeisto be held in a given room at a given
time; the system would either go ahead and add this to its schedule, or alert
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the user that it was not possible to do so; (2) asserting that a class of a given
sizeisto be held at a given time, with the system providing a suitable room
(if oneisavailable) when queried; (3) asserting that aclass of agiven sizeis
desired, with the system providing atime and place when queried.

Olympic assistant Imaginewe want to help the International Olympic Committee
in the smooth running of the next Olympic games. In particular, we want to
select an event and write a program to deal with that event including facilities
for handling the preliminary rounds/heatsand finals. Slotsof frames might be
used to record athletesin a heat/final, the location and time of that heat/final,
etc. and IF-ADDED/ IF-NEEDED and other procedures might be used to
encode constraints as well asfill inimplied values when the knowledge base
is updated.

We particularly wish to consider several ways of updating the knowledge
base: (1) asserting that a heat will take place with certain athletes. The sys-
tem should add this and determine what time and the location of the venue
the athletes need to be at for their heat, etc; (2) asserting that a particular
semi-final/final should take place, the system should determine the partici-
pating athletes; and, (3) asserting that the medal ceremony should take place
at aparticular time and location, the system should add this and provide the
medallists plus appropriate national anthem when queried. To simplify mat-
ters, we assume that an athlete takes part in only the event we have chosen.

2. For either application, the questions are the same:

(a) Design aset of frames and slots to represent the schedule and any an-
cillary information needed by the assistant.

(b) For all slotsof al frames, write in English pseudocode the IF-ADDED
or IF-NEEDED procedures that would appear there. Annotate these
procedures with comments explaining why they are there (e.g. what
constraints they are enforcing).

(c) Briefly explain how your system would work (what procedures would
fire and what they would do) on concrete examples of your choosing
illustrating each of the three situations (1, 2, and 3) mentioned in the
application.
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Chapter 9

Structured Descriptions

In Chapter 8, welooked at knowledge organization inspired by our natural tendency
to think in terms of categories of objects. However, the frame representation seen
there focused more on the organization and invocation of procedures than on in-
ferences about the objects and categories themselves. Reasoning about objects in
everyday thinking goeswell beyond the simple cascaded computations seen in that
chapter, and is based on considerations like the following:

o objects naturally fall into classes (e.g., my pet is adog; my wife is a physi-
cian), but are very often thought of as being members of multiple classes (I
am an author, an employee and a father);

e classes can be more general or more specific than others (e.g., Collie and
Schnauzer are types of dogs; arheumatologist is atype of physician; afather
isatype of parent);

e in addition to generalization being common for classes with simple atomic
names, it is also natural for those with more complex descriptions (e.g., a
part-time employee isan employee; afamily with at least 1 child isafamily;
afamily with 3 children is afamily that is not childless);

o objects have parts, sometimes in multiples (e.g., books have (single) titles,
tables have at least 3 legs, automobiles have 4 wheels);

o the configuration of an object’s parts is essentia to its being considered a
member of aclass (e.g., astack of bricksis not the same asapile of the very
same bricks).
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In this chapter we will delve into representation techniques that ook more directly
at these aspects of objects and classes than frames did. In focusing on the more
declarative aspects of an object-oriented representation, our analysis will take us
back to concepts like predicates and entailment from FOL. But as we shall see,
what matters about these predicates and the kind of entailments we will consider
here will be quite different.

9.1 Descriptions

Before we look at the details of a forma knowledge representation language in
the next section, one useful way to get our bearings is to think in terms of the
expressions of a natural language like English. In our discussion of knowledge in
Chapter 1, and in our presentation of FOL, we focussed mainly on sentences, since
it is sentences, after al, that express what is known. Here, we want to talk about
noun phrases. Like sentences, noun phrases can be simple or complex, and they
give us anice window onto our thinking about objects.

9.1.1 Noun phrases

Recall that in our introduction to expressing knowledge in FOL-like languages
(Chapter 3), we represented categories of objects with one-place predicates using
common nouns like Company(z), Knife(x), Contract(z). But thereis more to noun
phrases than just nouns. To capture more interesting types of nominal construc-
tions, such as “a hunter-gatherer” or “afather whose children are al doctors,” we
would need predicates with internal structure.

For example, if we had atruly compound predicate like Hunter&Gatherer(z),
then we would expect that for any « for which Hunter&Gatherer(x) was true, both
Hunter(x) and Gatherer(z) would also be true. Most importantly, this connection
among the three predicates would hold not by virtue of some fact about the world,
but by definition of what we meant by the compound predicate.

Similarly, wewould expect that if Child(z,y) and FatherOfOnlyDoctors(z) were
both true, ¥ would have to be adoctor, again (somehow), by definition. Note that
this would be so even if we had a simple name that served as an abbreviation for a
concept like this, which is very often the case in natural language (e.g., Teenager
is synonymous with PersonWithAgeBetween13and19).

1We are using the“&” and complex predicate names suggestively here; we will introduce formal
machinery shortly.
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Traditional first-order logic does not provide any tools for dealing with com-
pound predicates of thissort. Inasense, the only noun phrasesin FOL arethe nouns.
But given the prominence and naturalness of such constructsin natural language, it
isworthwhile considering KR machinery that does provide suchtools. Sincealogic
that would allow us to manipulate complex predicates would be working mainly
with descriptions, we call alogical system based on these ideas a description logic
orDL.?

9.1.2 Concepts, roles, and constants

Looking at the examples above, we can already see that two sorts of nouns are
involved: there are category nouns like Hunter, Teenager, and Doctor describing
basic classes of objects, and there are relational nouns like Child and Age that de-
scribe objects that are parts or attributes or properties of other objects.3 We saw a
similar distinction in Chapter 8 between aframe and aslot. In adescription logic,
we refer to the first type of description as a concept and the second type asarole.

Aswith frames, we will think of concepts as being organized into a generaliza-
tion hierarchy where, for example, Hunter&Gatherer is a specialization of Hunter.
However, we will see that much of the generalization hierarchy in a description
logic follows logically from the meaning of the compound conceptsinvolved, quite
unlike the case with frames where hierarchies were stipulated by the user. And, as
we will see, much of the reasoning performed by a description logic system centers
around automatically computing this generalization relation.

For simplicity, we will not consider roles to be organized hierarchicaly in this
way except briefly in Section 9.6. In contrast to the slotsin frame systems, however,
roleswill be allowed to have multiple fillers. Thisway we can naturally describe a
person with several children, a function with multiple arguments, or a wine made
from more than one type of grape.

Finally, although much of the reasoning we perform in a description logic con-
cerns generic categories, we will want to know how these descriptions apply to
individuals aswell. Consequently, wewill also include constants like johnSmith in
our description logic language below.

20ther names used in the literature include “terminological logics,” “term subsumption systems,”
“taxonomiclogics,” or even“KL-One-like systems,” because of their originin early work on asystem
called KL-One.

3Many nouns can be used both ways. For example, “child” can mean a relation (the inverse of
parent) or a category (a person of ayoung age).
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9.2 A description language

We begin here with the syntax of avery simplebut illustrati ve description logic lan-
guagethat wecall DL. Like FOL, DL hastwo types of symbols: logical symbols,
which have afixed meaning or use, and non-logical symbols, which areapplication-
dependent. There are four sorts of logical symbolsin DL:

1. punctuation: “[", “1",“(",“)";

2. positiveintegers: 1,2, 3, etc.;

3. concept-forming operators; “ALL”, “EXISTS’, “FILLS’, “AND";

»

4. connectives: “C", =", " —
We distinguish three sorts of non-logical symbolsin DL:
1. atomic concepts, written in capitalized mixed case, e.g., Person, WhiteWine,

FatherOfOnlyDaughters; D £ also has a special atomic concept, Thing;

2. roles, written like atomic concepts, but preceded by “:”, e.g., :Child, :Height,
:Employer, :Arm;

3. constants, writtenin uncapitalized mixed case, e.g., table13, maryAnnJones.
There are four types of legal syntactic expressionsin DL: constants, roles (both
seen above), concepts and sentences. We use ¢ and r to range over constants and
roles respectively, d and e to range over concepts, and « to range over atomic con-
cepts. The set of concepts of DL istheleast set satisfying the following:

e every atomic concept is a concept;

e if risaroleand d isaconcept, then [ALL r d] isaconcept;

e if risaroleand n isapositive integer, then [EXISTS n r] isaconcept;
o if risaroleand c isaconstant, then [FILLS r ¢] isaconcept;

e if dy...d, areconcepts, then [AND d;. .. d,] isaconcept.

Finaly, there are three types of sentencesin DL:

e if dy and d; are concepts then (dy C dy) is asentence;
o if d1 and d; are concepts, then (d1 = d>) isa sentence;
e if cisaconstant and d isaconcept, then (¢ — d) isa sentence.
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A KB inadescription logic like DL is considered to be any collection of sentences
of thisform.

What are these syntactic expressions supposed to mean? Constantsareintended
to stand for individuals in some application domain as they did in FOL; atomic
concepts (and indeed all concepts in general) are intended to stand for categories
or classes of individuals; and roles are intended to stand for binary relations over
thoseindividuals.

Asfor the complex concepts, their meanings are derived from the meanings of
their parts the way the meanings of noun phrases are. Imagine that we have arole
r standing for some binary relation. Then the concept [EXISTS » r] stands for the
class of individualsin the domain that are related by relation r to at least » other
individuals. So the concept [EXISTS 1 :Child] could represent someone who was
not childless. Next, imagine that constant ¢ stands for some individual ; then the
concept [FILLS r ¢] stands for those individualsthat are r-related to that individ-
ual. So[FILLS:Cousin vinny] would represent someone, one of whose cousinswas
Vinny. Next, imagine that concept d stands for some class of individuals; then the
concept [ALL r ] stands for those individuals who are r-related only to elements
of that class. So [ALL :Employee UnionMember] describes something whose em-
ployees, if any, areal union members. Finally, the concept [AND d;.. . d,] stands
for anything that isdescribed by d; and ... d,,.

Turning now to sentences, these expressions are intended to be true or fase
in the domain, as they would be in FOL. Imagine that we have two concepts d;
and d», standing for two classes of individuals, and a constant ¢, standing for some
individual. Then (d1 C dy) says that concept d; is subsumed by concept d, i.e.,
al individuals that satisfy d1 also satisfy d,. For example, (Surgeon C Doctor)
says that any surgeon is also a doctor (among other things). Similarly, (d1 = d2)
will mean that the two concepts are equivalent, i.e., the individuasthat satisfy di
are precisely those that satisfy d». Thisisjust aconvenient way of saying that both
(d1 C dp) and (dz C d1) aretrue. Findly, (¢ — d) saysthat the individual denoted
by ¢ satisfies the description expressed by concept d.

Whilethe sentences of DL areall atomic, it iseasy to create complex concepts.
For example,

[AND Wine
[FILLS:Color red]
[EXISTS 2 :GrapeType]]

would represent the category of a blended red wine (literally, a wine one of whose
colorsisred and which has at least two types of grapein it).
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A typical sentence in a description logic KB is one that assigns a name to a
complex concept:

(ProgressiveCompany = [AND Company
[EXISTS 7 :Director]
[ALL :Manager [AND Woman
[FILLS:Degree phD]]]
[FILLS:MinSalary $24.00/hour]])

The concept on the right-hand side represents the notion of a company with at least
seven directors, and all of whose managers are women with a Ph.D., and whose
minimum salary is $24.00/hour. The sentence as a whole says that Progressive-
Company, as a concept, is equivalent to the one on theright. If this sentenceisin
a KB, we consider ProgressiveCompany to be fully defined in the KB, that is, we
have a set of necessary and sufficient conditions for being a ProgressiveCompany,
exactly expressed by the right-hand side. If we used the C connective instead, the
sentence would say only that ProgressiveCompany as a concept was subsumed
by the one on the right. Without a = sentence in the KB defining it, we consider
ProgressiveCompany to be aprimitive concept in that we only have necessary con-
ditions it must satisfy. Asaresult, while we could draw conclusions about an in-
dividual ProgressiveCompany once we were told it was one, we would not have a
way to recognize an individual as a ProgressiveCompany.

9.3 Meaning and Entailment

As we saw in the previous section, there are four different sorts of syntactic ex-
pressions in a description logic—constants, roles, concepts, and sentences—with
different intended uses. In thissection, wewill explain precisely what these expres-
sionsare supposed to mean, and under what circumstances acollection of sentences
inthislogic entails another. Asinordinary FOL, it isthis entailment relation that a
description logic reasoner will be required to calculate.

9.3.1 Interpretations

The starting point for the semantics of description logics is the interpretation, just
asit was for FOL. An interpretation S for DL isapair (D,Z) as before, where
D isany set of objects called the domain of the interpretation, and Z is a mapping
called the inter pretation mapping from the non-logical symbolsof DL to elements
and relations over D, where
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1. for every constant symbol ¢, Z[c] € D;
2. for every atomic concept a, Z[a] C D;
3. for every role symbol », Z[r] C D x D.

Comparing this to FOL, we can see that constants have the same meaning as they
would as terms in FOL, that atomic concepts are understood as unary predicates,
and that roles are understood as binary predicates. The set Z[d] associated with a
concept d in an interpretation is called its extension.

As we have emphasized, a distinguishing feature of description logics is the
existence of non-atomic concepts whose meanings are completely determined by
the meanings of their parts. For example, the extension of [AND Doctor Female] is
required to be the intersection of the extension of Doctor and that of Female. More
generally, we can extend the definition of Z to all concepts as follows:

o for the distingui shed concept Thing, Z[Thing] = D;
o I[[ALL 7 d]] ={z € D | forany y,if (z,y) € Z[r], theny € Z[d]};

o Z[[EXISTSn r]] =
{z € D | thereareat least n distinct y such that (x, y) € Z[r]};

o Z[[FILLSr c]] ={a € D | (¢, Z[c]) € Z[r]};
o T[AND di...d,]] = Z[da] N ... 0 T[d,].

Soif wearegiven an interpretation 3, with an interpretation mapping for constants,
atomic concepts, and roles, these rules tell us how to find the extension of any
concept.

9.3.2 Truthinaninterpretation

Given an interpretation, we can now specify which sentences of DL are true and
which are false according to that interpretation. A sentence (¢ — d) will be true
when the object denoted by ¢ is in the extension of d; a sentence (d C d') will be
true when the extension of d is a subset of the extension of d’; a sentence (d = d’)
will be true when the extension of d isthe same asthat of d’. More formally, given
an interpretation & = (D, ), we say that « istruein S, written § £ «, according
to theserules:

Assume that d and d’ are concepts, and that ¢ is a constant.

1 S FE(c— d) iff Z[c] € Z[d];
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2. SE(dC &) iff I[d) C Z[d];
3. S E(d=d) iff 7[d] = Z[d].

Asin FOL, we will also use the notation & = 5, where S is a set of sentences, to
mean that all the sentencesin § aretruein .

9.3.3 Entailment

The definition of entailment in DL is exactly likeit isin FOL. Let 5 be a set of
sentences, and « any individual sentence. We say that .S logically entails o, which
wewrite S [ «, if and only if for every interpretation S, if & | S then S F . As
aspecia case of this definition, we say that a sentence o is logically valid, which
we write | , whenit islogically entailed by the empty set.

There aretwo basic sorts of reasoning wewill be concerned with in description
logics:* determining whether or not some constant ¢ satisfies a certain concept
d, and determining whether or not a concept d is subsumed by another concept
d’. Both of these involve calculating entailments of a KB: in the first case, we
need to determine if the KB entails (¢ — d), and in the second case, if the KB
entails (d C d'). So, asin FOL, reasoning in a description logic means cal culating
entailments.

Note that in some cases, the entailment relationship will hold because the sen-
tences themselves are valid. For example, consider the sentence

([AND Doctor Female] C Doctor]).

This sentenceis valid according to the definition above: the sentence must be true
in every interpretation  because no matter what extension it assigns to Doctor and
Female, the extension of the AND concept (which istheintersection of the two sets)
will always be a subset of the extension of Doctor. Consequently, for any KB, the
first concept is subsumed by the second—in other words, afemale doctor isaways
adoctor. Similarly, the sentence

(john — Thing)

isvalid: the sentence must betruein every interpretation & because no matter what
extension it assigns to john, it must be an element of D, which is the extension
of Thing. Consequently, for any KB, the constant satisfies that concept—in other
words, the individual John is always something.

“We will seein Section 9.6 that other useful varieties of reasoning reduce to these two.
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In more typical cases, the entailment relationship will depend on the sentences
in the KB. For example, if aknowledge base, KB, contains the sentence

(Surgeon C Doctor),
then we get the following entailment:
KB E ([AND Surgeon Female] C Doctor).

To see why, consider any interpretation <, and suppose that & F KB. Then for
thisinterpretation, the extension of Surgeon isasubset of that of Doctor, and so the
extension of the AND concept (that is, the intersection of the extensions of Surgeon
and Female) must also beasubset of that of Doctor. Sofor thisKB, thefirst concept
is subsumed by the second—if a surgeon is a doctor (among other things), then a
female surgeon is also a doctor. This conclusion would also follow if instead of
(Surgeon C Doctor), the KB were to contain

(Surgeon = [AND Doctor [FILLS :Specialty surgery]]).

In this case we are defining a surgeon to be a certain kind of doctor, which again
requires the extension of Surgeon to be a subset of that of Doctor. With the empty
KB on the other hand, there would be no subsumption relation since we can find
an & where the extension of the first concept is not a subset of the second: let D be
the set of al integers, and let 7 assign Doctor to the empty set, and both Surgeon
and Female to the set of all integers.

9.4 Computing entailments

As stated above, there are two major types of reasoning that we care about with a
description logic: given aknowledge base, KB, we want to be able to determine if
KB [E a, for sentences « of the form,5

e (¢ — d), where c isaconstant and d is a concept; and
o (d C ¢), where d and e are both concepts.

In fact, the first of these is easy to handle once we deal with the second, and so we
begin by considering how to compute subsumption. As with Resolution for FOL,
the key fact about this symbol-level computation we are about to present is that it
is correct relative to the knowledge-level definition of entailment given above.

SAswe have mentioned, KB |= (d = ¢) iff KB E (d C e) and KB |= (¢ C d).
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9.4.1 Simplifying the knowledge base

Observe first of all that subsumption entailments are unaffected by the presence of
sentences of the form (¢ — d) inthe KB. In other words, if KB’ is just like KB
except that all the (¢ — d) sentences have been removed, then it can be shown
that KB = (d C ¢) if and only if KB' | (d C ¢).5 So we can assume that for
subsumption questions, the KB in question contains no (¢ — d) sentences.

For pragmatic purposes, it is useful to make a further restriction: we insist that
the left-hand sides of the C and = sentences in the KB be atomic concepts other
than Thing and that each atom appears on the left-hand side of a sentence exactly
once in the KB. We can think of such sentences as providing either a definition of
the atomic concept (in the case of =) or its necessary conditions (in the case of C).
We will, however, still be able to compute KB £ « for sentences « of the more
general form above (e.g., subsumption between two complex concepts).

Finally, we assumethat the C and = sentencesin the KB are acyclic. Informally
we want to rule out aKB like

{({d1=[AND d; ..]), (d2C[ALL 7 da]), (d3C d1) }

which has a cycle (d1, da, d3, d1). While this type of cycle is meaningful in our
semantics, it complicates the calculation of subsumption.

With these restrictions in place, to determine whether or not KB | (d C e) it
will be sufficient to do the following:

1. using the definitiona declarations (=) in KB, put d and e into a specia nor-
malized form;

2. using the subsumption declarations (C) in KB, determine whether each part
of the normalized ¢ isimplied by some part of the normalized d.

So subsumption in a description logic KB reduces to a question about a structural
relationship between two normalized concepts.”
9.4.2 Normalization

Normalization in description logics is similar in spirit to the derivation of normal
forms like CNF in FOL. During this phase, we draw some inferences, but only

5This would not hold if the sentences involving constants could be inconsistent.
"There are other ways of computing subsumption; this is probably the most common and direct
way that takes concept structure into account.
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small, obvious ones. This pre-processing then makes the subsequent structure-
matching step to follow straightforward.

Normalization applies to one concept at atime, and involves a small number
of steps. Here we outline the steps and then review the whole process on a larger
expression.

1. expand definitions: Any atomic concept that appears as the |eft-hand side
of a= sentence in the KB is replaced by its definition. For example, if we
have the following sentence in KB,

(Surgeon = [AND Doctor [FILLS :Specialty surgery]])

then the concept [AND ... Surgeon ...] expandsto

[AND ... [AND Doctor [FILLS :Specialty surgery]] ...].

2. flatten the AND operators: Any subconcept of the form
[AND... [AND d; ... d,]...]

canbe simplifiedto[AND... d1 ... d,...].

3. combinethe ALL operators: Any subconcept of the form

[AND...[ALL 7 d4]...[ALL 7 d2]...],

can be simplified to [AND...[ALL r [AND dj d2]] ...].

4. combine EXISTS operators: Any subconcept of the form

[AND...[EXISTSnj ]...[EXISTS ny r]...]

can be simplified to the concept [AND...[EXISTS n r] ...], where n isthe
maximum of n, and n,.

5. deal with Thing: Certain concepts are vacuous and should be removed as
an argument to AND: Thing, [ALL r Thing], and AND with no arguments.
In the end, the concept Thing should only appear if this is what the entire
expression simplifies to.

6. remove redundant expressions: Eliminate any expression that is an exact
duplicate of another within the same AND expression.
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To normalize aconcept, these operations can be applied repeatedly in any order, and
at any level of embedding within ALL and AND operators. However, the process
only terminates when no further steps are applicable.

In the end, the result of a normalization is either Thing or a concept of the
following form:

[AND a1 ... ap
[FILLS71¢q] ... [FILLS 7 ¢l
[EXISTS 11 51] ... [EXISTS nyprr Sppnr]
[ALL t]_ 61] [ALL tmm 6m///]]

where the a; are primitive atomic concepts other than Thing, the r;, s; and ¢; are
roles, the ¢; are constants, the n; are positive integers, and the ¢; are themselves
normalized concepts. In fact, we can think of Thing itself asthe same as[AND]. We
call the argumentsto AND in anormalized concept the components of the concept.

To illustrate the normalization process, we consider an example. Assume that
KB has the following definitions:

WellRoundedCo =
[AND Company [ALL :Manager [AND B-SchoolGrad

[EXISTS 1 :TechnicalDegree]]]]
HighTechCo =

[AND Company [FILLS :Exchange nasdaq] [ALL :Manager Techie]]
Techie = [EXISTS 2 :TechnicalDegree]

These definitions amount to a WellRoundedCo being a company whose managers
are business school graduates who each have at least one technical degree, a High-
TechCo being acompany listed on the NASDAQ whose managers are all Techies,
and a Techie being someone with at |least two technical degrees.

Given these definitions, let us examine how we would normalize the expression

[AND WellRoundedCo HighTechCo].

First, we would expand the definitions of WellRoundedCo and HighTechCo, and
then, Techie, yielding this:

[AND [AND Company
[ALL :Manager [AND B-SchoolGrad

[EXISTS 1 :TechnicalDegree]]]]
[AND Company

[FILLS :Exchange nasdaq]
[ALL :Manager [EXISTS 2 :TechnicalDegree]]]]
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Next, we flatten the AND operators at the top level and then combine the ALL
operators over :Manager:

[AND Company
[ALL :Manager [AND B-SchoolGrad
[EXISTS 1 :TechnicalDegree]
[EXISTS 2 :TechnicalDegree]]]
Company
[FILL S :Exchange nasdaq]]

Finally, we remove the redundant Company concept and combine the EXISTS op-
erators over :TechnicalDegree, yielding the following:

[AND Company
[ALL :Manager [AND B-SchoolGrad [EXISTS 2 :TechnicalDegree]]]
[FILL S :Exchange nasdaq]]

Thisisthe concept of acompany listed on the NASDA Q exchange whose managers
are business school graduates with at least two technical degrees.

9.4.3 Structurematching

In order to compute whether KB = (d C ¢), we need to compare the normalized
versionsof d and e. Theideabehind structure-matching isthat for  to be subsumed
by e, the normalized d must account for each component of the normalized e in
some way. For example, if e has the component [FILLS :Color red], then d must
contain this component too. If e has the component [EXISTS 3 :Child], then d must
have a component [EXISTS n :Child], and we must have n > 3. If e containsthe
component [ALL r €'], then d must contain some[ALL r d'], whered’ is subsumed
by ¢'. Finaly, if e contains some atomic concept «, there are two cases. either
d contains a itself, or d contains some a’ such that (¢’ C «) is derivable using
the E sentences in the KB. The full procedure for structure matching is shown in
Figure9.1.
Toillustrate briefly the structure-matching algorithm, consider the concept, d,

[AND LegalEntity [ALL :Manager B-SchoolGrad]].

Assume that the declaration, (Company C LegalEntity), existsin KB. In this case,
d can be seen to subsume the one that resulted from the normalization procedure
above (call it d’) by looking at each of d’s two components, and seeing that there
existsin d’ amatching component:
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Figure 9.1: A procedure for structure matching

Input: Two normalized concepts d and e where
dis[AND d;y ...dy]and e is[AND eg ... €,,/]
Output: yes or no, according to whether KB | (d C ¢)

Return yes iff for each component ¢;, for 1 < j < m/, there exists acomponent d;
where 1 < i < m, such that d; matchese;, asfollows:

1. if e; isanatomic concept, then either d; isidentical toe;, or thereisasentence
of the form (d; C d’) in the KB, where recursively some component of d’
matchese;;

2. if ¢; isof theform [FILLS r ¢], then d; must be identical to it;

3. if ¢; isof theform [EXISTS » r], then the corresponding d; must be of the
form [EXISTSn’ 7], for somer’ > n; inthe case where n = 1, the matching
d; can be of theform [FILLS r ¢], for any constant ¢;

4. if e; isof theform [ALL r ¢'], then the corresponding d; must be of the form
[ALL r d'], whererecursively d’ is subsumed by ¢’

e LegalEntity is an atomic concept; there is a component in d’ (Company),
where there is an appropriate sentence in the KB that satisfies the require-
ment in Step 1 of the algorithm (hamely, (Company C LegalEntity)).

e For the ALL component of d, whose restriction is B-SchoolGrad, there is
an ALL component of d’ such that the restriction on that ALL component is
subsumed by B-SchoolGrad (namely the conjunction, [AND B-SchoolGrad
[EXISTS 2 :TechnicalDegree]]).

9.4.4 Computing satisfaction

Computing whether an individual denoted by a constant satisfies a concept is very
similar to computing subsumption between two concepts. The main differenceis
that we need to take the — sentences in the KB into account. More precisely, it
can be shown that KB = (¢ — ¢) if and only if KB | (d C ¢), where d is the
AND of every concept d; suchthat (c — d;) isin the KB. What this meansis that
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concept satisfaction can be computed directly using the procedure presented above
for concept subsumption, once we gather together al the relevant — sentencesin
theKB.

9.4.5 Thecorrectness of the subsumption computation

We conclude this section by claiming correctness for the procedure presented here:
KB [E (d C ¢) (according to the definition in terms of interpretations) if and only if
d normalizes to some d’, e normalizes to some ¢’, and for every component of €',
there isa corresponding matching component of ¢’ as above. We will not present a
full proof since it is quite involved, but merely sketch the argument.

The first observation is that given a KB in the simplified form discussed in
Section 9.4.1, every concept can be put into normal form, and moreover, each step
of the normalization preserves concept equivalence. It followsthat KB | (d C ¢)
if and only if KB [ (d’' C ¢’).

The next part of the proof is to show that if the procedure returns yes given
d’ and ¢/, then KB E (d' C ¢’). So suppose that each component of ¢’ has a
corresponding component in d’. To show subsumption, imagine that we have some
interpretation & = (D,7) and some 2 € D such that « € Z[d']. To prove that
x € ZI[e'] (and consequently that d’ is subsumed by ¢’), we look at the various
components e; of ¢’ case by case, and show that « € Z[e;] because there is a
matching d; ind’ and = € Z[d;].

Thefina part of the proof is the trickiest. We must show that if the procedure
returnsno, thenitisnot the casethat KB | (d' C ¢'). Todo so, we need to construct
an interpretation wherefor some z € D, z € Z[d'] but = ¢ Z[¢'].

Hereis how to do so in the simplest case where there are no C sentencesin the
KB, and no EXISTS conceptsinvolved. Let thedomain D betheset of al constants
together with the set of role chains defined to be all sequences of roles (including
the empty sequence). Then for every constant ¢, let Z[¢] be ¢; for every atomic
concept «, let Z[a] be al constants and al role chains ¢ where o = rq-- -7, for
some k£ > 0 and such that ¢’ is of the form

[AND ...[ALL 71...[AND...[ALL 7 a] ...]...]...];

finally, for every roler, let 7[r] be every pair of constants, together with every pair
(¢, o-r) where o isarole chain, together with every pair (o, ¢) where ¢ isaconstant,
o =7r1---r, Wherek > 0, and such that d’ is of the form

[AND ...[ALL r1...[AND...[ALL r; [FILLS 7 d]]...]...]...].
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Assuming the procedure returns no, it can be shown for this interpretation that the
empty rolechainisin the extension of d’, but not in the extension of ¢, and conse-
quently that ¢’ does not subsume ¢’. We omit al further details.

9.5 Taxonomiesand classification

In practice, there are asmall number of key questions that would typically be asked
of adescription logic KB. Since these KBsresembl e databases, where the concepts
correspond roughly to elements of a schema and constants correspond to records,
it iscommon to ask for al of the instances of a concept:

given some query concept, ¢, find al ¢ in KB such that KB [ (¢ — ¢).

On the other hand, since these KB's resemble frame systems in some ways, it is
common to ask for al of the known categories that an individual satisfies, in order,
for example, to trigger procedures associated with those classes:

given aconstant ¢, find all atomic concepts a such that KB £ (¢ — «).

While the logic and computational methods we have presented so far are adequate
for finding the answers to these questions, a naive approach might consider doing a
full scan of the KB, requiring time that growslinearly with the number of sentences
in the KB. However, one of the key reasons for using a description logic in the
first place is to exploit the fact that concepts are naturally thought of as organized
hierarchically, with the most general onesat the top, and the more specialized ones
further down. In this section, we will consider a specia tree-like data structure
that we call ataxonomy for representing sentences in a description logic KB. This
taxonomy will alow us to answer queries like the above much more efficiently,
requiring time that in many cases grows linearly with the depth of the taxonomy. If
we assume that the taxonomy is an (approximately) balanced tree, the processing
will grow logarithmically with the number of sentences in the KB. The net resullt:
it becomes practical to consider extremely large knowledge bases, with thousands
or even millions of concepts and constants.

9.5.1 A taxonomy of atomic concepts and constants

The key observation isthat subsumptionisapartial order, and ataxonomy naturally
falls out of any given set of concepts. Assume that ay,...,a, are al the atomic
concepts that occur on the left-hand sides of = or C sentencesin KB. Theresultant
taxonomy will have nodes for each of the «;, and edges from a; upto a;, whenever
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a; isless general that «;, but not less general than anything more specific than ;.
Thiswill produce a directed acyclic graph. The graph will have no redundant links
init, and thetransitivity of thelinkswill captureall of the subsumption relationships
implied by the declarations defining «;. If we add to this the requirement that each
constant ¢ in KB be linked only to the most specific «; such that KB E (¢ — a;),
we have a hierarchical representation of KB that makes our key questions easier to
answer.®

Once we have ataxonomy of concepts corresponding to some KB, we can con-
sider adding a sentence to the KB for some new atomic concept or constant. This
will involve creating some links from the new concept or constant to existing ones
in thetaxonomy, and perhaps redirecting some existing links. Thisprocessiscalled
classification. Because classification itself exploits the structure of the taxonomy,
the process requires time that can be logarithmic in the size of the KB. Further-
more, we can think of building the entire taxonomy by classification: we start with
a single concept Thing in the taxonomy, and then add new atomic concepts and
constants to it incrementally.

9.5.2 Computing classification

We begin by considering how to add a sentence (anew = d) to ataxonomy where
anew 1S @N @omic concept not appearing anywhere in the KB and d is any concept:

1. Wefirst calculate S, themost specific subsumersof d, that is, the set of atomic
concepts « in the taxonomy such that KB F (d C «), but such that there is
no «' other than « such that KB F (d C «’) and KB F (¢’ C a). Wewill see
how to do this efficiently below.

2. We next calculate G, the most general subsumees of d, that is, the set of
atomic concepts « in the taxonomy such that KB (¢ C d), but such that
thereisno o’ other than « such that KB | (¢/ C d) and KB F (¢ C ). We
will aso see how to do this efficiently.

3. If thereisaconcept ¢ in .5 N G, then the new concept aney IS aready present
in the taxonomy under a different name (namely, «), and we have handled
this case.

4. Otherwise, if there are any links from conceptsin G' up to conceptsin 5, we
remove them, since we will be putting aney between the two groups.

8We assume that with each node in the taxonomy, we also store the concept making up the right-
hand side of the sentence it appeared in.
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5. Weadd links from aney Up to each concept in ', and links from each concept
in G upto anew-

6. Finally we handle constants. we calculate (', the set of constants ¢ in the
taxonomy such that for every a € 5, KB [ (¢ — a), but such that thereisno
a' € G suchthat KB (¢ — «'). (Thisisdone by doing intersections and
set differences on the sets of constants below concepts in the obvious way.)
Then, for each ¢ € C, wetest if KB F (¢ — d), and if so, we remove the
links from ¢ to the conceptsin 5, and add asingle link from ¢ up to anew-

To add a sentence (anew C d) to ataxonomy, the procedure is similar, but simpler.
Because aney 1S anew primitive, there will be no concepts or constants below it in
the taxonomy. So we need only link apey UP to the most specific subsumers of d.
Similarly, to add a sentence (cpew — ), we again link cpey Up to the most specific
subsumers of d.

Now, to calculate the most specific subsumers of a concept d, we begin at the
very top of the taxonomy with the set {Thing} asour first 5. Assumewe havealist
5 of subsumersof d. Supposethat somea € $ hasat least onechild ' immediately
below it in the taxonomy such that KB [ (d C «’). Then we remove a from S and
replace it with all those children «’. We keep doing this until no element of 5 hasa
child that subsumes d.

Observe that if we have an atomic concept o’ below a € S that does not sub-
sume d, then we will not use any other concept below this «’ during the classifica-
tion. If a’ is high enough in the taxonomy, like just below Thing, an entire subtree
can be safely ignored. This is the sense in which the structure of the taxonomy
allows us to do classification efficiently even for very large knowledge bases.

Finally, to calculate the most general subsumees (&' of aconcept d, we start with
the most specific subsumers S asour first . Since d is subsumed by the elements
of 5, we know that any concept that is below d will be below the elements of ' as
well. Again, other distant parts of the taxonomy will not be used. Suppose that for
somea € G itisnot the casethat KB = (¢ C d). Then we remove « from ¢ and
replace it with all the children of « (or smply delete «, if it has no children). We
keep doing this, working our way down the taxonomy, until every element of G is
subsumed by d. Finaly, we repeatedly delete any « € ( that has a parent that is
also subsumed by d.

Following this procedure, Figure 9.2 shows how a new concept, Surgeon, de-
fined by the sentence (Surgeon = [AND Doctor [FILLS :Specialty surgery]]), can
be classified, given a taxonomy that aready includes appropriate definitions for
concepts like Doctor, AmericanSpecialist, etc. First, we calculate the most specific
subsumers of Surgeon, 5. We start with § = {Thing}. Assume that none of the
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Figure 9.2: Classifying a new concept in a taxonomy

Thing

!

Doctor

!

new Specialist

Surgeon |
| AmericanSpecialist

pd

AmericanSurgerySpecialist

AmericanDermatologySpecialist

direct subsumees of Thing except for Doctor subsume Surgeon. Given that, and the
fact that (Surgeon C Doctor), we replace Thing in the set .S by Doctor. The con-
cept Specialist is immediately below Doctor, and (Surgeon C Specialist), so we
then replace Doctor in S with Specialist. Finally, we see that no child of Specialist
subsumes Surgeon (i.e,, not all surgeons are American specidlists), so we have
computed the set of most specific subsumers, S = {Specialist}.

Now we turn our attention to the most general subsumees. We start with G
= S = {Specialist}. It isnot the case that (Specialist = Surgeon), so we replace
Specialist in G with its one child in the taxonomy; now G = {AmericanSpecialist}.
Similarly, it isnot the case that (AmericanSpecialist = Surgeon), so we replace that
concept in G with its children, resulting in G = {AmericanDermatologySpecialist,
AmericanSurgerySpecialist}. Then, since AmericanDermatologySpecialist is not
subsumed by Surgeon, and that concept has no children, it is deleted from G'. Fi-
nally, we seethat itisthe casethat (AmericanSurgerySpecialist C Surgeon), and we
are done, with G = {AmericanSurgerySpecialist}. As aresult of this classification
process, the new concept, Surgeon, is placed between the two concepts Specialist
and AmericanSurgerySpecialist.

(©2003 R. Brachman andH. Levesque July17, 2003 174

9.5.3 Answeringthe questions

If we construct, in the above manner, a taxonomy corresponding to a knowledge
base, we are left in a position to answer the key description logic questions quite
easily. Tofind all of the constantsthat satisfy aquery concept, ¢, wesimply classify
¢, and then collect all constants at the fringe of thetree below ¢. Thiswould involve
asimple tree walk in only the part of the taxonomy subtended by ¢. Similarly, to
find all atomic concepts that are satisfied by a constant ¢, we start at ¢ and walk
up the tree, collecting al concept nodes that can be reached by following the links
representing subsumption.

9.5.4 Taxonomiesvs. frame hierarchies

The taxonomieswe derive by classification in adescription logic KB look alot like
the hierarchies of frames we encountered in the preceding chapter. In the case of
frames, the KB designer could create the hierarchy in any arbitrary way desired,
simply by adding whatever :1S-A and :INSTANCE-OF slot-fillers seemed appropri-
ate. However, with DL's, the logic of concepts strictly dictates what each concept
means, as well as what must be above or below it in the resulting taxonomy. As
aresult, we cannot just throw labeled nodes together in a hierarchy, or arbitrarily
change a taxonomy—we must honor the relationships implicit in the structures of
the concepts. A concept of theform [AND Fish [FILL S:Size large]. . .] must appear
in ataxonomy below Fish, even if we originally constructed it to be the referent of
Whale. If we at some point realized that that was an inaccurate rendition of Whale,
what would have to be changed is the association of the symbol Whale with the
expression, changing it to perhaps [AND Mammal [FILL S :Size large]...]. But the
compound concept with Fish in it could not possibly go anywhere in the taxonomy
but under Fish.

9.5.5 Inheritanceand propagation

Recall that in our Frames chapter (Chapter 8) we introduced the notion of inher-
itance, whereby individual frames were taken to have values (and attached pro-
cedures) represented in parent frames somewhere up the generalization hierarchy.
The same phenomenon can be seen here with description logic taxonomies: acon-
stant in the taxonomy should be taken as having al properties (as expressed by
FILLS, ALL, and EXISTS) that appear both on it locally (as part of the right-hand
side of the sentence where it was first introduced) as well as on any parent concept
further up the taxonomy.
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I nheritance here tends to be much simpler than inheritance found in most frame
systems, since it is strict—there are no exceptions permitted by the logic of the
concept-forming operators. It isimportant to note, though, that these inferencesare
sanctioned by thelogic, and issues of how to compute them using the taxonomy are
purely implementation considerations. We will return to a much richer notion of
inheritance in the next chapter.

Another important inference in practical description logic systems involves
the propagation of properties to an individual caused by an assertion. We are
imagining, in other words, that we can add a sentence (¢ — d) to the KB even
if we had aready previously classified ¢. This can then cause other constants
to be reclassified. For example, suppose we introduce Lauren with the sentence
(lauren — [FILLS:Child rebecca]), and we define ParentOfDocs by

(ParentOfDocs = [ALL :Child Doctor]).

Then as soon as it is asserted that (lauren — ParentOfDocs), we are forced to
conclude that Rebeccaisa doctor. If we also knew that (rebecca — Woman), and
we had the atomic concept FemaleDoc defined as [AND Woman Doctor], then the
assertion about L auren should result in Rebeccabeing reclassified asaFemaleDoc.

Thiskind of cascaded inferenceisinteresting in applications where membership
in classesis monitored, and changesin class membership are considered significant
(e.g., imagine we are monitoring the stock market and have classes representing
stocks whose values are changing in significant ways). It is also reminiscent of the
kind of cascaded computation we saw with frame systems, except that here again
the computations are dictated by the logic.

9.6 Beyond thebasics

Inthisfinal section, weexamine briefly how we can move beyond thesimplepicture
of description logics presented so far.

9.6.1 Extensionstothelanguage

First, we consider some extensionsto DL that would make it more useful. Each of
the extensions ends up having serious consequences for computing subsumption.
In many cases, it isno longer possible to use normalization and structure matching
to do the job; in some cases, subsumption can even be shown to be undecidable.®

SWe will revisit thisissue again in detail in Chapter 16.
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Bounds on the number of rolefillers: The DL construct EXISTS is used to
say that arole has a minimum number of fillers. We can think of the dual operator
AT-MOST where [AT-MOST n r] describesindividuals related by role r to at most
n individuals. This seemingly small addition to DL in fact allows awide range of
new inferences. First of al, we have descriptionslike

[AND [EXISTS4 r] [AT-MOST r 3]]

which are inconsistent in that their extension is guaranteed to be the empty set.
Moreover, asimple concept like [ALL r d] now subsumes one like

[AND [FILLS 7 ¢] [AT-MOST r 1] [ALL s d] [FILLS s ]]

even though there is no obvious structure to match.

We should also note that as soon as inconsistency is alowed into the language,
computation gets complex. Besides the difficulties with structure-matching noted
above, normalization suffers also. For example, if we have found d to beinconsis-
tent, then although [ALL r d] is not inconsistent by itself, the result of conjoining
it with [EXISTS 1 r] is inconsistent, and this would need to be detected during
normalization.

Sets of individuals: Another important construct would package up a set of
individualsinto aset concept, which could then be used, for example, in restricting
the values of roles. [ONE-OF ¢; ¢z ... ¢,] would be a concept that could only be
satisfied by the ¢;. Inan ALL restriction, we might find such a set:

[ALL :BandMember [ONE-OF john paul george ringo]]

would represent the concept of something whose band memberscould only betaken
from the specified set. Note that such a combination would have consequences for
the cardinality of the :BandMember role, implying [AT-MOST 4 :BandMember],
athough it would imply nothing about the minimum number of band members.
Relating the roles: While we have discussed classes of objects with internal
structure (viaits roles), we have ignored a key ingredient of complex terms—how
therolefillersactualy interrelate. A simple case of thisiswhen fillersfor two roles
are required to be identical. Consider a construct [SAME-AS r1 r2], which equates
thefillers of r1 and r,. [AND Company [SAME-AS :CEO :President]] would thus
mean a company whose CEO was identical to its President. Despite its apparent
simplicity, without some restrictions, SAME-AS makes subsumption very difficult
to compute. This is especidly true if we allow a very natural extension to the
SAME-AS construct—allowing it to take as arguments chains of roles, rather than
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single roles. In that case, [SAME-AS (:Mother :Sister)(:Father :Partner :Lawyer)]
would represent something whose mother’s sister is its father’s partner’s lawyer.
Computation can be simplified by restricting SAME-AS to chains of “features’ or
“attributes’—roles that have exactly onefiller.

Qualified number restrictions: Another natural extension to DL is what has
been called a “qualified number restriction.” [EXISTS n r d] would alow us to
represent something that is r-related to » individuals who are also instances of d.
For example, [EXISTS 2 :Child Female] would represent someone with at least
two daughters. Thisis a very natural and useful construct, but causes surprising
computational difficulties, even if the rest of the language is kept very simple.

Complex roles: So far we have taken roles to be primitive atomic constructs.
Itis plausible to consider alogic of roles reminiscent of the logic of concepts. For
example, some description logics have role-forming operators that construct con-
junctive roles (much like AND over concepts). This would imply arole taxonomy
akin to the concept taxonomy. Another extension that has been explored is that of
role inverses. If we have introduced arole like :Parent, it is quite natural to think
of introducing :Child to be defined asiits inverse.

Rules: In DL, there is no way to assert that al instances of one concept are
aso instances of another. Consider, for example, the concept of a red Bordeaux
wine, which we might define asfollows:

(RedBordeauxWine = [AND Wine
[FILLS:Color red]
[FILL S:Region bordeaux]]).

We might also have the following concept:

(DryRedBordeauxWine = [AND Wine
[FILLS :Color red]
[FILLS :Region bordeaux]
[FILLS :SugarContent dry]]),

These two concepts are clearly not equivalent. But suppose that we want to assert
that all red Bordeaux wines are in fact dry. If we were to try to do this by using
the second concept above as the definition of RedBordeauxWine, we would be
saying in effect that red Bordeaux wines are dry by definition. In this case, the
status of the first concept would be unclear: should the subsumption relation be
changed somehow so that the two concepts end up being equivalent? To avoid this
difficulty, we can keep the original definition of RedBordeauxWine, but extend DL
with a simple form of rules, which capture universal assertions. A rule will have
an atomic concept as its antecedent, and an arbitrary concept as its consequent:
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(if RedBordeauxWine then [FILLS :SugarContent dry])

Rules of this sort give usanew and quite useful form of propagation: aconstant gets
classified, then inherits rules from concepts that it satisfies, which then are applied
and yield new properties for the constant (and possibly other constants), which
can then cause anew round of classification. Thisis reminiscent of the triggering
of IF-ADDED procedures in frame systems, except that the classification is done
automatically.

9.6.2 Applications of description logics

We now turn our attention to how description logic systems can be utilized in prac-
tical applications.

Assertion and query: One mode of useisthe exploration of the consequences
of axiomatizing a domain by describing it in a concept hierarchy. In this scenario,
we generate ataxonomy of useful general categories, and then describe individuals
in terms of those categories. The system then classifies the individual s according
to the general scheme, and propagates to related individuals any new properties
that they should accrue. We might then ask if agiven individual satisfies a certain
concept, or we might ask for the entire set of individuals satisfying a concept.

This would be appealing in a situation where a catalogue of products was de-
scribed in terms of acomplex domain model. The system may be able to determine
that aproduct falls into some categories unanticipated by the user.

Another situationinwhich this style of interaction isimportant involves config-
uration of complex structured items. Asserting that a certain board goesin acertain
slot of a computer hardware assembly could cause the propagation of constraints
to other boards, power supplies, software, etc. The domain theory then acts as a
kind of object-oriented constraint propagator. One could also ask questions about
properties of an incrementally evolving configuration, or even “what if” questions.

Contradiction detection in configuration: Configuration-style applications
can aso make good use of contradiction-detection facilitiesfor those DLsthat have
enough power to express them. In particular, as an incremental picture of the con-
figured assembly evolves, it isuseful to detect when aproposed part or subassembly
violates some constraint expressed in the knowledge base. This keepsusfrom mak-
ing invalid configurations. It is aso possible to design explanation mechanisms so
that the reasons for the violation can be outlined to the user.

Classification and contradiction detection in knowledge acquisition: In a
similar way, some of the inferential properties of a description logic system can be
used as partial validation during knowledge acquisition. As we add more concepts
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or constantsto aDL knowledge base, aDL system will noticeif any inconsistencies
areintroduced. This can alert usto mistakes. Because of its classification property,
aDL candert usto certain failures of domain modeling in away that frame systems
cannot, for example, the unintended merger of two concepts that look different on
the surface but which mutually subsume one another, or the unintended classifica-
tion of a new item below one that the user had not expected.

Assertion and classification in monitoring scenarios. In some applications,
itisnormal to build the description of an individual incrementally over time. This
might be the case in a diagnosis scenario, where information about a suspected
fault is gathered in pieces, or in asituation with ahardware device sending astream
of status and error reports. Such an incremental setting leads one to expect the
refinement of classifications of individuals over time. If we are on the lookout for
members of certain classes (e.g., Class1CriticalError), we can dert auser when new
members for those classes are generated by new data. We can also imagine actions
(external procedures) being triggered automatically when such class members are
found. While this begins to sound like the sort of operation done with a procedu-
ral system, in the case of a DL, the detection of interesting situations is handled
automatically once the situation is described as a concept.

Working memory for a production system: The above scenario is somewhat
reminiscent of a common use of production systems; in situations where the de-
scription logic language is expressive enough, aDL could in fact be used entirely
to take the place of aproduction system. In other cases, it may be useful to preserve
the power and style of a production system, but a DL might provide some very
useful added value. In particular, if the domain of interest has a natural object-
oriented, hierarchical structure, as so many do, a true picture of the domain can
only be achieved in a pure production system if there are explicit rules capturing
the inheritance relationships, part-whole relationships, etc. An aternative would
be to use a DL as the working memory. The DL would encode the hierarchical
domain theory, and take care of classification and inheritance automatically. The
production system could then restrict its attention to complex pattern detection and
action—where it belongs—with its rules represented at just the right, natural level
(the antecedents could refer to classesat any level of aDL generalization hierarchy),
avoiding any ad hoc attempts to encode inheritance or classification procedurally.

Using conceptsas queriesand accessto databases. It ispossibletothink of a
concept asaquery asking for al of itsinstances. Imaginewe have“raw” datastored
in arelational database system. We can then develop an object-oriented model of
theworld in our DL, and specify a mapping from that model to the schema used in
the conventional DBMS. Thiswould then allow us to ask questions of arelational
database mediated by an object-oriented domain model. One could implement such
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a hybrid system either by pre-classifying in the KB al objects from the DB and
using classification of a DL query to find answers, or leaving the data in the DB
and dynamically translating a DL query into a DB query language like SQL.

9.7 Bibliographic notes

9.8 Exercises

1. In this chapter, we considered the semantics of a description logic language
that includes concept-forming operators such as FILL S and EXISTS, but no
role-forming operators. In this question, we extend the language with new
concept-forming operators and role-forming operators.

(a) Present a forma semantics in the style of the text for the following
concept-forming operators:
e [SOME 7] Roleexistence.
Something with at least 1 r.
e [AT-MOST n ] Maximum role cardinality.
Something with at most n 7’s.
(b) Do the samefor the following role-forming operators:
e [INVERSE r] Roleinverse.
So the :Child role could be defined as [INVERSE :Parent].
¢ [COMPOSE 71 ... r,] Rolecomposition.
Ther,'sof ther,_1's...of ther;'s.
So [ALL [COMPOSE :Parent :Brotherinlaw] Rich] would mean
something all of whoseunclesarerich (wherean uncleisabrother-
in-law of aparent).
(c) Use this semantic specification to show that for any roles r, s, and ¢,
the concept
[ALL [COMPOSE r s] [SOME ]]

subsumes the concept
[ALL 7 [AND [ALL s [EXISTS21¢]] [ALL s [AT-MOST 2 ]]]]

by showing that the extension of the latter concept is always a subset
of the extension of the former.
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2. Consider a new concept-forming operator, AMONG which takes two argu-
ments, each of which can be arole chain (a sequence of one or more roles).
The description [AMONG (r1...7,) (s1...sm,)] isintended to apply to an
individual whoser,'sof itsr,,_1'sof its... of itsr;'sareasubset of its s,,,'S
of itss,,_1'sof its... of itss1’s. For example,

[AMONG (:Brother :Friend) (:Sister :Enemy)]

would mean “something whose friends of its brothers are among the enemies
of itssisters.”

(a) Giveaformal semanticsfor AMONG in the style of the text.

(b) Use this semantics to show that for any roles r;, the concept

[AMONG (ry1) (r2 r374)]
subsumes the concept
[AND [AMONG (r1) (r2 75)] [ALL 72 [AMONG (r5) (r3 r4)]]]-

(c) Does the subsumption also work in the opposite direction (that is, are
the two concepts equivalent)? Show why or why not.

(d) Construct an interpretation that shows that neither of the following two
concepts subsumes the other:

[AMONG (r1) (r2 73 74)]

and
[AMONG (r1 72) (r3 74)]-

3. Theprocedure given in Section 9.5.2 for finding the most general subsumees
(G of a concept d says at the very end that we should remove any « € G
that has a parent that is also subsumed by d. Explain why this is necessary
by presenting an example where the procedure would produce an incorrect
answer without it.

4. When building a classification hierarchy, once we have determined that one
concept d; subsumes another d», it is often useful to calculate the difference
between the two: the concept that needs to be conjoined to d; to produce d».
Asatrivia example, if we have
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d1 = [AND p [AND ¢ 7]]
d2 = [AND [AND ¢ ] [AND p s] r]

then the differencein question is[AND ¢ s] since dz is equivalent to
[AND d1 [AND ¢ $]].

(a) Implement and test a procedure which takes as arguments two concepts
in the following simple language, and when the first subsumes the sec-
ond, returns a difference as above. You may assume that your input is
well-formed. The concept languageto useis

<concept> ::= [AND <concept> ... <concept>]
<concept> ::= [ALL <role> <concept>]
<concept> ::= <atom>

<role> ::= <atom>

with the semantics as presented in the text.

(b) The above definition of “difference” is not precise. If al we are after
is a concept d such that d; is equivalent to [AND d; d], then d itself
would qualify as the difference, since d; is equivaent to [AND d1 d2],
whenever d; subsumes d,. Make the definition of what your program
calculates precise.

5. For this question, you will need to write, test and document a program that
performs normalization and subsumption for a description logic language.
Theinput will beapair of syntactically correct expressions encoded in alist-
structured form. Your system should output a normalized form of each, and
a statement of which subsumes the other, or that neither subsumes the other.

The description language your program needs to handle should contain the
concept-forming operators AND, AL L, and EXI ST S (asdescribed in thetext),
AT-MOST (asused in Question 1), but no role-forming operators, so that roles
areall atomic. You may assume that all named concepts and roles other than
Nothing and Thing are primitive, so that you do not haveto maintain asymbol
table or classification hierarchy. Submit output from your program working
on at least the following pairs of descriptions

e (1) [AND [ALL :Employee Canadian]]
(2) [ALL :Employee [AND American Canadian]]

e (1) [EXISTSO :Employee]
(2) [AT-MOST 2 :Employee]

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 183

e (1) [AND [ALL :Friend [EXISTS 3 Teacher]]
[ALL :Friend [AND [ALL Teacher Person]
[AT-MOST 2 Teacher]]]]
(2) [ALL :Friend [ALL Teacher Female]]

e (1) [EXISTS1 Teacher]
(2) [AND [EXISTS 2 Teacher] [ALL Teacher Male]]

e (1) [EXISTS1 Teacher]
(2) [AND [AT-MOST 2 Teacher] [ALL Teacher Male]]

e (1) [AND [ALL :Cousin [EXISTSO :Friend]]
[ALL :Employee Female]]
(2) [AND [AT-MOST 0 :Employee]
[ALL :Friend [AT-MOST 3 :Cousin]]]

6. Thisquestion involveswriting and running a program to do asimple form of
normalization and classification, building a concept hierarchy incrementally.
We will use the very simple description language specified by the grammar
in Question 4a. The atomic concepts here are either primitives or the names
of previously classified descriptions.

There are two main programs to write: NORMALIZE and CLASSIFY.

NORMALIZE takes aconcept description asits single argument, and returns
anormal form description: an AND expression where every argument is ei-
ther aprimitive atom or an AL L expression whose concept argument is itself
in normal form. Within this AND, primitives should occur at most once,
and ALL expressionswith the same role should be combined. Non-primitive
atomic concepts need to be replaced by their definitions. (It may simplify the
code to leave out the atoms AND and ALL within normalized descriptions,
and just deal with the lists.)

CLASSIFY should take asitsargument, an atom, and adescription. Theidea
is that a new concept of that name is being defined, and CLASSIFY should
first link the nameto anormalized version of the description asits definition.
CLASSIFY should then position the newly defined concept in a hierarchy of
previously defined concepts. Initially, the hierarchy should contain a single
concept named Thing. Subsequently, all new concepts can work their way
down the hierarchy to their correct position starting at Thing, as explained in
thetext. (Something will need to be doneif thereisalready adefined concept
at that position).
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Chapter 10

| nheritance

As we saw in previous chapters on frames and description logics, when we think
about theworld in an object-centered way, weinevitably end up thinking in terms of
hierarchies. Thisreflects the importance of abstraction, classification, and general-
ization inthe enterprise of knowledge representation. Groups of thingsin theworld
naturally share properties, and we talk about them most concisely using words for
abstractions like “furniture” or “situation comedy” or “seafood.” Further, hierar-
chies allow us to avoid repeating representations—it is sufficient to say that “ele-
phants are mammals’ to immediately know a great deal about them. Taxonomies
of kinds of objects are so fundamental to our thinking about the world that they are
found everywhere, especially when it comes to organizing knowledge in a com-
prehensible form for human consumption, in encyclopedias, dictionaries, scientific
classifications, and so on.

The centrality of taxonomy meansthat the idea of property inheritance that we
saw with frames and description logics is aso fundamental to knowledge repre-
sentation. In the kind of classification networks we built using description logics,
inheritancewasjust away of doinglogical reasoning in agraphically-oriented form:
if we have a network where the concept PianoConcerto isdirectly below Concerto,
which isdirectly below MusicalWork, then PianoConcerto inherits properties from
MusicalWork becauselogically all instances of PianoConcerto areinstances of Con-
certo and al instances of Concerto are instances of MusicalWork. Similar consid-
erations apply in the case of frames, athough the reasoning there is not strict: if
the I S-A dot of frame AdultHighSchoolStudent points to HighSchoolStudent and
HighSchoolStudent points to Teenager, then AdultHighSchoolStudent may inherit
propertiesfrom HighSchoolStudent and HighSchoolStudent in turn from Teenager,
but we are no longer justified in concluding that an instance of AdultHighSchool-
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Figure 10.1: Inheritance reasoning is path reasoning

Student must be an instance of Teenager. In both cases, however, “can « inherit
properties from 4?7’ involves asking if b isin the transitive closure of some sort of
generalization relation from a. Asillustrated in Figure 10.1, this amountsto asking
if there is a path of connections from « to b.

Many interesting considerations arise even when wejust focus our attention on
where the information comes from in a network of frames or concepts like this. In
order to highlight the richness of path-based reasoning in networks, in this chap-
ter we are going to concentrate just on inheritance and transitivity relations among
nodes in a network. While the networks we will use will suppress a great deal
of representational detail, it is important to keep in mind that they are merely the
backbones of inheritance hi erarchiesexpressing generali zation rel ationshipsamong
frames or concepts. Because the nodesin these networks stand for richly structured
frames or concepts, inheritance reasoning complements the other forms of reason-
ing we have covered in previous chapters. Inheritance reasoning is also the core of
the much more complex default reasoning that we will explorein detail in the next
chapter.

10.1 Inheritance networks
Inthischapter, wereducethe frames and descriptions of previouschapterstosimple

nodes that appear in inheritance networks, like the one expressed in the graph in
Figure 10.2. We will use the following concepts in our discussion:
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Figure 10.2: A simple inheritance network

*

Gray

Elephant

Clyde

o edgesin the network, connecting one node directly to another. In the figure,
Clyde - Elephant and Elephant - Gray are thetwo edges. Theserepresent | S-A
or subsumption relations.

e pathsincluded in the network; apath is a sequence of one or more edges. In
the figure, the edges mentioned above are aso paths, asis Clyde - Elephant -
Gray.

¢ conclusions supported by the paths. In thisfigure, these conclusions are sup-
ported: Clyde — Elephant; Elephant — Gray; Clyde — Gray. These con-
clusions are supported because the edges represent | S-A or subsumption re-
lations, and these relations are transitive.

Finally, note that for our discussion here we treat object-like concepts, like Ele-
phant, and properties, like Gray, equivalently as nodes. If we wanted to be more
precise, we could use termslike GrayThing (for a Thing whose Color rolewasfilled
with theindividual gray), but for purposes of this exposition that is not really nec-
essary. Also, we normally do not distinguish which nodes at the bottom of the
hierarchy stand for individuals like Clyde, and which stand for kinds like Elephant.
We will capitalize the names of both.

Before getting into some of the interesting complications with inheritance net-
works, we should look at some simple configurations of nodes and basic forms of
inheritance.
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Figure 10.3: Strict inheritancein atree

e Gray
A

Rat e e Elephant
A

Ben e e Clyde

10.1.1 Strict inheritance

The simplest form of inheritance is the kind used in description logics and other
systems based on classical logic: strict inheritance. In astrict inheritance network,
conclusions are produced by the complete transitive closures of al paths in the
network. Any traversal procedure for computing the transitive closure will do for
determining the supported conclusions.

In atree-structured strict inheritance network, inheritance is very simple. As
in Figure 10.3, all nodes reachable from a given node are implied. In this figure,
supported conclusions include the fact that Ben is gray, and that Clyde is gray.

In an inheritance network that is a directed acyclic graph (DAG), the results
are the same as for strict inheritance: all conclusions you can reach by any path
are supported. This includes conclusions found by traversing different branches
upward from a node in question. Figure 10.4 illustrates a strict DAG. It says that
Ernest is both a student and an employee. The network supports the conclusions
that Ernest is an academic, as well as ataxpayer, and salaried.

Note that in this figure we introduce a negative edge with a bar through it,
between Student and llliterate, standing roughly for “is-not-a” or “is-not.” So edges
in these networks have polarity—positive or negative. Thus the conclusion that
Ernest isnot illiterate is supported by the network in the figure.!

1As we will see more precisely in Section 10.3, when a network contains negative edges, apath
is considered to be zero or more positive edges followed by a single positive or negative edge.
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Figure 10.4: Strict inheritancein aDAG

llliterate o e Taxpayer e Salaried
A
Academic e \”
Student e e Employee
A
George e e Ernest

Inheritance in directed acyclic networks is often called “multiple inheritance”
when anode has more than one parent node; in such cases, because of the meaning
of the edges, the node must inherit from all of its parents.

10.1.2 Defeasibleinheritance

In our study of frame systems, we saw numerous illustrations of a non-strict in-
heritance policy. In these representations, inherited properties do not always hold;
they can be defeated, or overridden. This is most obviously true in the case of
DEFAULT facets for slots, such as the default origin of one of my trips. But a
closer examination of the logic of frame systems such as those that we covered in
Chapter 8 would suggest that in fact virtually all properties (and procedures) can be
overridden (one exception is the REQUIRE facet we discussed briefly). We call
the kind of inheritance networks in which properties can be defeated, “ defeasible
inheritance networks.”

Inadefeasibleinheritance scheme, conclusionsare determined by searching up-
ward from afocus node—the one about which we aretrying to draw a conclusion—
and selecting the first version of the property being considered. An example will
make this clear. In Figure 10.5, thereis an edge from Clyde to Elephant, and one
from there to Gray. There is aso, however, a negative edge from Clyde directly to
Gray. This network is intended to capture the knowledge that while elephants in
genera are gray, Clyde is not. Intuitively, if we were trying to find what conclu-
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Figure 10.5: Defeasible inheritance

e Gray

A

e Elephant
A

e Clyde

sion this network supported about Clyde's color, we would first find the negative
conclusion about Gray, sincethat is directly asserted of Clyde.

In general, what will complicate defeasible reasoning, and what will occupy us
for much of this chapter, is the fact that different paths in a network can support
conflicting conclusions, and a reasoning procedure needs to decide which conclu-
sion should prevall, if any. In the above example, there is an argument for Clyde
being gray: heis an elephant and elephants are gray; however, there is a “ better”
argument for concluding that he is not gray, since this has been asserted of him
specifically.

Of course, we expect that in some cases wewill not be ableto say which conclu-
sion is better or worse. In Figure 10.6 there is nothing obvious that tells us how to
choose between the positive or negative conclusions about Nixon’s pacifism. The
network tells us that by virtue of his being a Quaker heis a pacifist; it also tellsus
that by virtue of his being a Republican, heis not. This type of network is said to
be ambiguous.

When exploring different accounts for reasoning under this kind of circum-
stance, we typically see two types of approaches: credulous accounts alow us to
choose arbitrarily between conclusions that appear equally well supported; skepti-
cal accounts are more conservative, often accepting only conclusions that are not
contradicted by other paths. Intheabove case, acredul ous account wouldin essence
flip a coin and choose one of Nixon — Pacifist or Nixon — —Pacifist, since either
conclusion is as good as the other. A skeptical account would draw no conclusion
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Figure 10.6: Is Nixon a pacifist, or not?
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about Nixon's pacifism.

10.2 Strategiesfor defeasibleinheritance

For DAGs with defeasible inheritance, we need a method for deciding which con-
clusion to choose (if any) when there are contradictory conclusions supported by
different paths through the network. In this section, we examine two possible ways
of doing thisinformally, before moving to a precise characterization of inheritance
reasoning in the next section.

10.2.1 Theshortest path heuristic

Figure 10.7 shows two examples of defeasible inheritance networks that produce
intuitively plausible conclusions. In the one on the left, we see that while Royal
Elephants are elephants, and elephants are (typically) gray, Roya Elephants are
not. Since Clyde is a Royal Elephant, it would be reasonable to assume he is not
gray.

To decide this in an automated way, the shortest path heuristic says that we
should prefer conclusions resulting from shorter paths in the network. Since there
are fewer edgesin the path from Clyde to Gray that includes the negative edge than
in the path that includes the positive edge, the negative conclusion prevails.
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Figure 10.7: Shortest path heuristic

e Gray e AquaticCreature
A A

e Elephant e Mammal

A A

e RoyalElephant e Whale

A A

e FatRoyalElephant e WhiteWhale

A A

e Clyde e BabyBeluga

In the network on the right, we see the opposite polarity conclusion being sup-
ported. Whales are mammals, but mammals are typically not aquatic creatures.
Whales are exceptional in that respect, and are directly asserted to be aquatic crea-
tures. Weinfer using the shortest path heuristic that BabyBeluga isan AquaticCrea-
ture.

The intuition behind the shortest path heuristic is that it makes sense to inherit
from the most specific subsuming class. If two superclasses up the chain disagree
on aproperty (e.g., Gray vs. =Gray), we take the value from the more specific one,
sincethat is likely to be more directly relevant.?

2A similar consideration arisesin probabilistic reasoning in Chapter 12 regarding choosing what
iscalled a“reference class’: our degree of belief in an individual having a certain property depends
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Notice then, that in defeasible inheritance networks, not all paths count in gen-
erating conclusions. It make senseto think of the pathsin the network as arguments
in support of conclusions. Some arguments are preempted by others. Those that
are not we might call “admissible.” The inheritance problem, then, is “What are
the admissible conclusions supported by the network?’

10.2.2 Problemswith shortest path

While intuitively plausible, and capable of producing correct conclusionsin many
cases, the shortest path heuristic has serious flaws. Unfortunately, it can produce
incorrect answers in the presence of redundant edges—those that are already im-
plied by the basic network. Look at the network in Figure 10.8. The edge labeled ¢
issimply redundant, in that it is clear from the rest of the network that Clydeisun-
ambiguously an elephant. But by creating an edge directly from Clyde to Elephant
we have inadvertently changed the polarity of the conclusion about Clyde's color!
The path from Clyde to Gray that goes through edge ¢ is now shorter (length=2)
than the one with the negative edge from RoyalElephant to Gray (length=3). So the
inclusion of an edge that is aready implicitly part of the network undermines the
shortest path heuristic.

Another problem with the shortest path heuristic is the fact that the length of
a path through the network does not necessarily reflect anything salient about the
domain. Depending on the problem or application, some paths may describe object
hierarchies in excruciating detail, while others may be very sketchy. Thereis no
reason that just because an inheritance chain makes many fine-grained distinctions
there should be a bias against it in drawing conclusions. Figure 10.9 illustratesin
a somewhat extreme way how this causes problems. The left-hand path has a very
large number of nodesin it, and ends with apositive edge. The right-hand path has
just one more edge, and ends with a negative edge. So for this network, the short-
est path heuristic supports the positive conclusion. But if we were to add another
two edges—anywhere in the path—to the left-hand side, the conclusion would be
reversed. This seems rather silly; the network should be considered ambiguousin
the same manner as the one in Figure 10.6.

10.2.3 Inferential distance

Shortest path is what is considered to be a preemption strategy, which allows usto
make admissibility choices among competing paths. It triesto provide a specificity
criterion, matching our intuition that more specific information about an item is

on the most specific class he belongs to for which we have statistics.
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Figure 10.8: Shortest path in the face of redundant links
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RoyalElephant e

FatRoyalElephant e

Clyde

more relevant than information more generally true about a broader class of items
of which it is a member.

As we have seen, shortest path hasits problems. Fortunately, it is not the only
possible specificity criterion. A more plausible strategy would be to use inferential
distance, which rather than being linear distance-based, is topologically based.

Consider Figure 10.8 once again. Starting at the nodefor Clyde, wewould like
to say that RoyalElephant is more specific than Elephant despite the redundant edge
¢ because there is a path to Elephant that passes through RoyalElephant. Because
it is more specific, we then prefer the negative edge from RoyalElephant to Gray
over the positive onefrom Elephant to Gray. Moregenerally, anode  is considered
nearer to node b than to node ¢ according to inferentia distance iff thereis a path

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 195

Figure 10.9: Very long paths

N

856 edges ! 857 edges
. .
*

from « to ¢ through b, regardless of the actual length of any paths from « to b and
toc.

This criterion handles the earlier simple cases of inheritance from Figure 10.7.
Furthermore, in the case of the ambiguous network of Figure 10.9, inferential dis-
tance prefers neither conclusion, as desired.

Unfortunately, inferential distance hasits own problems. What should happen,
for example, when the path from « through b to ¢ isitself contradicted by another
path? Rather than attempt to patch the definition to deal with such problematic
cases, we will consider a different formalization of inheritance that incorporates a
version of inferential distance as well as other reasonable accounts of defeasible
inheritance networks.

10.3 A formal account of inheritance networks

The discussion above was intended to convey some of the intent and i ssues behind
defeasible inheritance networks, but was somewhat informal. The ideas in these
networks can be captured and studied in amuch more formal way. We here briefly
present one of the clearer formal accounts of inheritance networks (there are many
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that are impenetrable), owing to Lynn Stein.

Aninheritance hierarchy I' = (V, I) isadirected, acyclic graph with
positive and negative edges, intended to denote “(normally) is-a” and
“(normally) is-not-a,” respectively (V' are thenodes, or vertices, inthe
graph; E arethe edges). Positive edges will be written as (« - «) and
negative edges will be written as (a - —z).

A positive path is a sequence of one or more positive edgesa - ... - z.
A negative path is a sequence of zero or more positive edges followed
by asinglenegativeedge: @ - ... - v - ~a. A path iseither a positive or
negative path.

Note that there are no paths with more than one negative edge, athough a negative
path could have no positive edges (i.e., be just a negative edge).

A path (or argument) supports a conclusion in the following ways:

e «-... xsupportstheconclusion a — z (a isan z);

e a-...-v- -z supportsthe conclusiona 4 « (a isnot an z).
A single conclusion can be supported by many arguments. However, not al argu-
ments are equally believable. We now look at what makes an argument prevail,

given other arguments in the network. This stems from aformal definition of ad-
missibility:

I" supportsapath a - s1-...- s, - (=)z if the corresponding set of edges
arein £, and it is admissible according to the definition below. The
hierarchy supportsa conclusion a — = (or a /4 z) if it supports some
corresponding path between ¢ and «.

A path isadmissible if every edgeinit is admissible.
Anedge v - (m)z isadmissiblein " wrt. « if there is a positive path
a-81+...5, v (n>0)in Fand
1. eachedgeina-si-...s,-visadmissibleinl w.rt. a (recursively);
2. noedgeina-sy-...s, -visredundantin ™ w.r.t. a (see below);

3. nointermediatenodea, s1, . .., s, isapreemptor of v - (=)z W.r.t.
a (see below).
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Figure 10.10: Basic path situation for formalization

the edge under
consideration

a S; v T

So, an edge is admissible with respect to « if there is a nonredundant, admissible
path leading to it from « that contains no preempting intermediaries. Thissituation
is sketched in Figure 10.10.

The definitions of preemption along a path and of redundancy will complete the
basic formalization:

Anodey dongpatha-...-y-...-visapreemptor of v-z (v-—x) wr.t.
aify--z € F(y-z € E). For example, in Figure 10.11, the node
Whale preempts the negative edge from Mammal to AquaticCreature
with respect to both Whale and BlueWhale.

A positive edge b - w isredundant in I w.r.t. node « if there is some
positivepathb -t - ... t, -w € E (m > 1) for which

1. eachedgeinb -ty -...-t,, isadmissibleinl w.r.t. « (i.e., none
of the edges are themselves preempted);

2. thereareno ¢ and 7 such that ¢ - —¢; isadmissiblein " w.rt. a;
3. thereisno ¢ such that ¢ - —w isadmissiblein " w.rt. a.

By this definition, the edge labeled ¢ in Figure 10.11 is redundant.
The definition of redundancy for a negative edge b - —w is analogous to the
above.

10.3.1 Extensions

Now that we have covered the basi cs of admissibility and preemption, wecanfinally
look at how to calculate what conclusions should believed given an inheritance
network. Aswe noted in Section 10.1.2, we do not expect an ambiguous network
to specify aunique set of conclusions. We usetheterm extension to mean apossible
set of beliefs supported by the network. Ambiguous networks will have multiple
extensions. More formally, we have the following:

(©2003 R. Brachman andH. Levesque July17, 2003 198

Figure 10.11: A preempting node

e AquaticCreature (= z)

e Mammal (=v)

Whale ( = y)

.

BlueWhale

I" is a-connected iff for every node z in T, thereis apath from a to z,
and for every edge v - (—=)z in T, thereis a positive path from « to v.
In other words, every node and edge is reachable from a.

I is (potentially) ambiguous w.r.t. node « at z if there is some node
z € Vsuchthatbotha-sy-...-s,-xanda-ty-... -, - -z arepaths.

A credulous extension of an inheritance hierarchy I' with respect to a
node « isamaximal unambiguous a-connected subhierarchy of I' with
respect to a.

So if X isacredulous extension of I, then adding an edge of I' to X makes X
either ambiguous or not «-connected.

Figure 10.12 illustrates an ambiguous network, and Figure 10.13 shows itstwo
credulous extensions. Note that adding the edge from Mammal to MilkProducer in
the extension on the left would cause that extension to no longer be «-connected
(where a is Platypus), because there is no positive path from Platypus to Mammal.
Adding the edge from FurryAnimal to Mammal in the extension on the left, or the
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Figure 10.12: An ambiguous network

e MilkProducer

e Mammal
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FurryAnimal e e EgglLayer

\/

e Platypus

edge from EggLayer to Mammal in the extension on the right, would make the
extensionsambiguous. Thus, both extensionsin thefigure are credul ousextensions.

Credulous extensions do not incorporate any notion of admissibility or preemp-
tion. For example, the network of Figure 10.5 has two credulous extensions with
respect to node Clyde. However, given our earlier discussion and our intuition about
reasoning about the natural world, we would like our formalism to rule out one of
these extensions. This leads us to a definition of preferred extensions:

Let X and Y be credulous extensions of I" w.r.t. anode a. X ispre-
ferred to V' iff there are nodes » and « such that

e X andY agreeon all edges whose endpoints precede z topolog-
icaly,

e thereisanedgev - z (or v - -z) that isinadmissiblein I, and

e thisedgeisinY but notin X.

A credulous extensionisapreferred extension if thereis no other cred-
ulous extension that is preferred to it.
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Figure 10.13: Two credul ous extensions

MilkProducer e

e Mammal e Mammal
FurryAnimal EgglLayer EggLayer
L] L] * L]
\ / FurryAnimal \ /
e Platypus e Platypus

Thekey part of thisdefinition isthat it appeal s to the notion of admissibility defined
above. So, for example, for the ™ shown in Figure 10.5, the extension on the left in
Figure 10.14 isapreferred extension, whilethe oneon theright isnot. If weusethe
assignment «=Clyde, v=Elephant, and z=Gray, we can see that the two extensions
agree up to Elephant, but the edge Elephant - Gray is not admissible because it has
a preemptor, Clyde, and that edge is in extension on the right but not on the | eft.

10.3.2 Somesubtleties of inheritance reasoning

While we have detailed some reasonable formal definitionsthat allow us to distin-
guish between different types of extensions, an agent still needs to make a choice
based on such a representation of what actually to believe. The extensions offer
sets of consistent conclusions, but one’s attitude towards such extensions can vary.
Different formsof reasoning have been proposed based on the type of formalization
we have presented here:

e credulous reasoning: choose a preferred extension, perhaps arbitrarily, and
believe al of the conclusions supported by it.
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Figure 10.14: A preferred credul ous extension

e Gray e Gray
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e Elephant e Elephant
A

e Clyde e Clyde

o skeptical reasoning: believe the conclusions supported by any path that is
present in al preferred extensions.

o ideally skeptical reasoning: believe the conclusions that are supported by
all preferred extensions. This is subtly different from skeptical reasoning
as above, in that these conclusions may be supported by different paths in
each extension. One significant consequence of this is that ideally skeptical
reasoning cannot be computed in a path-based way.

One final point to note is that our emphasis in this chapter has been on “up-
wards” reasoning—in each case, we start at a node and see what can be inherited
from its ancestor nodes further “up” the tree. There are actually many variations
on this definition, and none has emerged as the agreed upon, or “correct” one. One
alternative, for example, looks from the top and sees what propagates downward
through the network.

In Chapter 11, we will reconsider in more general logica terms the kind of
defeasible reasoning seen here in inheritance networks. We will study some very
expressive representation languages for thisthat go well beyond what can be repre-
sented in anetwork. While theselanguages have aclear logical foundation, we will
see that it is quite difficult to get them to emulate in a convincing way the subtle
path-based account of reasoning we have investigated here.
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10.4 Bibliographic notes

10.5 Exercises

In the exercises below, we consider three collections of assertions:

George: Georgeisa Marine.
Georgeisa chaplain.
A Marineistypically a beer drinker.
A chaplain istypically not a beer drinker.
A beer drinker istypically overweight.
A Marineistypically not overweight.
Polly: Pollyisa platypus.
Polly isan Australian animal.
A platypusis typically a mammal.
An Australian animal istypically not a mammal.
A mammal istypically not an egg layer.
A platypusis typically an egg layer.
Dick: Dickisa Quaker.
Dick is a Republican.
Quakers are typically pacifists.
Republicans are typically not pacifists.
Republicans are typically pro-military.
Pacifists are typically not pro-military.
Pro-military (people) are typically politically active.
Pacifists are typically politically active.

For each collection, the questions are the same (and see the follow-up Question 1
in Chapter 11):

1

Represent the assertionsin an inheritance network.

. What are the credul ous extensions of the network?

2
3.
4

Which of them are preferred extensions?

. Give a conclusion that a credulous reasoner might make but that a skeptical

reasoner would not.

. Are there conclusions where a skeptical reasoner and an ideally skeptical

reasoner would disagree given this network.
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Chapter 11

Defaults

In Chapter 8 on Frames, the kind of reasoning exemplified by the inheritance of
properties was actually a simple form of default reasoning, where a ot was as-
sumed to have a certain value unless a different one was provided explicitly. In
Chapter 10 on inheritance, we also considered a form of default reasoning in hier-
archies. We might know, for example, that elephants are gray, but understand that
there could be special kinds of elephantsthat are not. In thischapter, welook at this
form of default reasoning in detail and in logical terms, without tying our analysis
either to procedural considerations or to the topology of a network aswe did before.

11.1 Introduction

Despite the fact that FOL is an extremely expressive representation language, it is
nonetheless restricted in the patterns of reasoning it admits. To see this, imagine
that we have a KB in FOL that contains facts about animals of various sorts, and
that we would like to find out whether a particular individual, Fido, is a carnivore.
Assuming that the KB contains the sentence Dog(fido), there are exactly two ways
to get to the conclusion Carnivore(fido):

1. the KB contains other facts that use the constant fido explicitly;
2. the KB entailsa universal of the form V2.Dog(x) D Carnivore(z).

It is not too hard to see that if neither of these two conditions are satisfied, the
desired conclusion simply cannot be derived: thereis alogical interpretation that
satisfies the KB but not Carnivore(fido).! So it is clear that if we want to deduce

The construction is as follows: take any model & = (D, Z) of the KB that does not satisfy the
above universal. So thereisadog d in D that is not acarnivore. Let S’ = (D, I') bejust like S
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something about a particular dog that we know nothing else about, the only option
availabletousin FOL isto usewhat we know about each and every dog. Ingeneral,
to reason from P(a) to ¢)(«) in FOL where we know nothing else about « itself, we
need to use what isknown to hold for all instances of P.

11.1.1 Genericsand Universals

So what isthe problem? It is this: all along, we have been imagining that we will
build a KB that contains facts about a wide variety of topics, somewhat like an
encyclopedia. There would be “entries’ on turtles, violins, wildflowers, and ferris
wheels as in normal encyclopedias, as well as entries on more mundane subjects,
like grocery stores, birthday parties, rubber balls, and haircuts. Clearly, what we
would like to say about these topics goes beyond facts about particular cases of
turtles or violins. The troublesome fact of the matter is that although we may have
agreat deal to write down about violins, say, almost none of it appliesto all violins.
The problem is how to express what we know about the topics in general using
FOL, and in particular, using universal quantification.
We might want to state, for example, that

Violins have four strings

to distinguish them from guitars, which have six. But we most assuredly do not
want to state that

All violins have four strings

since, obviously, thiswould rule out a violin with a string added or removed. One
possible solution is to to attempt to enumerate the conditions under which violins
would not have four strings:

All violinsthat arenot P, or P, or ...or P, havefour strings

where the P; state the various exceptional cases. The problem is to characterize
these cases. We would need to cover at least the following: natural manufacturing
(or genetic) varieties, like electric violins; cases in exceptional circumstances, like
violins that have been modified or damaged; borderline cases, like miniature toy
violins; imagined cases, like multi-player violins (whatever they might be); and so
on. Because of the range of possibilities, we are almost reduced to saying

All violins have four strings except those that do not

except that Z'[fido] = d. Since KB contains no facts other than Dog(fido) that mention fido, ' till
satisfies KB, but 3 satisfies =Carnivore(fido).
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—actrue but quite pointless universal.

Thisisobviously not just aproblem with the topic of violins. When we say that
lemonsareyellow and tart, that polar bears are white and livein Arctic regions, that
birds have wings and fly, that children sing “Happy Birthday” at birthday parties,
that banks are closed on Sundays, and on and on, we do not mean to say that such
sentences hold of each and every instance of the corresponding class. And yet the
facts are true; it would be wrong to say that at birthday parties, children sing “Oh!
Susanna,” for example.

So we need to distinguish between universals, properties that do hold for al
instances, easily expressiblein FOL, and generics, propertiesthat hold “in general .”
Much of our common-sense knowledge of the world appears to be concerned with
generics, o it is quite important to consider formalisms that go beyond FOL in
alowing usto handle general, but not truly universal, knowledge.

11.1.2 Default reasoning

Assuming we know that dogs are, generally speaking, carnivores, and that Fido is
adog, under what circumstancesis it appropriate to infer that Fido is a carnivore?
The answer we will consider in very general termsisthis:

Given that a P is generdly a (), and given P(a), it is reasonable to
conclude () unlessthereis an explicit reason not to.

This answer is unfortunately somewhat vague: exactly what constitutes a good
reason not to conclude something? Different ways of making this precise will be
the subject of the rest of the chapter.?

One thing to notice, however, isthat if absolutely nothing is known about the
individual « except that it is an instance of P, then we should be able to conclude
that itisaninstance of (), sincethere can be nothing that would urge usnot to. When
we happen to know that a polar bear has been rolling in the mud, or swimming in
an algae-ridden pool, or playing with paint cans, then we may not be willing to
conclude anything about its color; but if all we know is that the individua is a
polar bear, it seems perfectly reasonable to conclude that it is white.

Note, however, that just because we don’'t know that the bear has been black-
ened by soot, for example, doesn’t mean that it hasn’t been. The conclusion does
not have the guarantee of logical soundness; everything else we believe about polar
bears could be true without this particular bear being white. It is only areasonable

2In Chapter 12 we consider ways of dealing with this issue numerically. Here our approach is
qualitative.
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default. That isto say, if we are pressed for some reason to come to some decision
about its color, white is a reasonable choice. In general, this form of reasoning,
which involves applying some general though not universal fact to a particular in-
dividual iscalled default reasoning.

We do not want to suggest, however, that the only source of default reasoning
has to do with general properties of kinds like violins, polar bears, or birthday par-
ties. There are awide variety of reasons for wanting to conclude @) («) given P(a)
even in the absence of true universal quantification. Here are some examples:

General Statements
e normal: Under typical circumstances, P'sare @’s.
(People work close to where they live. Children enjoy singing.)

e prototypical: The prototypical P isaq).
(Applesare red. Owls hunt at night.)

e dtatistical: Most P’'sare @’s.
(The people in the waiting room are growing impatient.)
Lack of information to the contrary
o familiarity: If a P wasnot a@, you would know it.
(No nation has apolitical leader more than 7 feet tall.)
o group confidence: All the known P’s are known (or assumed) to be @)'s.
(Natura languages are easy for children to learn.)
Conventional Uses

e conversational: A Pisa(), unless| tell you otherwise.
(Beingtold “ Theclosest gasstation istwo blocks east” —the assumed defaullt:
the gas station is open).

e representational: A P isa(@, unless otherwise indicated.
(The speed limit in a city. An open door to an office, meaning that the occu-
pant can be disturbed.)

Persistence

e inertia: A P isa( unlesssomething changesit.
(Marital status. The position of objects (within limits).)

e time A Pisaq ifitusedtobeaq.
(The color of objects. Their sizes.)
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These categories are not intended to be exhaustive. But they do suggest the very
wide variety of sources of default information. In all cases, our concern in this
chapter will be the same: how to characterize precisely when, in the absence of
universals, it is appropriate to draw a default conclusion. In so doing, we will only
use the simplest of examples, like the default that birds fly, which in FOL would
have to be approximated by Yz (Bird(z) O Flies(x)). But the techniques considered
here apply to al the various forms of defaults above, which, as we have argued,
cover much of what we know.

11.1.3 Non-monotonicity

In the rest of this chapter, we will consider four approaches to default reasoning:
closed-world reasoning, circumscription, default logic, and autoepistemic logic. In
al cases, we start with a KB from which we wish to derive aset of implicit beliefs.
In the simple casewith no default reasoning, implicit beliefs arejust the entailments
of the KB; but with defaults, we go beyond these by making various assumptions.

Ordinary deductive reasoning is monotonic, which is to say that new facts can
only produce additional beliefs. In other words, if KB1 | a, then KB, F «, for
any KB such that KBy C KB»,. However, default reasoning is non-monotonic:
new facts will sometimes invalidate previous beliefs. For example, if we are only
told that Tweety is bird, we may believe that Tweety flies. However, if we are now
told that Tweety isan emu, we may no longer believe that sheflies. Thisis because
the belief that Tweety flies was a default based on an absence of information to the
contrary. When we find out that Tweety is an exceptional bird, we reconsider.

For this reason, default reasoning of the kind we will discuss in this chapter is
often called non-monotonic reasoning, where the emphasis is not so much on how
assumptions are made or where they come from, but on inference relations that are
similar to entailment, but which are non-monotonic.

11.2 Closed-world Reasoning

The simplest formalization of default reasoning we will consider was also the first
to be developed, and is based on the following observation:

I maginerepresenting facts about theworld in FOL within afixed, finite
vocabulary of predicates, function and constant symbols. Of the large
(but finite) number of atomic sentencesthat can be formed, only avery
small fraction are expected to be true. A reasonable representational
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convention, then, is to explicitly represent the true atomic sentences,
and to assume that any unmentioned atomic sentenceisfalse.

Consider, for example, information sources like an airline flight guide. The kind
of information we find in a such a guide might be roughly represented in FOL by
sentences like

DirectConnect(cleveland,toronto),
DirectConnect(toronto,northBay),
DirectConnect(cleveland,phoenix),

telling us which cities have flights between them. What we do not expect to find in
such aguide are statements about which cities do not have flights between them:

—DirectConnect(northBay,phoenix).

The convention is that if an airline does not list a flight between two cities, then
there isnone. Similar conventions are used, of course, in encyclopedias, dictionar-
ies, maps, and many other information sources. It is also the assumption used in
computerized databases, modeled exactly on such information sources.

11.2.1 Theclosed-world assumption

In general terms, the assumption here, called the closed-world assumption or CWA,
isthe following:

Unless an atomic sentence is known to be true,
it can be assumed to be false.

Note that expressed this way, the CWA can be seen to involve a form of default
reasoning. A sentence assumed to be false could later be determined in fact to be
true.

Perhaps the easiest way to formalize the reasoning inherent in the CWA isto
consider a new form of entailment, k£, where we say that KB £ « iff KB* [ a,
where

KB* =KB U {—p|pisatomic and KB ¥ p}.

So [5 isjust like ordinary entailment, except with respect to an augmented KB,
namely one that includes al negative atomic facts not explicitly ruled out by the
KB.3 In the airline guide example above, KB* would include all the appropriate
—DirectConnect(c1, ¢) sentences.

3This definition applies to the propositional subset of FOL. We will deal with quantifiers below.
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11.2.2 Consistency and completeness of knowledge

Itisuseful to introduce two terms at this point: we say that aKB exhibits consistent
knowledgeif and only if thereis no sentence « such that both o and —a are known.
Thisisthesameasrequiring the KB to be satisfiable. We also say that aKB exhibits
complete knowledge if and only if for every sentence o (within its vocabulary),
either a or =« isknown.

In general, of course, knowledge can beincomplete. For example, suppose KB
consists of a single sentence, (p V ¢). Then, KB does not entail either p or —p,
and so exhibits incomplete knowledge. If we consider the CWA as formalized as
above, however, for any sentence «, it holds that either KB E a or KB )% —a.
(The argument is by induction on the length of «.) So with the CWA, we have
completely filled out the entailment relation for the KB. Every sentenceis decided
by KB*, that is, either it or its negation is entailed by KB*.

It is not hard to see that if a KB is complete in this sense (the way KB™ is),
it also has the property that if it tells us that one of two sentences is true, then it
must also tell us which. In other words, if KB exhibits complete knowledge and
KB E (a V ), then KB | a or KB [ . Again, note that this is not the case in
general, for example, for the KB comprising only (p V ¢) as described above.

The idea behind the CWA then, is to act as if the KB represented complete
knowledge. Whenever KB # p, then either KB | —p directly, or the assumption is
that —p iswhat was intended, and it is conceptually added to the KB.

11.2.3 Query evaluation

The fact that every sentence is decided by the CWA allows queries to be handled
very directly. The question asto whether KB £ o ends up reducing to acollection
of questions about theliteralsin .. We begin with the following general properties
of entailment:

1. KBE(aAp)iff KBEaandKB E 3.
2. KB '= - iff KB ': Q.
3. KB E=(aV B)iff KB | -a and KB F 4.

Next, as discussed above, because KB* is complete, we also have the following
properties.

4. KB (aV 3)iff KB F aorKB [ 3.
5. KB z(a A B) iff KB E-a or KB 4.
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Putting all of these together, we can recursively reduce any question about whether
KB £ « to aset of questions about the literalsin «. For example, it isthe case that

KBE((pA@V-(rA=-s) iff
either KB |z pand KB £ ¢, or KB [E—r, 0r KB E s.

If we further assume that KB™ is consistent (which we discuss below), we get:
6. If KB" isconsistent, KB E - iff KB [ a.

With this extra condition, we can reduce a query to a set of questions about the
atomsin a. For example, assuming consistency, the sentence ((p A ¢) V —(r A —s))
will be entailed under the CWA if and only if either p and ¢ are entailed or r is
not entailed or s isentailed. What this suggests, is that for aKB that is consistent
and complete, entailment conditions are just like truth conditions: a conjunction
isentailed if and only if both conjuncts are; a digunctionis entailed if and only if
either digunct is; and a negation is entailed if and only if the negated sentence is
not entailed. Aslong aswe haveaway of handling atomic queries, al other queries
can be handled recursively.*

11.24 Consistency and a generalized assumption

Just because a KB is consistent does not mean that KB* will also be consistent.
Consider, for example, the consistent KB composed of the single sentence (p Vv ¢)
mentioned above. Since KB £ p, it isthe case that —p € KB*. Similarly, ~q €
KB*. So KB* contains {(p V ¢), =p, ¢}, and thus is inconsistent. In this case,
KB £ «, for every sentence a.

On the other hand, it is clear that if a KB consists of just atomic sentences
(like the DirectConnect KB from above) and isitself consistent, then KB* will be
consistent. The same is true if the KB contains conjunctions of atomic sentences
(or of other conjunctions). Itisalso trueif the KB contains disjunctionsof negative
literals. But it is not clear what a reasonable closure assumption should be for
digunctionslike (p Vv g).

One possihility isto apply the CWA only to atoms that are completely “uncon-
troversial.” For example, in the above case, while we might not apply the CWA
to either p or ¢, since they are both controversial (because we know that one of
them is true), we might be willing to apply it to any other atom. This suggests a
generalized version of the CWA, which we call the generalized closed-world as-
sumption, or GCWA, where KB [£_« if andonly if KB* | a, where KB* is defined
asfollows:

“We will explore the implications of this for reasoning proceduresin Chapter 16.
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KB* = KB U {-p| for al collections of atoms ¢, . .. , ¢,
fKBE(@V@V...Vq),thenKBE(g1V...Vq,)}

So an atom p can be assumed to be false only if it is the case that whenever a
disiunction of atoms including that atom is entailed by the KB, then the smaller
disunction without the atom is also entailed. In other words, we will not assume
that p isfalseif there exists an entailed disjunction of atomsincluding p that cannot
be reduced to a smaller entailed disunction.

For example, suppose that KB is (p V ¢), and consider the atom p. Here we
have that KB = (p V p V ¢), and this indeed reduces to KB £ (p V ¢); however,
we aso have that KB  (p V ¢), even though KB # ¢. So —p ¢ KB*. Similarly,
-q ¢ KB”. However, consider an atom r. Hereit is the case that -r € KB*, since
although KB [ (r V p V ¢), we aso have the reduced digunction KB [ (p V ¢).°

Notethat if we restrict the definition of KB* to the case where n = 0, we get

KB* = KB U {-p| if KB [ p, then KB E 0O}
or equivaently,
KB* = KB U {-p| if KB F p, then KB isinconsistent}.

It follows then that for a consistent KB, the GCWA implies the CWA, i.e., KB*
would only include —p in the case where KB £ p, which means that KB* would
be the same as KB*. But more importantly, it is the case that if KB is consistent,
then so must be KB*. The proof is as follows: suppose KB* is inconsistent, and
let KBU {-p1,...,-p,} beaninconsistent subset with aminimal set of —p; liter-
als. It follows from this inconsistency that KB £ (p1 V ... V p,). But then, since
—-p1 € KB, KB F (p2 V...V p,). Thismeansthat KB U {-pp,...,p,} isdso
inconsistent, contradicting the minimality assumption. So the GCWA is an exten-
sion to the CWA that is always consistent, and implies the CWA when the KB itself
is consistent.

11.2.5 Quantifiersand domain closure

So far we have only considered the properties of the CWA in terms of sentences
without quantifiers. Unfortunately, its most desirable properties do not immedi-

5The intuition behind this is as follows: say that we know that there is a flight from Cleveland
either to Dallas or to Houston (but not which one). Asaresult, we also know that thereisaflight from
Cleveland to one of Dallas, Houston, or Austin. But since we know that there is definitely aflight to
one of thefirst two, it makes sense, under normal closed-world reasoning, to assume that thereis no
flight to Austin.
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ately generalize to sentences with quantifiers. To see why, consider asimple repre-
sentation language containing a single predicate DirectConnect as before and con-
stantscy, ..., ¢,. |f westart with aKB containing only atomic sentences of the form
DirectConnect(c;, c;), the CWA will add to this a collection of literals of the form
—DirectConnect(c;, ¢;). In the resulting KB*, for any pair of constants ¢; and c;,
either DirectConnect(c;, ¢;) isin KB* or =DirectConnect(c;, ;) isin KB.

Let us suppose that there is a certain constant smallTown that does not ap-
pear in the imagined guide, so that for every ¢;, ~DirectConnect(smallTown, ¢;)
isin KB*. Now consider the query, -3z DirectConnect(smallTown, ). Idedly, by
closed-world reasoning, this sentence should be entailed: there is no city directly
connected to smallTown. However, even under the CWA, neither this sentence nor
its negation is entailed: the CWA precludes smallTown being connected to any of
the named cities, ¢, ..., ¢,, but it does not preclude smallTown being connected
to some other unnamed cities. That is, there is amodel of KB* where the domain
includesacity not named by any ¢; such that it and the denotation of smallTown are
in the extension of DirectConnect. So the problem is that the CWA has not gone
far enough: not only do we want to assume that smallTown is not connected to the
¢;, we want to assume that there are no other possible cities to connect to.

Perhaps the easiest way to achieve this effect is to assume that the named con-
stants are the only individuals of interest, in other words, that every individual is
named by one of the ¢;. This leads to a stronger form of closed-world reasoning,
which isthe closed world assumption with domain closure, and a new form of en-
tailment: KB |, « iff KB® | a, where

KB =KB*U{Vz[z =c1V...Vz=¢,]},
wherecs, ..., ¢,, areal the constant symbols appearing in KB.

So thisis exactly like the CWA, but with the additional assumption that no objects
exist apart from the named constants. Returning to the smallTown example, since
—DirectConnect(smallTown, ¢;) is entailed under the CWA for every ¢;, it will fol-
low that =z DirectConnect(smallTown, z) is entailed under the CWA with domain
closure.

The main property of this extension to the CWA is the following:

KB £ Veza iff KB, af, forevery c appearing in KB
KB Jza iff KB, af, forsomec appearinginKB.

This means that the correspondence between entailment conditions and truth con-
ditions now generalizes to quantified sentences. With this additional completeness
assumption, it is the case that KB 5 a or KB |5 -a, for any o even with quanti-
fiers. Similarly, the recursive query operation, which reduces queries to the atomic
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case, now works for quantified sentences as well. This property can aso be ex-
tended to deal with formulas with equality (and hence all of FOL) by including a
unique name assumption, which adds to KB® all sentences of the form (¢ # ¢’), for
distinct constants ¢ and ¢’.

Finally thereistheissue of consistency. First note that domain closure does not
rule out the use of function symbals. If we use sentences likeVz P(z) > P(f(z)),
then under the CWA with domain closure, we end up assuming that each term f(¢)
is equal to one of the constants. In other words, even though individuals have a
unique constant name, they can have other non-constant names.

However, it is possible to construct a KB that isinconsistent with domain clo-
sure in more subtle ways. Consider, for instance, the following:

P(e), Vo= R(x,x), Ve[ P(z)D3y(R(z,y)AP(y))]

This KB is consistent and does not even use equality. However, KB® isinconsis-
tent. The individua denoted by ¢ cannot be the only instance of P since the other
two sentences in effect assert that there must be another one. It isalso possible to
have a consistent KB that asserts the existence of infinitely many instances of P,
guaranteeing that domain closure cannot be used for any finite set of constants. Itis
worth noting, on the other hand, that such examples are somewhat farfetched; they
look more like formulas that might appear in axiomatizations of set theory than in
databases. For “normal” applications, domain closure is much less of a problem.

11.3 Circumscription

In genera terms, the CWA is the convention that arbitrary atomic sentences are
taken to be false by default. Formally, & is defined as the entailments of KB*,
whichisKB augmented by aset of negativeliterals. For asentence « to be believed
(under the CWA), it is not necessary for « to be true in al models of the KB, but
only those that are also models of KB*. In the first-order case, because of the
presence of the negated literals in KB*, we end up looking at models of the KB
where the extension of the predicates is made as small as possible. This suggests a
natural generalization: consider forms of entailment where the extension of certain
predicates (perhaps not all) is as small as possible.

One way to handle default knowledge is to assume that we have a predicate
Ab to talk about the exceptional cases where a default should not apply. Instead of
saying that al birdsfly, we might say:

Vz[Bird(z) A —=Ab(z) D Flies(z)].
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This can be read as saying that al birds that are not in some way abnormal fly, or
more succinctly, that all normal birds fly.® Now imagine we have thisfact in aKB
along with these facts:

Bird(chilly), Bird(tweety), (tweety ¥ chilly), ~Flies(chilly).

The intent here is clear: we would like to conclude by default that Tweety flies,
whereas Chilly, of course, does not.

Note, however, that KB [ Flies(tweety): there areinterpretations satisfying the
KB where Flies(tweety) is false. However, in these interpretations, the denotation
of Tweety is contained in the extension of Ab. This then suggests a strategy for
making default conclusions: as with the CWA, we will only consider certain inter-
pretations of the KB, but in this case, only those where the Ab predicate is as small
aspossible. In other words, the strategy isto minimize abnormality. Intuitively, the
default conclusions are taken to be those that are true in models of the KB where
as few of theindividuals as possible are abnormal.

In the above example, we already know that Chilly isan abnormal bird, but we
do not know one way or another about Tweety. The default assumption we wish to
makeisthat the extension of Ab isonly aslarge asit hasto be given what we know;
henceit includes Chilly, sinceit has to because of Chilly’s known abnormality, but
excludes Tweety, because nothing that we know dictates that Ab must include her.
This is called circumscribing the predicate Ab, and as a whole, the technique is
called circumscription.

Notethat while Chilly isabnormal in her flying ability, she may be quite normal
in having two legs, laying eggs, and so on. This suggests that we do not really
want to use a single predicate Ab, and not be able to assume any defaults at all
about Chilly, but rather have afamily of predicates Ab; for talking about the various
aspects of individuals. Chilly might be in the extension of Abs, but not in that of
Ab,, for instance.

11.3.1 Minimal entailment

Circumscription is intended to be a much more fine-grained tool than the CWA,
and because of this and the fact that we wish to apply it in much broader settings,
the formalization we use does not involve adding negative literas to the KB. In-
stead, we characterize a new form of entailment directly in terms of properties of
interpretations themsel ves.

Let P beafixed set of unary predicates, which wewill intuitively understand to
bethe Ab predicates. Let §1 and S belogical interpretations over the same domain

SWe are not suggesting that this is exactly what is meant by the sentence “Birdsfly.”
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such that every constant and function isinterpreted the same. So 31 = (D, 7;) and
S2 = (D, ) . Then we define the relationship, <:

1 < X iff for every P € P, itisthe casethat 7, P] C Z,[ P].

Also, §1 < S if and only if 1 < I but S £ Fq. Intuitively, given two in-
terpretations over the same domain, we are saying that one is less than another in
thisordering if it makes the extension of al the abnormality predicates smaller. In-
formally then, we can think of an interpretation that is less than another as more
normal .

With this idea, we can define a new form of entailment . (which we call
minimal entailment) as follows:

KB F. « iff for every interpretation < such that S F KB, either & E a or
thereisan 3’ such that 3/ < 3 and 3’ E KB.

This is very similar to the definition of entailment itself: we require every inter-
pretation that satisfies KB to satisfy « except that it may be excused when thereis
another more normal interpretation that also satisfies the KB. Roughly speaking,
we do not require « to be true in all interpretations satisfying the KB, but only in
the minimal or most normal ones satisfying the KB.”

Consider for example, the KB above with Tweety and Chilly. As noted, KB ¢
Flies(tweety). However, KB E. Flies(tweety). The reason is this. if & F KB
but 3 £ Flies(tweety), then I | Ab(tweety). So let 3’ be exactly S except that we
remove the denotation of tweety from the extension of Ab. Then S’ < < (assuming
P = {Ab}, of course), and ' F KB. Thus, in the minimal models of the KB,
Tweety isanormal bird: KB . —Ab(tweety), fromwhich we caninfer that Tweety
flies. We cannot do the samefor Chilly, sincein all models of the KB, normal or not,
Chilly isan abnormal bird. Note that the only default step in this reasoning was to
conclude that Tweety was normal; the rest was ordinary deductive reasoning given
what we know about normal birds. This then is the circumscription proposal for
formalizing default reasoning.

Note that in general, we do not expect the “most normal” models of the KB all
to satisfy exactly the same sentences. Suppose for example, aKB contains Bird(c),
Bird(d), and (—Flies(c) V —Flies(d)). Thenin any model of the KB, the extension of
Ab must contain either the denotation of ¢ or the denotation of ¢. Any model that
contains other abnormal individual s (including ones where the denotations of both

"This is a convenient but slightly inaccurate way of putting it. In fact, there may be no “most
normal” models; we could have an infinite descending chain of ever more normal models. However,
the definition as presented above works even in such situations.
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¢ and d are abnormal) would not be minimal. Because we need to consider what
istrue in all minimal models, we see that KB [£. Flies(c) and KB £, Flies(d).
In other words, we cannot conclude by default that ¢ is a normal bird, nor that
d is. However, what we can conclude by default is that one of them is normal:
KB E. Flies(c) v Flies(d).

This is very different from the behavior of the CWA. Under similar circum-
stances, because it is consistent with what is known that ¢ is normal, using the
CWA we would add the literal =Ab(c), and by similar reasoning, —Ab(d), leading
to inconsistency. Thus circumscription is more cautious than the CWA in the as-
sumptions it makes about “controversial” individuals, like those denoted by ¢ and
d. However, circumscription isless cautious than the GCWA : the GCWA would not
conclude anything about either the denotation of ¢ or d, whereas circumscriptionis
willing to conclude by default that one of them flies.

Another difference between circumscription and the CWA involves quantified
sentences. By using interpretations directly rather than adding literals to the KB,
circumscription works equally well with unnamed individuals. For example, if the
KB contains dz[Bird(z) A (z # chilly) A (z # tweety) A InTree(z)], then with
circumscription we would conclude by default that this unnamed individual flies:

dz[Bird(z) A (x Z chilly) A (z 7 tweety) A InTree(z) A Flies(z)].

The reason hereisthe same as before: in the minimal models therewill beasingle
abnormal individual, Chilly. This aso carries over to unnamed abnormal individ-
uas. If our KB contains the assertion that

Jz[Bird(z) A (z Z chilly) A (z 7 tweety) A =Flies(z)],

then amodel of the KB will beminimal if and only if there are exactly two abnormal
individuals: Chilly, and the unnamed one. Thus, we conclude by default that

JxVy[(Bird(y) A —Flies(y)) = (y = chilly vV y = z)].

So unlike the CWA and the GCWA, we do not need to name exceptions explic-
itly to avoid inconsistency. Indeed, the issue of consistency for circumscription is
considerably more subtle than it was for the CWA, and characterizing it precisely
remains an open question.

11.3.2 Thecircumscription axiom

One of the conceptual advantages of the CWA isthat, although it is aform of non-
monotonic reasoning, we can understand its effect in terms of ordinary deductive

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 217

reasoning over a KB that has been augmented by certain assumptions. Aswe saw
above, we cannot duplicate the effect of circumscription by simply adding a set of
negative literalsto aKB.

We can, however, view the effect of circumscription in terms of ordinary de-
ductive reasoning from an augmented KB if we are willing to use second-order
logic. Without going into details, it is worth observing that for any KB, there is
a second-order sentence 7 such that KB . o if and only if KB U {r} F ain
second-order logic. What is required here of the sentence 7 isthat it should restrict
interpretations to be minimal inthe ordering. That is, if an interpretation < is such
that =K B, what we need (to get the correspondence with E.) isthat SFr if and
only if there does not exist 3’ < < such that 3’ | KB. The idea here (due to John
McCarthy) isthat instead of talking about another interpretation &/, we could just
aswell have said that there must not exist a smaller extension for the Ab predicates
that would also satisfy the KB. This requires quantification over the extensions of
Ab predicates, and is what makes 7 second-order.

11.3.3 Fixed and variable predicates

Although the default assumptions made by circumscription are usually weaker than
those of the CWA, there are cases where it appears too strong. Suppose, for exam-
ple, that we have the following KB:

Yz[Bird(z) A —=Ab(z) D Flies(z)],
Bird(tweety),
Yz[Penguin(z) D (Bird(z) A =Flies(z))].

It then followsthat Va[Penguin(z) D Ab(z)], that is, with respect to flying anyway,
penguins are abnormal birds.

Theproblemisthis: to make default assumptions using circumscription, we end
up minimizing the set of abnormal individuals. For the above KB, we conclude that
there are no abnormal individuals at all:

KB E< ~3zAb(z).

But this has the effect of also minimizing penguins. In the process of wanting to
derive the conclusion that Tweety flies, we end up concluding not only that Tweety
isnot a penguin, which is perhaps reasonable, but also that there are no penguins,
which seems unreasonable:

KB E< ~3zPenguin(z).
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In our zeal to make things as normal as possible, we have ruled out penguins. What
would be much better in this case, it seems, is to be able to conclude by default
merely that penguins are the only abnormal birds.

One solution that has been proposed is to redefine =< so that in looking at
more normal worlds, we do not in the process exclude the possibility of exceptional
classes like penguins. What we should say is something like this. we canignorea
model of the KB if there is a similar model with fewer abnormal individuals, but
with exactly the same penguins. That is, in the process of minimizing abnormal-
ity, we should not be alowed to also minimize the set of penguins. We say that
the extension of Penguin remains fixed in the minimization. But it is not asiif al
predicates other than Ab will remain fixed. In moving from amodel < to a lesser
model 3’ where Ab has asmaller extension, we are willing to change the extension
of Flies, and indeed to conclude that Tweety flies. We say that the extension of Flies
is variable in the minimization.

Moreformally, weredefine < with respect to aset of unary predicates P (under-
stood as the ones to be minimized) and a set of arbitrary predicates @ (understood
as the predicates that are fixed in the minimization). Let & and < be as before.
Then 1 < S if and only if for every P € P, itisthe casethat Z1[P] C Z5[ P],
and for every () € Q, itisthecasethat 71[()] = Z5[()]. Therest of the definition
of F. isashbefore. Taking P = {Ab} and @ = {Penguin} amounts to saying that
we want to minimize the instances of Ab holding constant the instances of Penguin.
The earlier version of . was simply one where Q was empty.

Returning to the example bird KB, there will now be minima models where
there are penguins. KB £, —3zPenguin(z). In fact, a model of the KB will be
minimal if and only if its abnormal individuals are precisely the penguins. obvi-
ously the penguins must be abnormal; conversely, assume to the contrary that in
interpretation & we have an abnormal individual o who is not one of the penguins.
Then construct &’ by moving o out of the extension of Ab and, if it isin the exten-
sion of Bird, into the extension of Flies. Clearly, 3’ satisfiesKB and §' < . So it
follows that

KB F. Vz[(Bird(z) A —Flies(z)) = Penguin(z)].

Unfortunately, this version of circumscription still has some serious problems.
For one thing, our method of using circumscription needsto specify not only which
predicates to minimize, but aso which additional predicatesto keep fixed: we need
to be able to figure out somehow beforehand that flying should be a variable pred-
icate, for example, and it is far from clear how.

More seriously perhaps, KB [£. Flies(tweety). The reason is this. consider a
model of the KB where Tweety happens to be a penguin; we can no longer find a
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lesser model where Tweety flies since that would mean changing the set of pen-
guins, which must remain fixed. What we do get isthat

KB E< —Penguin(tweety) D Flies(tweety).
So if we know that Tweety isnot apenguin, asin
Canary(tweety), Yz[Canary(z) D —~Penguin(z)],

then we get the desired conclusion. But thisis not derivable by default. Even if we
add something saying that birds are normally not penguins, asin

Ye[Bird(z) A —Aba(z) D —Penguin(z)],

Tweety still does not fly, because we cannot change the set of penguins. Various so-
Iutionsto this problem have been proposed in the literature, but none are compl etely
satisfactory.

In fact, this sort of problem was already there in the background with the ear-
lier version of circumscription. For example, consider the KB we had before with
Tweety and Chilly, but this time without (tweety # chilly). Then as with the pen-
guins, we lose the assumption that Tweety flies and only get

KB E. (tweety # chilly) D Flies(tweety).

The reason is that there is amodel of the KB with aminimal number of abnormal
birds where Tweety does not fly, namely one where Chilly and Tweety are the same
bird.8 Putting Chilly aside, all it really takes is the existence of asingle abnormal
bird: if the KB contains Jz[Bird(z) A —Flies(z)], then athough we can assume
by default that this flightless bird is unique, we have not ruled out the possibility
that Tweety isthat bird, and we can no longer assume by default that Tweety flies.
This means that there is a serious limitation in using circumscription for default
reasoning: we must ensure that any abnormal individual is known to be distinct
from the other individuals.

11.4 Default logic

In the previous section, we introduced the idea of circumscription as a generaliza-
tion of the CWA: instead of minimizing all predicates, we minimize abnormality

81t would be nice here to be able to somehow conclude by default that any two named constants
denotedistinct individuals. Unfortunately, it can be shown that thiscannot be done using amechanism
like circumscription.
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predicates. Of course, in the CWA section above, we looked at it differently: we
thought of it as deductive reasoning from a KB that had been enlarged by certain
default assumptions, the negative literals that are added to form KB™.

A generalization in adifferent direction then suggestsitself: instead of addingto
aKB dl negativeliterals that are consistent with the KB, we provide a mechanism
for specifying explicitly which sentences should be added to the KB when it is
consistent to do so. For example, if Bird(t) is entailed by the KB, we might want
to add the default assumption Flies(t), if it is consistent to do so. Or perhaps this
should only be done in certain contexts.

This is the intuition underlying default logic. A KB is now thought of as a
default theory consisting of two parts, aset 7 of first-order sentences as usual, and
aset D of default rules, which are specifications of what assumptions can be made
and when. The job of adefault logic is then to specify what the appropriate set of
implicit beliefs should be, somehow incorporating the factsin 7, as many default
assumptions as we can, given the default rulesin D, and the logical entailments of
both. Aswe will see, defining these implicit beliefs is non-trivial: in some cases,
there will be more than one candidate set of sentences that could be regarded as
areasonable set of beliefs (just as there could be multiple preferred extensions in
Chapter 10); in other cases, no set of sentences seemsto work properly.

11.4.1 Default rules

Perhaps the most general form of default rule that has been examined in the litera-
ture is due to Reiter: it consists of three sentences, a prerequisite «, ajustification
£, and aconclusion 6. Theinformal interpretation of thistripleisthat ¢ should be
believed if o isbelieved and it is consistent to believe 3. That is, if we have a and
we do not have -, then we can assume §. We will write such aruleas { «; 3; 6 ).

For example, arulemight be ( Bird(tweety); Flies(tweety); Flies(tweety) ). This
says that if we know that Tweety is bird, then we should assume that Tweety flies
if it is consistent to assume that Tweety flies. This type of rule, where the justi-
fication and conclusion are the same, is called a normal default rule and is by far
the most common case. We will sometimes write such rules as Bird(tweety) =
Flies(tweety). We call a default theory all of whose rules are normal a normal de-
fault theory. Aswe will see below, there are cases where non-normal defaults are
useful.

Note that the rulesin the above are particular to Tweety. In general, we would
like rules that could apply to any bird. To do so, we alow a default rule to use for-
mulas with free variables. These should be understood as abbreviations for the set
of all substitution instances. So, for example, { Bird(z); Flies(z); Flies(z) ) stands
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for al rulesof theform { Bird(2); Flies(t); Flies(t) ) wheretisany groundterm. This
will alow usto conclude by default of any bird that it flies, without also forcing us
to believe by default that all birds fly, a useful distinction.

11.4.2 Default extensions

Given adefault theory KB = (F, D), what sentences ought to be believed? We will
call aset of sentencesthat constitute a reasonabl e set of beliefs given adefault the-
ory an extension of the theory. In this subsection, we present asimple and workable
definition of extension; in the next, we will argue that sometimes a more complex
definition is called for.

For our purposes, aset of sentences £ isan extension of adefault theory (F, D)
if and only if for every sentence ,

re& iff Fu{é|(a;p,6)eD,acl,~p¢gE}ET.

Thus, a set of sentences is an extension if it is the set of all entailments of 7 U A,
where A is asuitable set of assumptions. In this respect, the definition of extension
issimilar to the definition of the CWA: we add default assumptionsto a set of basic
facts. Here, the assumptions to be added are those that we will call applicable
to the extension £: an assumption is applicable if and only if it is the conclusion
of adefault rule whose prerequisite is in the extension and the negation of whose
justificationisnot. Notethat werequirea tobein &, notin F. Thishasthe effect of
alowing the prerequisite to be believed as the result of other default assumptions,
and therefore, of allowing default rulesto chain. Note also that thisdefinition isnot
constructive: it does not tell us how to find an £ given F and D, or even if thereis
one or more than one to be found. However, given F and D, the £ is completely
characterized by its set of applicable assumptions, A.
For example, suppose we have the following normal default theory:

F = {Bird(tweety), Bird(chilly), ~Flies(chilly) }
D = {Bird(z) = Flies(x)}.

We wish to show that there is a unique extension to this default theory character-
ized by the assumption Flies(tweety). To show this, we must first establish that the
entailments of 7 U {Flies(tweety) }—call this set £&—are indeed an extension ac-
cording to the above definition. This means showing that Flies(tweety) is the only
assumption applicableto £: it is applicable since £ contains Bird(tweety) and does
not contain —Flies(tweety). Moreover, for no other ¢ is Flies(z) applicable, since £
contains Bird(t) only for ¢ = chilly, for which £ also contains —Flies(chilly). So this
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£ isindeed an extension. Observe that unlike circumscription, we do not require
Tweety and Chilly to be distinct to draw the default conclusion.

But are there other extensions? Assume that some £’ is also an extension for
some applicable set of assumptions Flies(¢1), .. ., Flies(t,,). First observe that no
matter what Flies assumptions we make, we will never be able to conclude that
—Flies(tweety). Thus Flies(tweety) must be applicable to £’. However, we will not
be able to conclude Bird(t), for any ¢ other that tweety or chilly. So Flies(tweety)
isthe only applicable assumption, and therefore £’ must be the entailments of F U
{Flies(tweety)}, as above.

Inarguing abovethat there was aunique extension, we made statementslike“no
matter what assumptionswe make, wewill never be ableto conclude «.” Of course,
if £ isinconsistent we can conclude anything we want. For example, if we could
somehow add the assumption Flies(chilly), then we could conclude Bird(george). It
turns out that such contradictory assumptionsare never possible: an extension £ of
adefault theory (F, D) isinconsistent if and only if F isinconsistent.

11.4.3 Multiple extensions
Now consider the following default theory:

F = {Republican(dick), Quaker(dick)}
D = {Republican(z) = —Pacifist(z), Quaker(xz) = Pacifist(z)}.

Here, there aretwo defaultsthat arein conflict for Dick. There are, correspondingly
two extensions:

1. &; ischaracterized by the assumption Pacifist(dick).
2. & ischaracterized by the assumption —Pacifist(dick).

Both of these are extensions since their assumption is applicable, and no other as-
sumption (for any ¢ other than dick) is. Moreover, there are no other extensions:
The empty set of assumptions does not give an extension since both Pacifist(dick)
and —Pacifist(dick) would be applicable; for any other potential extension, assump-
tions would be of the form Pacifist(t) or —Pacifist(t) none of which are applicable
for any ¢ other than dick, since we will never have the corresponding prerequisite
Quaker(t) or Republican(t) in £. Thus, £, and &, are the only extensions.

So what default logic tells us hereis that we may choose to assumethat Dick is
apacifist or that heis not a pacifist. On the basis of what we have been told, either
set of beliefsisreasonable. Asin the case of inheritance hierarchiesin Chapter 10,
there are two immediate possibilities:
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1. askeptical reasoner will only believe those sentences that are common to all
extensions of the default theory;

2. acredulous reasoner will simply choose arbitrarily one of the extensions of
the default theory as the set of sentences to believe.

Arguments for and against each type of reasoning have been made. Note, that
minimal entaillment, in giving us what istrue in all minima models is much more
like skeptical reasoning.

I'n some cases, the existence of multiple extensionsis merely an indication that
we have not said enough to make a reasonable decision. In the above example, we
may want to say that the default regarding Quakers should only apply to individuals
not known to be politically active. Assuming we have the fact

Yz[Republican(z) D Political(z)],

we can replacethe original rule with Quaker(z) asthe prerequisite by anon-normal
onelike

{ Quaker(z); (Pacifist(z) A —Political(z)); Pacifist(z) ).

Then, for ordinary Republicans and ordinary Quakers, the assumption would be as
before; for Quaker Republicans like Dick, we would assume (unequivocally) that
they were not pacifists. Note that if we merely say that Republicans are politically
active by default, we would again be left with two extensions.

Thisideaof arbitrating among conflicting default rulesis crucial when it comes
to dealing with concept hierarchies. For example, suppose we have a KB that con-
tainsVz[Penguin(z) O Birds(xz)] together with two default rules:

Bird(z) = Flies(z)
Penguin(z) = —Flies(z).

If wealso have Penguin(chilly), weget two extensions: onewhere Chilly isassumed
to fly and one where Chilly is assumed not to fly. Unlike the Quaker Republican
example, however, what ought to have happened here is clear: the default that
penguins do not fly should preempt the more general default that birdsfly. In other
words, we only want one extension, where Chilly is assumed not to fly. To get this
indefault logic, it isnecessary to encode the penguin case as part of the justification
in anon-normal default for birds:

( Bird(tweety); (Flies(tweety) A =Penguin(tweety)); Flies(tweety) ).
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Thisisnot a very satisfactory solution since there may be a very large number of
interacting defaults to consider:

{ Bird(tweety); [Flies(tweety) A =Penguin(tweety) A ~Emu(tweety)
A —Ostrich(tweety) A =Dead(tweety) A ...]; Flies(tweety ).

It is a severe limitation of default logic and indeed of all the default formalisms
considered in this chapter that unlike the inheritance formalism of Chapter 10, they
do not automatically prefer the most specific defaultsin cases like this.

Now consider the following example. Suppose we have adefault theory (F, D)
where F is empty and D contains a single non-normal default ( TRUE; p; —p ),
where p isany atomic sentence. Thisdefault theory hasno extensions: if £ werean
extension, then —p € & iff —p isan applicable assumption iff -p ¢ £. This means
that with this default rule, there is no reasonable set of beliefs to hold. Having no
extension is very different from having a single but inconsistent one, such as when
F isinconsistent. A skeptical believer might go ahead and believe all sentences
(since every sentence is trivially common to al the extensions), but a credulous
believer is stuck. Fortunately, this situation does not arise with normal defaults, as
it can be proven that every normal default theory has at |east one extension.

An even more serious problem isshown in the following example. Suppose we
have adefault theory (F, D) where F isempty and D contains a single non-normal
default { p; TRUE; p ). Thistheory hastwo extensions, one of whichistheset of all
valid sentences, and the other of which isthe set £ consisting of the entailments of
p. (The assumption p is applicable heresince p € £ and -TRUE ¢ £.) However,
on intuitive grounds, this second extension is quite inappropriate. The default rule
says that p can be assumed if p is believed. This realy should not alow us to
conclude by default that p is true any more than a fact saying that p is trueif p is
true would. 1t would be much better to end up with a single extension consisting of
just the valid sentences, since there is no good reason to believe p by defaullt.

Oneway to resolve this problem isto rule out any extension for which aproper
subset isalso an extension. Thisworksfor thisexample, but failson other examples.
A more complex definition of extension, due to Reiter, appears to handle all such
anomalies. Let (F, D) beany default theory. For any set 9, let A(S) bethe least set
containing ., closed under entailment, and satisfying the following:

If (36 ) € Do € AS). 5 ¢ 5, then & € A(S).

Then aset £ isagrounded extension of (F, D) if and only if £ = A(E). This defini-
tion is considerably more complex to work with than the one we have considered,
but does have some desirable properties, including handling the above example
correctly, while agreeing with the simpler definition on all of the earlier examples.
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Wewill not pursue this version in any more detail except to observe onesimple
feature: in the definition of A(S), wetestif =3 ¢ 9, rather than -8 ¢ A(S). Had
we gone with the latter, the definition of A(9) would have been this: the least set
containing .7, closed under entailment, and containing al of its applicable assump-
tions. Except for the part about “least set”, thisis precisely our earlier definition of
extension. So this very small change to how justifications are considered ends up
making all the difference.

11.5 Autoepistemiclogic

One advantage circumscription has over default logic is that defaults end up as or-
dinary sentences in the language (using abnormality predicates). In default logic,
athough we can reason with defaults, we cannot reason about them. For instance,
suppose we havethe default ( «; 3; 6 ). It would be nice to say that we also implic-
itly have the defaults { (o A &'); 5;6 ) and ( «; 3; (6 v &) ). Similarly, we might
want to say that we a so have the “ contrapositive” default { =6; 3; ~a ). But these
guestions cannot even be posed in default logic since, despite its name, it is not a
logic of defaults at al, as there is no notion of entailment among defaults. On the
other hand, default logic deals more directly with what it is consistent to assume,
whereas circumscription forces usto handle defaultsin terms of abnormalities. The
consistency in default logicis, of course, relativetowhat iscurrently believed. This
suggests another approach to default reasoning where like circumscription, defaults
are represented as sentences, but like default logic, these sentences talk about what
it is consistent to assume.
Roughly speaking, we will represent the default about birds, for example, by

Any bird that can be consistently believed to fly does fly.

Given that beliefs (as far as we are concerned) are closed under entailment, then a
sentence can be consistently believed if and only if its negation is not believed. So
we can restate the default as

Any bird not believed to be flightless flies.

To encode defaults like these as sentences in alogic, we extend the FOL language
to talk about belief directly. In particular, we will assume that for every formula o,
there is another formula Ba to be understood informally as saying “« is believed
to betrue.” The B should be thought of as anew unary connective (like negation).
Defaults, then, are represented by sentences like

Vz[Bird(z) A =B-Flies(z) O Flies(z)].
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For this to work, it must be the case that saying that that a bird is believed to be
flightlessis not the same as saying that the bird is flightless. Suppose, for example,
that we know?® that either bird « or bird b isflightless, but we do not know which. In
this case, we know that one of them is flightless, but neither of them is believed to
be flightless. Since we imagine reasoning using sentences like the above, we will
be reasoning about birds of course, but also about what we believe about birds. The
fact that thisisalogic about our own beliefsiswhy it is called autoepistemiclogic.

11.5.1 Stablesetsand expansions

As usual, our primary concern is to determine a reasonable set of beliefs in the
presence of defaults. With autoepistemic logic, the question is: given a KB that
contains sentences using the B operator, what is areasonable set of beliefsto hold?
Toanswer thisquestion, we begin by examining someminimal propertieswe expect
any set of beliefs £ to satisfy. We call aset £ stableif and only if it satisfies these
three properties:

1. Closure under entailment: If £ F o, thena € €.
2. Positiveintrospection: If « € £, thenBa € £.
3. Negativeintrospection: If o ¢ £, then -Ba € £.

So first, we want £ to be closed under entailment. Since we have not yet defined
entailment for alanguage with B operators, we take this simply to mean ordinary
logical entailment, where we treat

Vz[Bird(z)A~B—Flies(z) O Flies(z)]
asif it were something like
Va[Bird(z)A-Q(z) D Flies(z)]

where @ isanew predicate symbol.

The other two properties of a stable set deal with the B operator. They ensure
that if « is believed then so is Ba, and if « is not believed then —Ba is believed.
These are called introspection constraints sincethey deal with beliefs about beliefs.

Given aKB, there will be many stable sets £ that contain it. In deciding what
sentences to believe, we want a stable set that contains the entailments of the KB
and the appropriate introspective beliefs, but nothing else. Thisis called a stable
expansion of the KB and its formal definition, due to Robert Moore, isthis: aset £
isastable expansion of KB if and only if for every sentence =, it is the case that

°As we have been doing throughout the book, we use “know” and “believe” interchangeably.
Unless otherwise indicated, “believe” iswhat isintended, and “know” is used for stylistic variety.
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reé iff KBU{Bala€el}lU{-Balad¢g}Em.

Thisisafamiliar pattern: theimplicit beliefs £ are those sentencesthat are entailed
by KB U A, where A is a suitable set of assumptions. In this case, the assumptions
are those arising from the introspection constraints.

To seehow thisleadsto default reasoning, suppose we ahave aKB that consists
of the following:

Bird(chilly), Bird(tweety), (tweety ¥ chilly), ~Flies(chilly),
Va[Bird(z) A ~B-Flies(z) D Flies(x)].

Informally, let’s consider the consequences of this KB. First we see that thereis no
way to conclude —Flies(tweety): —Flies(tweety) is not explicitly in the knowledge
base, and there is no rule that would allow us to conclude it, even by default (the
conclusion of our one ruleis of the form Flies(z)). Thismeansthat if £ isa stable
expansion of the KB, it will not include this fact. But because of our negative in-
trospection property, astable expansion that did not include the fact —Flies(tweety)
would include the assumption, -B—Flies(tweety). Now given this assumption,°
and the fact that Va[Bird(2) A ~B—=Flies(z) D Flies(z)] isin the KB, we conclude
Flies(tweety) using ordinary logical entailment. So in autoepistemic logic, default
assumptionsaretypically of theform —Bea, and new default beliefs about theworld,
like Flies(tweety), are deduced from these assumptions.

11.5.2 Enumerating stable expansions

The above illustrated informally how the notion of a stable expansion of a knowl-
edge base can account for default reasoning of a certain sort. To be more precise
about this, and show that the KB above doesin fact have astable expansion contain-
ing Flies(tweety), and that it is unique, we will consider the simpler propositional
version of the definition and show how to enumerate stable expansions. In the
propositional case, we replace the sentence,

Vz[Bird(z) A ~B-Flies(z) D Flies(z)]

by all of itsinstances, as we did with default rulesin the previous section.

Let usacall asentence objectiveif it doesnot contain any B operators. Thefirst
thing to observe is that in the propositional case, a stable expansion is completely
determined by its objective subset; the non-objective part can be reconstructed us-
ing the two introspection constraints and logical entailment.

OThis really is an assumption, since =B—Flies(tweety) does not follow from what isin the KB;
the KB does not specify one way or another.
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Figure 11.1: A procedure to generate stable expansions

Input: apropositional KB, containing subformulas Ba1, Bay, ..., Ba,
Output: the objective part of a stable expansion of the KB.

1. Replace each Ba; in KB by either TRUE or ~TRUE.
2. Simplify, and call the resulting objective knowledge base KB®.

3. If Ba; wasreplaced by TRUE, confirm that KB® | «; if Ba; was replaced
by = TRUE, confirm that KB® # «;.

4. If the condition is confirmed for every Ba;, then return KB®, whose entail-
ments form the objective part of a stable expansion.

So imagine we have aKB that contains objective and non-objective sentences,
whereBay, Bay, ..., Ba, areal the B formulas mentioned. Assumefor simplicity
that al the «; are objective. If we knew which of the Ba; formulas were truein
a stable expansion, we could caculate the objective part of that stable expansion
using ordinary logical reasoning. So the procedurewewill useisto guess nondeter-
ministically which of the Be; formulas are true, and then check whether the result
makes sense as the objective part of a stable expansion: if we guessed that Ba; was
true, we need to confirm that «; is entailed; if we guessed that Ba; was false, we
need to confirm that «; is not entailed. A more precise version of this procedureis
shown in Figure 11.1. Observe that using this procedure we can generate at most
2" stable expansions.

To see this procedure in action, consider a propositional version of the flying
bird example. Inthis case, our KB is

Bird(chilly), Bird(tweety), —Flies(chilly),
[Bird(tweety) A =-B—Flies(tweety) O Flies(tweety)],
[Bird(chilly) A =B=Flies(chilly) O Flies(chilly)].

There are two subformulas with B operators, B-Flies(tweety) and B—Flies(chilly),
and so a most 22 = 4 stable expansions. For each constant ¢, if B-Flies(c) is
true, then [Bird(c) A -B-Flies(c) D Flies(c)] simplifiesto TRUE; if B—Flies(c) is
- TRUE then the sentence simplifies to [Bird(¢) O Flies(¢)] which will reduce to
Flies(c), since the KB contains Bird(c). So, our four cases are these:

1. B-Flies(tweety) true and B—Flies(chilly) true, for which KB® is
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Bird(tweety), Bird(chilly), =Flies(chilly).

Thisisthe case because the two implications each smplify to TRUE. Then,
following Step 3, for each of the two Ba; formulas, which were replaced by
TRUE, we need to confirm that the «; are entailed by KB°. KB° does not
entail —Flies(tweety). Asaresult, thisis not a stable expansion.

2. B-Flies(tweety) true and B—Flies(chilly) false, for which KB® is
Bird(tweety), Bird(chilly), =Flies(chilly), Flies(chilly).

Following Step 3, we need to confirm that KB® entails —Flies(tweety) and
that it does not entail —Flies(chilly). Since KB® entails =Flies(chilly), thisis
not a stable expansion (actually, this KB fails on both counts).

3. B-Flies(tweety) false and B-Flies(chilly) true, for which KB® is
Bird(tweety), Bird(chilly), ~Flies(chilly), Flies(tweety).

Step 3 tells us to confirm that KB entails —Flies(chilly) and does not entail
—Flies(tweety). In this case, we succeed on both counts, and this character-
izes a stable expansion.

4. Finally, B-Flies(tweety) false and B—Flies(chilly) false, for which KB® is
Bird(tweety), Bird(chilly), —Flies(chilly), Flies(tweety), Flies(chilly).
Since KB° entails —Flies(chilly), thisis not a stable expansion.

Thus, this KB has a unique stable expansion, and in this expansion, Twesty flies.

As another example, we can use the procedure to show that (-Bp D p) hasno
stable expansion: if Bp isfalse, thenthe KB® isp which entails p; conversely, if Bp
istrue, then KB® is TRUE which does not entail p. So thereis no stable expansion.

Similarly, we can use the procedure to show that the KB consisting of the sen-
tences (-Bp D ¢) and (—-Bg D p) has exactly two stable expansions: if Bp istrue
and Bg false, the KB® is p which entails p and does not entail ¢, and so thisis the
first stable expansion; symmetrically, the other stable expansion iswhen Bp isfalse
and Bgq true; if both are true, the KB® is TRUE which neither entails p nor ¢; and if
both are false, the KB® is (p A ¢) which entails both.

It is worth noting that as with default logic, in some cases, this definition of
stable expansion may not be strong enough. Consider, for example, aKB consisting
of asingle sentence, (Bp D p). Using the above procedure, we can see that there
are two stable expansions. one containing p, and one that does not. But intuitively

(©2003 R. Brachman andH. Levesque July17, 2003 230

it seems like thefirst expansion isinappropriate: the only possible justification for
believing p isBp itself. Asin the default logic case, it seemsthat the assumptionis
not properly grounded.

A new definition of stable expansion (due to Konolige) has been proposed to
deal with this problem: aset of sentencesisaminimal stable expansion if and only
if it is a stable expansion that is minimal in its objective sentences. In the above
example, only the stable expansion not containing p would be a minimal stable
expansion. However, further examples suggest that an even stronger definition may
be required, for which there is an exact correspondence between stable expansions
and the grounded extensions of default logic.

11.6 Conclusion

In this chapter, we have examined four different logical formalismsfor default rea-
soning. While each of them does the job in many cases, they each have drawbacks
of one sort or another. Getting alogical account of default reasoning that is sim-
ple, broadly applicable, and intuitively correct remains an open problem. In fact,
because so much of what we know involves default reasoning, it is perhaps the cen-
tral open problem in thewhole area of knowledge representation. Not surprisingly,
much of the theoretical research over the last twenty years has been on this topic.

11.7 Bibliographic notes

11.8 Exercises

1. Although theinheritance networks of Chapter 10 arein a sense much weaker
than the other formalisms considered in this chapter for default reasoning,
they use default assertions more fully.

Consider the following assertions:
Canadians are typically not francophones.
All Québecois are Canadians.

Queébecoais are typically francophones.
Robert is a Québecois.

Hereis a case where it seems plausible to conclude by default that Robert is
afrancophone.
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(a) Represent these assertions in an inheritance network (treating the sec-
ond one as defeasible), and argue that it unambiguously supports the
conclusion that Robert is a francophone.

(b) Represent them in first-order logic using two abnormality predicates,
onefor Canadiansand for onefor Québecois, and argue that asit stands,
minimizing abnormality would not be sufficient to conclude that Robert
is afrancophone.

(¢) Show that minimizing abnormality would work if we add the assertion
All Québecois are abnormal Canadians.
but will not work if we only add
Québecois are typically abnormal Canadians.

(d) Repeat the exercise in default logic: Represent the assertions as two
facts and two normal default rules, and argue that the result has two
extensions. Eliminate the ambiguity using a non-normal default rule.
You may use avariable-free version of the problem where theletters ¢,
¢, and f stand for the propositionsthat Robert is Québecois, Canadian,
and francophone respectively, and where defaults are considered only
with respect to Robert.

(e) Write a variable-free version of the assertions in autoepistemic logic,
and show that the procedure described in the text generates two stable
expansions. How can the unwanted expansion be eliminated?

2. Consider the Chilly and Tweety KB presented in the text.

(8) Weshowed that forthisKB, if wewritethedefault that birdsfly using an
abnormality predicate, the resulting KB minimally entails that Tweety
flies. Prove that without (Chilly # Tweety), the conclusion no longer
follows.

(b) Suppose that for any two constants ¢ and ¢’, we hoped to conclude by
default that they were unegual. Imagine that we have abinary predicate
Ab, and aFOL sentence

VaVy (=Ab.(z, ) D (z 7 y)).
Would using minimal entailment work? Explain.

3. Consider the following proposal for default reasoning: as with minimal en-
tailment, we begin with a KB that uses one or more Ab predicates. Then,
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instead of asking what is entailed by the KB, we ask what is entailed by KB’,
where
KB’ = KB U {=Ab(#) | KB £ Ab(t)}.

Compare this form of default reasoning to minimal entailment. Show an
example where the two methods disagree on some default conclusions. State
asufficient condition for them to agree.

4. This question concerns the interaction between defaults and knowledge that
isdigunctive. Starting with autoepistemic logic, there are different ways one
might represent adefault like “Birdsfly.” Thefirst way, asinthetext, iswhat
we might call astrong default:

Va(Bird(z) A ~B-Fly(z) D Fly(z)).
Another way iswhat we might call aweak default:
Vz(BBird(z) A =B=Fly(z) D Fly(z)).
In this question, we will work with the following KB:
Bird(a), Bird(b), (Bird(c) V Bird(d)), —~Fly(b),
where we assume that all names denote distinct individuals.
(a) Propositionalize and show that the strong and weak defaults lead to
different conclusions about flying ability.
(b) Consider the following version of the default:
Va(BBird(z) A =B—=Fly(x) D BFly(x)).
Show that this version does not |ead to reasonable conclusions.

(c) Now consider using default logic and circumscription to represent the
default. Show that one of them behaves more like the strong defauilt,
while the other is more like the weak one.

(d) Consider the following representation of the default in default logic:
(TRUE = [Bird(z) D Fly(z)]).
Discuss how this representation handles disjunctive knowledge.
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Chapter 12

Vagueness, Uncertainty, and
Degrees of Belief

In earlier chapters, we learned how precise logical statements about the world, in
many different forms, can be useful for capturing knowledge and applying it. How-
ever, when we try to emulate the more commonsensical kinds of reasoning that
people do, we find that the crisp precision of classical logics may fall short of what
we want. As we saw in Chapter 11, trying to represent what is known about a
typical bird stretches our logical forms in one direction—not every bird has all of
what we usually think of as the characteristics of birds in general. But there are
additional needs in artificial intelligence that ask us to stretch our representations
in other ways.

Sometimesit isnot appropriate to express ageneral statement with the totality
of alogical universal. In other words, not every generality has the force of “P’s
are always, purely, exactly, and unarguably @'s.” As we have seen, there are cir-
cumstances where P’s might usually (or perhaps only rarely) be @'s; for example,
birds usualy fly, but not always. In other cases, P’s might befair, but not excellent
examples of @'s; we might, for example, prefer to say that someoneisbarely com-
petent, or somewhat tall. In situations where we use physical sensors, we might
a so have some unavoidable imprecision, as with, for example, athermometer that
isonly accurate to a certain precision.

These cases show that in many situations it may be hard to gauge something
precisely or categorically. In addition to the intrinsic imperfection of statements
like those above, the way that we generate conclusions from data may also beim-
precise. For example, if we learn afact or arule from some other person, we may
need to discount for that person’s untrustworthiness, fallibility or past inaccuracies.
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Similarly, we may only understand a physical system to a modest level of depth,
and not be able to confidently apply rules in 100% of the cases; such is the case
with many types of medical knowledge.

In caseslikethe above, the use of equivocal information and imperfect rulescan
yield conclusionsthat “follow” from premises, but not in the standard logical sense
we have been investigating so far. The“conclusions’ that we come to may not be
categorical—we may not be confident in an answer, or only be able to come within
some error range of the true answer, or only really be able to say that something
is“pretty good.” Asaresult of thisfairly common need to equivocate on specific
data and general rules, we need to find ways to stretch the types of knowledge rep-
resentation techniques we have investigated so far in this book. In this chapter, we
look at some of the more common ways to expand our core representations to in-
clude frequencies, impurity of examples, doubt, and other modes of non-categorical
description.

12.1 Non-categorical reasoning

A natural first reaction to the need to expand our interpretation of what followsfrom
some premises would probably be to suggest using probabilities. A probability is
a number expressing the chance that a proposition will be true or that an event
will occur. The introduction of numbers—especialy real numbers—would seem
to be the key to avoiding the categorical nature of binary logical values. Given the
introduction of the notion of “less than 100%" into the KR mix, we can easily see
away to go from “al birdsfly” to “95% of birdsfly.”

But as appealing as probabilities are, they won't fill the bill in all ways. Cer-
tainly there will be repeatable sequences of events for which we will want to rep-
resent the likelihood of the next outcome—probabilities work well for sequences
like coin tosses—but we al so need to capture other senses of “lessthan 100%.” For
example, when we talk about the chances that the Blue Jays will win the World
Series, or that Tweety will fly, we are not talking really about the laws of chance
(aswewould in assessing the probability of headsin tossing afair coin), but rather
opinions based on evidence and an inference about the possibility of the occurrence
of anindividual event or the property of a specific bird. And finally, in asomewhat
different vein, to speak of someone being “fairly tall” doesn’t feel like the use of a
probability at all.

Solet ustake amoment to sort out some different waysto loosen the categorical
grip of standard logics. We start by looking at atypical logical sentence, of theform
Y P(z), asin “Everyonein thisroomis married.” We can distinguish at |east three
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different types of modification we might try in order to make this logical structure
more flexible:

1. We can relax the strength of the quantifier. Instead of “for all z,” we might
want to say “for most =" or “for 95% of z,” asin “95% of the peoplein this
roomaremarried.” Thisyieldsan assertion about frequency—astatistical in-
terpretation. We say that our use of probability in such sentencesis objective,
sinceit is about theworld, pure and simple, and not subject to interpretation
or degrees of confidence.

2. We could relax the applicability of the predicate. Instead of only strict asser-
tions like “Everyone in the room is (absolutely) tall,” we could have state-
ments like “ Everyone in the room is moderately tall.” Thisyields the notion
of a predicate like “tall” that applies to an individua to a greater or lesser
extent. We call these vague predicates. Note that with the relaxation of
the predicate, a person might be considered simultaneously to be both tall
(strongly) and short (weakly).

3. Wecould relax our degreeof belief in the sentence asawhole. Instead of say-
ing “ Everyoneintheroomismarried,” wemight say “1 believethat everyone
in the room is married, but | am not very sure.” Thislack of confidence can
come from many sources, but it does not reflect a probabilistic concern (ei-
ther everyone is married or they're not) or a less than categorical predicate
(apersonis either fully married or not married at all). Here we are dealing
with uncertain knowledge; when we can quantify our lack of certainty, we
are using a notion of subjective probability, sinceit reflects someindividual’s
personal degree of belief, and not the objective frequency of an event.

This separation of concerns allows us to better determine appropriate representa-
tional mechanisms for less-than-categorical statements. We now ook at objective
probabilities, subjective probabilities, and vague predicates, in turn.

12.2 Objective probability

Objective probahilities are about frequency. Even though we like to think in terms
of the probability or chance of asingle event happening, e.g., whether the next card
| amdealt will bethe Ace of Spades, or whether tomorrow will berainy, the“ chance

Note that nothing says that these three representational approaches can’t work together: we may
need to represent statementslike, “1 am pretty sure that most people in the room are fairly short.”
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of rain” we speak of actually refers to the percentage of time that arain event will
happen in thelong run, when the conditions are exactly the same asthey arenow. In
frequentist terms, the “chance of 2" isreally the percentage of times « is expected
to happen out of a sequence of many events, when the basic process is repeated
over and over, each event is independent of those that have gone before, and the
conditions each time are exactly the same. As a result, the notion of objective
probability, or chance of something, is best applied to processes like coin-flipping
and card-drawing. Weather forecasting draws on the fact that the conditions today
are similar enough to the conditions on prior days to help us decide how to place
our bets—whether or not to carry an umbrella or go ahead with a planned picnic.

The kind of probability that deals with factual frequencies is called objective
because it does not depend on who is assessing the probability. (In Section 12.3,
wewill talk about subjective probabilities, which deal with degreesof belief.) Since
thisisastatistical view, it does not directly support the assignment of abelief about
arandom event that is not part of any obvious repeatable sequence.

12.2.1 Thebasic postulates

Technically, aprobability is anumber between 0 and 1 (inclusive) representing the
frequency of an event (e.g., acoin’slanding on headstwo timesin arow) inalarge
enough space of random samples (e.g., along sequence of coinflips). Anevent with
probability 1 is considered to aways happen, and one with probability O to never
happen. Moreformally, we begin with auniversal set U of al possible occurrences
(e.g., the result of alarge set of coin flips). An event « is understood to be any
subset of U. A probability measure Pr is afunction from events to numbersin the
interval [0, 1] satisfying the following two basic postulates:

1. Pr(U)=1.
2. Ifasq,...,a, aedigointevents, thenPr(a1U...Ua,) = Pr(a1)+...+Pr(a,).
It follows immediately from these two postul ates that
Pr(a) =1 - Pr(a),

and hence that
Pr({})=0.

It dso follows (less obviously) from these that for any two events « and b,
Pr(a U b) =Pr(a) +Pr(b) — Pr(anb).

Another useful consequence isthe following:
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If by, b2, ...,b, aredigoint events and exhaust al the possibilities, that
is, if (b; Nb;)={}fori#j,and (b1 U...Ub,) =T, then

Pr(a) =Pr(anby)+...+Pr(anb,).

When thinking about probability, it is sometimes helpful to think interms of avery
simple interpretation of Pr: we imagine that U is a finite set of some sort, and
that Pr(a) isthe number of elementsin « divided by the size of U, in other words,
the proportion of elements of I/ that are dso in «. It is easy to confirm that this
particular set-theoretic interpretation of Pr satisfies the two basic postul ates above,
and hence all the other properties as well.

12.2.2 Conditional probability and independence

A key ideain probability theory is conditioning. The probability of one event may
depend on its interaction with others. We write a conditional probability with a
vertical bar (“|”) between the event in question and the conditioning event, e.g.,
Pr (a|b) means the probability of «, given that b has occurred. Thisis defined more
formally by the following:2

lef P b
Pr(a|b) = %

Note that we cannot predict in genera the value of Pr(a N b) given the values of
Pr(«) and Pr(b). In other words, in terms of our simple set-theoretic interpretation,
we cannot predict the size of (« N b) given only the sizes of « and b.

It does follow immediately from the definition of conditioning that

Pr(a N b) = Pr(a|b) x Pr(b),
and more generally, we have the following chain rule:

Pr(aan...Na,) = Pr(a1]|aez2n...Na,) X
Pr(az|azn...Na,) X -+ X Pra,-1]a,) x Pr(a,).

We also get conditional versions of the properties noted above, such as
Pr(a|b) =1 — Pr(a|b),

and the following:

2This conditional probability is considered to be undefined if b has zero probability.
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If b1, 02, ...,0b, aredigoint eventsand exhaust all the possibilities, then

Pr(alc) =Pr(anbiec) +...+Pr(anb,|c).

A very useful rule, called Bayes' rule, uses the definition of conditional probability
to relate the probability of « given b to the probability of b given a:

Pr(a) x Pr(b|a)

Pr(alb) = Pr(b)

Imagine, for example, that « is adisease and b is a symptom, and we wish to know
the probability of someone having the disease given that they exhibit the symptom.
While it may be hard to estimate directly the frequency with which the symptom
indicates the disease, it may be much easier to provide the numbers on the right-
hand side of the equation, i.e., the unconditional (or a priori) probabilities of the
disease and of the symptom in the general population, and the probability that the
symptom will appear given that the disease is present. We will find Bayes' rule
especially helpful when we consider subjective probabilities, below.

Finally, we say that an event « is conditional ly independent of event b if b does
not affect the probability of a, that is, if

Pr(a|b) = Pr(a).

This says that the chance of getting event « is unaffected by whether or not event b
has occurred. In terms of our simple set-theoretic interpretation, « is conditionally
independent of b if the proportion of « elements within set b is the same as the
proportion of a elementsin the general population U'. It follows from the definition
that event « isindependent of b if and only if

Pr(a nbd) =Pr(a) x Pr(b),

if and only if b isindependent of a. So the relation of conditional independenceis
symmetric. We also say that ¢ and b are conditionally independent given c if

Pr(alb n ¢) = Pr(alc).

Observe that when we are trying to assess the likelihood of some event « given
everything we know, it will not be sufficient to know only some of the conditional
probabilities regarding «. For example, if we know that both & and ¢ are true, then
it does not help to know the value of Pr(a|c), sinceit is unrelated to Pr(a|b N ¢)
unless ¢ isindependent from b given c.
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12.3 Subjective probability

Aswe proposed in Section 12.1, an agent’s subjective degree of confidence or cer-
tainty in a sentence is separable from and indeed orthogonal to the propositiona
content of the sentence itself. Regardless of how vague or categorical a sentence
may be, the degree of belief in it can vary. We might be absolutely certain, for
example, that Bill is quitetall; similarly, we might only suspect that Bill is married.

Degrees of beliefs of this sort are often derived from observations about groups
of things in the world. We may be confident that it will rain today because of the
statistical observation about similar-looking daysinthepast. Moving from statistics
to graded beliefs about individuals thus seems similar to the move we make from
general facts about the world to defaults. We may conclude that Tweety the bird
flies based on a belief that birds generaly fly. But default conclusions tend to be
al or nothing: we conclude that Tweety flies or we do not. With subjective beliefs,
we are expressing levels of confidence rather than all-or-nothing conclusions.

Because degrees of belief often derive from statistical considerations, they are
usually referred to as (subjective) probabilities. Subjective probabilities and their
computations work mechanically like objective ones, but are used in a different
way. We work with them typically in seeing how evidence combines to change our
confidencein abelief about theworld, rather than to simply derive new conclusions.

Intheworld of subjective probability, we definetwo types of probability relative
to drawing a conclusion. The prior probability of a sentence o involves the prior
state of information or background knowledge (which weindicate by §): Pr(«|3).
For example, suppose we know that .2% of the general population has hepatitis.
Given just this, our degree of belief that some randomly chosen individual, John,
has hepatitisis .002. Thiswould be the subjective probability prior to any specific
evidence to consider about John. A posterior probability is derived when new ev-
idence is taken into account: Pr(a|8 A v), where v is the new evidence. If we
take into account evidence that John is jaundiced, for example, we may conclude
that the posterior probability of John’s having hepatitis, given his symptoms and
the prior probability, is .65. A key issue then, is how we combine evidence from
various sources to reevaluate our beliefs.

12.3.1 From statisticsto belief

As we have pointed out, there is a basic difference between statistical information
like “the probability that an adult maleis married is .43" and agraded belief about
whether a particular individual is married. Intuitively, it ought to be reasonable
to try to derive beliefs from statistical information. The traditional approach to
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doing thisisto find areference class for which we have statistical information, and
use the statistics about the class to compute an appropriate degree of belief for the
individual. A reference class would be a general class into which the individual in
guestion would fit, and information about which would comfortably seem to apply.

For example, imagine trying to assign adegree of belief to the proposition“Eric
istal,” where Eric isan American male. If al we knew was the following,

A 20% of American males aretall.

then we might be inclined to assign a value of .2 to our belief about Eric's height.
This move from statistics to belief is usualy referred to as direct inference.

But there is a problem with such a simpleminded technique. Individuals will
in general belong to many classes. For example, we might know that Eric is from
Cdlifornia, and

B 32% of Californian malesaretall.

In general, more specific reference classes would seem to be more informative. So,
we should now beinclined to assign ahigher degree of belief to“Ericistall,” since
(B) gives us more specific information. But suppose we also know

C 1% of jockeysaretall.

If we do not know Eric’'s occupation, should we leave our degree of belief un-
changed? Or do we have to estimate the probability of his also being a jockey
before we can decide? Imagine we also know

D 8% of American malesride horses.
and
E Eric collects unusual hats.

Doesthis changeanything, orisitirrelevant? Simpledirect inference computations
are full of problems because of multiple reference classes. This is reminiscent of
our description of specificity ininheritance networks and the problems with simple
agorithms like shortest path.

12.3.2 A basic Bayesian approach

Given problems like those above, it would be nice to have a more principled way
of calculating subjective probabilitiesand how these are affected by new evidence.
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As a starting point, we might assume that we have a number of propositional
variables (or atomic sentences) of interest, p1, ..., p,. For example, p1 might bethe
proposition that Eric is a lawyer, p, might be the proposition that Sue is married,
p3 might be the proposition that Sue is rich, and so on. In different states of the
world, different combinations of these sentences will be true. We can think of each
state of the world as characterized by an interpretation Z which specifies which
atomic sentences are true and which are false. By ajoint probability distribution
J we mean a specification of the degree of belief for each of the 2 possibilities
for all the propositional variables. In other words, for each intepretation Z, .J(Z)
is anumber between 0 and 1 such that >~ J(Z) = 1, where the sum is over al 2"
possihilities. Intuitively, we areimagining ascenario where an agent does not know
the true state of the world, and J(Z) isthe degree of belief the agent assigns to the
world state specified by 7.

Using ajoint probability like this, we can calculate the degree of belief in any
sentence involving any subset of the variables. Theideais that the degree of belief
in « isthe sum of J over al interpretations where « is true. In other words, we
believe a to the extent that we believe in the world states that satisfy «. More
formally, we define

Pr(@) ¢ 30 (),
TEo
and where, asbefore, Pr(«a|3) = Pr(a A 5) + Pr(3). By thisaccount, the degree of
belief that Ericistall given that heismale and from Californiaisthe sum of .J over
al possibleworld stateswhere Ericistall, male, and from Californiadivided by the
sum of J over al possible world states where Eric is male and from California. It
isnot hard to see that this definition of subjective probability satisfies the two basic
postulates of probability listed in Section 12.2.

While this approach does the right thing, and tells us how to calculate any sub-
jective probability given any evidence, there is one major problem with it: it as-
sumes we have a joint probability distribution over all of the variables we care
about. For n atomic sentences, we would need to specify the values of 2" — 1
numbers.® Thisis unworkable for any practical application.

12.3.3 Beélief networks

In order to cut down on what needs to be known to reason about subjective proba-
bilities, we will need to make some simplifying assumptions.

3Thisis one lessthan 2" because we can use the constraint that the sum of .J values equals 1.
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First, we introduce some notation. Assuming we start with atomic sentences
P1, ..., Pn, We can specify an interpretation using (P1, ..., P,), where each P; is
either p; (when the sentence istrue) or —p; (when the sentence is false). From our
definition above, we see that

J(<P17 ey Pn>) = PI’(Pl APoA LA P,,,),

since there is asingle interpretation that satisfies the conjunction of the literals.
One extreme simplification we could make is to assume that all of the atomic
sentences are conditional ly independent from each other. Thisamountsto assuming
that
J(<Pl’ LERE) P/z>) = Pr(Pl) : Pr(PZ) e Pr(Pn)'

With this assumption, we would only need to know » numbers to fully specify the
joint probability distribution, and therefore al other probabilities.

But this independence assumption is too extreme. Typically there will be de-
pendencies among the atomic sentences.

Here is a better idea: let us first of al represent all the variables, p;, in a di-
rected acyclic graph, which we will call a belief network (or Bayesian network).
Intuitively, there should be an arc from p; to p; if we think of the truth of the for-
mer asdirectly affecting the truth of thelatter. (We will see an example below.) We
say in this case that p; isaparent of p; in the belief network.

Let us suppose that we have numbered the variables in such a way that the
parents of any variable p; appears later in the ordering. (We can aways do this
sincethe graph is acyclic.) Observe that by the chain rule of Section 12.2, we have
that

J(<Plﬂ"'7pvz>):
Pr(Pi|PaA...AP,) -Pr(P2|PsA...A P,)---Pr(P,_1|P,) - Pr(P,).

We can see that formulated this way, wewould still need to specify 2 — 1 numbers

sincefor eachterm Pr(P;| Pjs1A. .. A P,) thereare 27~7 conditional probabilitiesto

specify (corresponding to thetruth or falsity of pj.1, ..., p,),and 3" 27=7 =27 — 1,
However, what we are willing to assumein a belief network isthis:

Each propositional variable in the belief network is conditionally in-
dependent from the non-parent variables given the parent variables.

More precisely, we assume that

Pr(P;|Pjsa A ... A Py) = Pr(F;| parents(P)),
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Figure 12.1: A simple belief network

O

O

where parents(#;) is the conjunction of those P;+1, ..., P, literalsthat are parents
of p; in the graph. With these independence assumptions, we get that

.

Q/
pl\

J({Pr,...,P)) =
Pr (P1| parents(Py)) - Pr(Pz| parents(Fz)) - - - Pr(F,| parents(F,)).

Theideaof belief networks, then, isto use this equation to define ajoint probability
distribution .7, from which any probability we care about can be cal cul ated.

Beforelooking at an example, observe that to fully specify .J, we need to know
Pr(P;| parents(#;)) for each variable p;. If p; has k parentsin the belief network,
wewill need to know the 2% conditional probabilities, corresponding to the truth or
falsity of each parent. Summing up over al variables, we will have no more than
n- 2¥ numbers to specify, where k isthe maximum number of parents for any node.
Asn grows, we expect this number to be much much smaller than 2”.

Consider the four-node belief network in Figure 12.1. This graph represents
the assumption that

J((P1, P2, P3, Py)) = Pr(Py) - Pr(P2|Py) - Pr(P3|Py) - Pr(Py| P2 A P3).

We can see that the full joint probability distribution is completely specified by
(1+2+2+4) =7 numbers, rather than the 15 that would be required without the
independence assumptions.

12.34 An example network

Let’slook at an exampleto see how we might compute using belief networks. First,
we construct the graph: we assign a node to each variable in the domain, and draw
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Figure 12.2: A belief network example

family out bowel problem

Pr(fo) = .15 Q Pr(bp) = .01 Q
Q light on dog out Q
Pr(do|fo A bp) = .99

Pr(do|fo A =bp) = .9
Pr(do|—fo A bp) = .97
Pr(do|-fo A —bp) = .3

Pr(lo|fo) = .6
Pr(lo|-fo) = .05

Pr(hb|do) = .7 Q
Pr (hb|~do) = .01

hear bark

arrowstoward each node p from a select set of nodes perceived to be “direct causes”
of p. Here's asample problem due to Eugene Charniak:

We want to do some reasoning about whether or not my family is out
of the house. Imagine the family has a dog. We virtually always put
the dog out (do) when the family is out (fo). We also put the dog out for
substantial periodsof timewhen it hasa (fortunately, infrequent) bowel
problem (bp). A reasonable proportion of thetime when the dogisout,
you can hear her barking (hb) when you approach the house. One last
fact: we usually (but not always) leave the light on (lo) outside the
house when the family is out.

Using this set of facts, we can construct the belief network of Figure 12.2, where
the arcs can be interpreted as causal connections.
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This graph represents the following assumption about the joint probability dis-
tribution:

J({(FO,LO, BP, DO, HB)) =
Pr(FO) - Pr(LO|FO) - Pr(BP) - Pr(DO|FO A BP) - Pr(HB|DO).

Thisjoint distribution is considerably simpler than the full one involving the five
variables, given the independence assumptions captured in the belief network. As
aresult, we need only (1+2+1+4+2) = 10 numbersto specify the full probability
distribution, as shown in the figure.

Suppose we want to use this belief network with the numbers in the figure to
calculatethe probability that thefamily isout, giventhat thelight ison, but wedon’t
hear barking: Pr(follo A =hb). Using the definition of conditional probability, we
have that

Pr(foAloA —hb) _ 3 J((fo,lo, BP, DO, -hb})
Pr(loA —hb) ~ 3 J((FO,lo, BP, DO, -hb})

Pr(follo A =hb) =

The sum in the numerator has 4 terms, and the sum in the denominator has 8 terms
(the 4 from the numerator and 4 others). We can compute the 8 needed elements of
the joint distribution from the probability numbers given in the figure, asfollows:

1. J({fo,lo, bp, do, =hb)) = .15 x .6 x .01 x .99 x .3 = .0002673
that is: Pr(fo) - Pr(lo|fo) - Pr(bp) - Pr(do|fo A bp) - (1 — Pr(hb|do))

J({fo,10,bp, ~do, ~hb)) = .15 x .6 x .01 x .01 x .99 = .00000891
J({fo, 10, ~bp, do, ~hb)) = .15 x .6 x .99 x .9 x .3 = .024057

J({fo, 10, ~bp, ~do, ~hb)) = .15 x .6 x .99 x .1 x .99 = .0088209
J((~fo,10,bp, do, ~hb)) = .85 x .05 x .01 x .97 x .3 = .000123675
J({~fo, 10, bp, ~do, ~hb)) = .85 x .05 x .01 x .03 x .99 = 0000126225
J({

({—fo, lo, =bp, do, =hb)) = .85 x .05 x .99 x .3 x .3 =.00378675

00.\‘9’9":5.@!\’

. J({~fo, 10, ~bp, ~do, =hb)) = .85 x .05 x .99 x .7 x .99 = .029157975

Thus, Pr (fo|loA —hb) isthe sum of thefirst four values above (.003315411) divided
by the sum of all eight values (.00662369075), which is about .5.

It is sometimes possible to compute a probability value without using the full
joint distribution. For example, if we wanted to know the probability of thefamily’s
being out given just that the light was on, Pr(fo|lo), we could first use Bayes' rule
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to convert Pr(follo) to Pr(lo|fo) x Pr(fo) =+ Pr(lo). From our given probabilities,
we know the first two terms, but not the value of Pr(lo). But we can compute that
quite simply: Pr(lo) = Pr(lo|fo) x Pr(fo) + Pr(lo|~fo) x Pr(—~fo). We have each of
those four values available (the last one using the rule for negation), and thus we
have dl the information we need to compute Pr (fo|lo) without going through the
full joint distribution.

In a sense, using the full joint probability distribution to compute a degree of
belief is like using the set of all logical interpretations to compute entailment: it
doestheright thing, but isfeasible only for small problems. While abelief network
may make what needs to be known in advance practical, it does not necessarily
make reasoning practical. Not surprisingly, calculating a degree of belief from a
belief network can be shown to be NP-hard, as hard as full satisfiability. More
surprisingly, determining an approximate value for a degree of belief can aso be
shown to be NP-hard. Nonetheless specialized reasoning procedures have been
developed that appear to work well on certain practical problems or on networks
with restricted topologies.

12.3.5 Influencediagrams

Belief networks are useful for computing subjective probabilities based on inde-
pendence assumptions and causal relationships. But in making decisions under
uncertainty, there are usually other factorsto take into account, such astherelative
merit of the different outcomes, and their costs. In general, these are concernsin
what is usually called decision theory and lie outside the scope of this book. How-
ever, one simple approach to decision-making isworth glancing at sinceit is based
on adirect extension to the belief network representation schemewe have just seen.

Influence diagrams attempt to extend the reasoning power of belief networks
with alarger set of node-types. In Figure 12.3, which might allow usto decide what
course of action to take in the face of coronary artery disease, we see four types of
nodes. chance nodes are drawn as circles, and represent probabilistic variables as
before; deterministic nodes are drawn as double circles, and represent straightfor-
ward computations based on their inputs; decision nodes are drawn as rectangles,
and represent al-or-nothing decisions to be made by the user; the value node—
there is only one—is drawn as a diamond, and represents the fina decision to be
made based on some valuation function. Arcsin the diagram represent the appro-
priate obviousinfluence or relevance rel ationships (probabilistic and deterministic)
between the nodes.

Theintent with diagrams like these isfor a system to reason about the relation-
ships between variables that are probabilistically determined, choice-determined,
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Figure 12.3: Influence diagram
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and deterministically determined. This yields a powerful framework to support
decision-making, and a number of implemented systems reason with these sorts of
representations.

12.3.6 Dempster-Shafer theory

There are other techniques available for alowing a system to pool evidence and
support decisions. While we will not go into any of these in detail, it is worth
mentioning one of the more prominent alternatives, often referred to as Dempster-
Shafer Theory, after the inventors.

Consider the following example. If we flip an unbiased coin, the degree of
belief would be .5 that the coin comes out heads. But now consider flipping a coin
where we do not know whether or not the coin is biased. In fact, it may have tails
on both sides, for all we know. In cases like this, although we have no reason to
prefer heads to tails, we may not want to assign the same degree of belief of .5 to
the proposition that the result is heads. Instead, due to lack of information, we may
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want to say only that the degree of belief lies somewhere between and 0 and 1.

Instead of using a single number to represent a degree of belief, Dempster-
Shafer representations use two-part measures, called belief and plausibility. These
are essentially lower and upper bounds on the probability of a proposition. For a
coin known to be perfectly unbiased, we have .5 belief and .5 plausibility that the
result is heads; but for the mystery coin, we have 0 belief that the result is heads
(meaning we have no reason to give it any credence) and 1 plausibility (meaning
we have no reason to disbelieve it either). The “value” of a propositional variable
is represented by a range, which we might called the possibility distribution of the
variable.

To see where these ideas are useful, imagine we have a simple database with
names of people and their believed ages. In a situation with complete knowledge,
the ages would be smple values (e.g., 24). But we might not know the exact age
of someone, and would instead have the age field in the table filled by arange, as
illustrated below:

| Name Age |

Mary [22,26]
Tom [20,22]

| |

Frank [30,35]
Rebecca | [20,22]
Sue [28,30]

This would mean, for example, that we believed the age of Tom to lie somewhere
between 20 and 22; {20,21,22} would be the set of possibilitiesfor age(tom).

In this kind of setting, simple membership questions like age(z) € @ are no
longer applicable. It ismore natural to ask about the possibility of () given the pos-
sibility distribution of age(z). For example, given the above table, if ¢) = [20, 25],
itis possible that age(mary) € @); it is not possible that age(frank) € @; and it is
certain that age(rebecca) € ().

Now consider the following question: what is the probability that the age of
anindividua selected at random from the table isin the range [20, 25] ? We would
like to say that the belief (lower bound) in this proposition is 2/5 since two of the
five people in the table are of necessity in the age range from 20 to 25, and the
plausibility (upper bound) in this proposition is 3/5 since at most three of the five
peopleinthetable are in the age range. So the answer istheinterval [.4, .6].

This calculation seems commensurate with the information provided. In fact,
the Dempster-Shafer combination rule (more complex than is worth going into
here) alows us to combine multiple sources of information like these in which
we have varying levels of knowledge and confidence.
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Figure 12.4: A degree curve for the vague predicate Tall

4ft. height 8t.

12.4 Vagueness

As mentioned in Section 12.1, quite apart from considerations of frequency and
degree of belief, we can consider the degreeto which certain predicates are satisfied.

Let us begin with this question: isaman whose height is5 feet 9 inchestall? A
first answer might be, compared to what? Obvioudly, the tallness of a man depends
on whether we are comparing him to jockeys, to basketball players, or to al North
American males. But supposewefix on areferenceclass, so that by “tall” werealy
mean “tall compared to the rest of North American males.” We might still want to
say that thisis not a black-or-white affair; people are tall to a certain degree, just
asthey are hedlthy, fast runners, or close to retirement, to varying degrees.

We call predicates that are intuitively thought of as holding to a degree vague
predicates. In English, these correspond to adjectives that can be modified by the
adverb “very,” unlike, for instance, “married” or “dead.” Typicaly, we assume
that for each vague predicate there is corresponding precise base function in terms
of which the predicate is understood. For “tall” the base function is “height”; for
“rich” itis“net worth”; for “bald” it might be something like “ percent hair cover”.

We can capture the relationship between avague predicate like Tall and its base
function height using afunction like the one depicted in Figure 12.4, which we call
adegree curve. As the height of a person (a North American male) varies from 4
to 8 feet, this curve shows a degree of tallness, from 0 (not at al) to .5 (middling)
to 1 (totally). This definition of Tall would yield the following values for various
individuals and their heights:
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Figure 12.5: Degree curves for variants on Tall
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| Individual | Height | Degree of Tallness |
Larry 46" 0.00
Roger 56" 0.25
Henry 59 0.50
Michael 62 0.90
| Wilt 71 1.00 |

Curves for Short, VeryTall and FairlyTall, which are also based on height, are
shown in Figure 12.5. The predicate Short variesin degreein away that iscomple-
mentary to Tall; VeryTall is similar to Tall but rises later; FairlyTall rises earlier, but
then decreases, reflecting the fact that an individual can be too tall to be considered
to be only FairlyTall to ahigh degree. Theindividualsin the above table would thus
have the following degrees of Shortness and VeryTall-ness:

" Individual | Height | Degree of Shortness | Degree of Very-Tallness |
Lary &6 1.00 0.00
| Roger 56" 0.75 0.00
| Henry 59 0.50 0.10
| Michad | 62 0.10 047
| Wilt 71 0.00 1.00

Inamore qualitativeway, given these degree curves, we might consider amanwho
is5'6" pretty short (.75), and at the sametime barely tall (.25). In these figures, we
have drawn the degree curves as straight lines with similar slopes, but there is no
reason why they cannot be smooth rounded curves or have different slopes. The
crucial thing is that an object’s degree of satisfaction can be non-zero for multiple
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predicates over the same base function, and in particular for two predicates that are
normally thought of as opposites, such as Short and Tall.

12.4.1 Conjunction and digunction

Aswith logic and probability, we need to consider boolean combinations of vague
properties, and to what degree these are taken to be satisfied. Negation poses no
special problem: we take the degree to which the negation of a property is satisfied
to be one minus the degree to which the property itself is satisfied, as with Tall and
Short above. In this case, reasoning with vague predicatesis exactly like reasoning
with probabilities, where Pr(=p) = 1 — Pr(p).

Conjunctions and disunctions, however, appear to be different. Suppose, for
example, that we are looking for a candidate to train as a basketball player. We
might be looking for someone who is tal, physically coordinated, strong, and so
on. Imaginethat we have aperson who rates highly on each of these. Obviously this
person should be considered a very good candidate. This suggests that the degree
to which a person satisfies the conjoined criterion

Tall A Coordinated A Strong A ...

should not be the product of the degrees to which she satisfies each individual one.
If there were atotal of twenty criteria, say, and all were satisfied at the very high
level of .95, we would not want to say the degree of satisfaction of the conjoined
criterion was only .36 = (.95)%.

There is, consequently, a difference between the probability of satisfying the
conjoined criterion—which, assuming independence, would be the product of the
probabilities of satisfying each individua criterion—and the degree to which the
conjoined criterionissatisfied. Arguably, thedegreetowhichanindividual is P and
@ istheminimum of thedegreesto whichtheindividual is P andis@). Similarly, the
degree to which adisjoined criterion is satisfied is best thought of as the maximum
degree to which each individua criterion is satisfied.

1242 Rules

One of the most interesting applications of vague predicates involves their use in
production rules of the sort we saw in Chapter 7. In atypica application of what
is sometimes called fuzzy control, the antecedent of a rule will concern quantities
that can be measured or evaluated, and the consequent will concern some control
action. Unlike standard production systems where a rule either does or does not
apply, here the antecedent of arulewill apply to some degree and the control action
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will be affected to acommensurate degree. In that regard, these ruleswork lesslike
logical implications and more like continuous mappings between sets of variables.
The advantage of rules using vague predicates is that they enable inferences even
when the antecedent conditions are only partialy satisfied. Inthiskind of asystem,
the antecedents apply to values from the same base functions, and the consequent
values are taken from the same base functions. Therules are usually developed in
groups and are not taken to be significant independent of one another; their main
goal isto work in concert to jointly affect the output variable. Rules of this sort
have been used in anumber of successful engineering applications.

Let us consider an example of aset of such rules. Imagine that we are trying to
decide on atip at arestaurant based on the quality of the food and service. Assume
that service and food quality can each be described by a simple number on alinear
scale (e.g., anumber from 0O to 10). The amount of the tip will be characterized as
a percentage of the cost of the meal, where for example, the tip might normally be
around 15%. We might have the following three rules:

1. If the serviceis poor or the food israncid then thetip is stingy.
2. If the serviceis good then thetip is normal.
3. Ifthe serviceis excellent or the food is delicious then the tip is generous.

Inthelast rule we see vague predicates like “ excellent,” “delicious,” and “gen-
erous,” and we imagine in most circumstances that the service will be excellent to
some degree, the food will be delicious to some degree, and the resulting tip should
be correspondingly generous to some degree. Of course the other two rules will
also apply to some degree and could temper this generosity. We assume that for
each of the eight vague predicates mentioned in the rules (like “rancid”) we are
given a degree curve relating the predicate to one of three base quantities. service,
food quality, or tip. The problem wewishto solveisthefollowing: given aspecific
numeric rating for the service and another specific rating for the food, calculate a
specific amount for the tip, subject to the above rules.

One popular method used to solve this problem is as follows:

1. transformtheinputs, that is, determine the degree to which each of the vague
predicates used in the antecedents hold of each of the inputs; in other words,
use the given degree curves to determine the degree to which the predicates
“poor,” “rancid,” “good,” etc., apply for the given ratings of the inputs, ser-
vice and food.
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For example, if we are given that the service rating is 3 out of 10, and the
food rating is 8 out of 10, the degree curves might tell us that the serviceis
excellent to degree 0.0 and that the food is delicious to degree 0.7.

2. evaluate the antecedents, that is, determine the degree to which each ruleis
applicable by combining the degrees of applicability of the individua predi-
cates determined in thefirst step, using the appropriate combinations for the
logical operators.

For the third rule in our example, the antecedent is the disjunction of the
service being excellent and the food being delicious. Using the numbers
from the previous step, we conclude that the rule applies to degree 0.7 (the
maximum of 0.0 and 0.7). The other two rules are similar.

3. evaluate the consequents, that is, determine the degree to which the predi-
cates “stingy,” “normal,” and “generous’ should be satisfied. The intuition
isthat the consequent in each rule should hold only to the degree that therule
isapplicable.

For the third rule in our example, the consequent isthe predicate “ generous.”
We need to reconsider the degree curve for this predicate to ensure that we
will be generous only to the degree that this third rule is applicable. One
way to do this (but not the only way) isto cut off the given degree curve at a
maximum of 0.7. The other two rules can be handled similarly.

4. aggregate the consequents, that is, obtain a single degree curve for the tip
that combines the “stingy,” “normal,” and “generous’ ones in light of the
applicability of therules. Theintuitionis that each possible value for the tip
should be recommended to the degree that it is supported by therulesin the
previous step.

” o

In our example, we take the three clipped curves for “stingy,” “normal,” and
“generous’ from the previous step and we overlay them to form a composite
curvewhosevalue at any tip valueisthe maximum of the values given by the
three individual curves. Other ways of combining these curves are possible,
depending on what was done in the previous step.

5. “defuzzify” the output, that is, use the aggregated degree curve to generate a
weighted average value for thetip.

One way to do this in our example is to take the aggregated curve from the
previous step and find the center of areaunder the curve. Thisisthetip value
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Figure 12.6: Fuzzy control example
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for which there is as much weight for lower tip values as there is for higher
tip values. The result is arecommended tip of 15.8%.

The five step process is illustrated graphically in Figure 12.6. Starting at the
bottom left hand side, we see the two input vaues for service and food. Imme-
diately above, the degree curves for “excellent” and “delicious’, the antecedents
of the third rule, are seen to intersect the given input values at 0.0 and 0.7. The
maximum of these, 0.7, is projected to the right where it intersects the degree curve
for “generous,” the consequent of the third rule. Immediately to the right of this,
we see this curve clipped at the value of 0.7. This clipped curve is then combined
with the clipped curves for “normal” and for “cheap” just above, to produce the
final aggregated curve in the bottom right hand corner. The center of area of this
final curveisthe point wherethetip is 15.8%, thefinal output. Soin this example,
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the quality of the food was sufficient to compensate for the somewhat mediocre
service, yielding a slightly more generous than normal tip.

12.4.3 A Bayesian reconstruction

While the procedure described above appears to work well in many applications, it
is hard to motivate it from a semantic point of view, and indeed, several incompati-
ble variants have been proposed.* It has been suggested that despite the conceptual
differences between degrees of belief and degrees of satisfaction (noted above),
much of the reasoning with vague predicates can be recast more transparently in
terms of subjective probability.

Under this interpretation, we treat Tall, VeryTall, FairlyTall, etc., as ordinary
predicates, true of aperson in someinterpretations and falsein others. Thereareno
“borderline” cases. in some interpretations, a person whose height is 5’9" is tall,
and in others not. Each of the base predicates, such as Tall, is associated with abase
measure, such as height. We imagine that in addition to sentences like Tall(bill), we
have atomic sentences like height(bill) = » where n is anumber.

Turning now to probabilities, for each n, Pr(height(bill) = »n) will be a number
between 0 and 1, and the sum over al » must equa to 1. Aswego fromn = 4to
n = 8 feet say, we expect to see some sort of bell-shaped curve around a mean of
say 5'7".

What do we expect for the curve aswe vary n for Pr (height(bill) = »|Tall(bill))?
We expect abell curve again, but with ahigher mean (say 6'1") and perhaps sharper
(less spread). By Bayes' Rule, we know that

Pr (Tall(bill) |height(bill) = n) x Pr (height(bill) = n)
Pr (Tall(bill))

Pr (height(bill) = n|Tall(bill)) =

What can we say about the curve for Pr(Tall(bill)| height(bill) = n)? It has to be a
curve such that when you multiply it by the original bell curve and then divide by
aconstant (i.e., Pr(Tall(bill))), you get the second shifted sharper bell curve. Here's
the main observation: if we draw this curve, going fromn = 4ton = 8 feet,
what we need is exactly the sort of curve we have been calling the degree curve for
tallness. In other words, the proposal in this reconstruction isto reinterpret “ degree
of tallness for height of «” as*“degree of belief in tallness given a height of 2.

“Note in the restaurant example, for instance, that the impact that a degree curve has on the final
tip depends on the area below that curve. A single spike at a particular value (representing a degree
curve for aprecise value) would have much lessimpact on the center of areacalculation than acurve
with alarger spread.
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What then happens to boolean combinations of properties? Thingswork out so
long as we are prepared to assume that

Pr(a A Bly) = min{Pr(a|y), Pr(5|v)}.

Thisis allowed, provided we do not assume that « and 3 are independent.> More-
over, with this assumption, we derive that

Pr(a v 5ly) = max{Pr(aly), Pr(57)}

by using general properties of probability.

Finally, what about the production rules? In the given restaurant example, we
want to calculate an aggregate tip, given the service and food rating. In subjective
terms, for a food rating of « and a service rating of y, the weighted average is
defined by®

AveragedTip = Z z x Pr((tip = z) | (food = &) A (service = y)).
We do not have nearly enough information to calculate the joint probabilities of all
the propositionsinvolved. However, we will sketch some reasonable assumptions

that would permit a subjective value to be computed.
First, observe that for any =, y and z, the value we need,

Pr((tip = 2) | (food = z) A (service = y)),
isequal to

Z Pr((tip=2)| G A N A S A (food = z) A (service = y)) X
0N Pr(G A N A S| (food = 2) A (service = y))

where G is Generous or its negation, NV is Normal or its negation, and 5 is Stingy
or its negation. Taking thefirst of these terms, we assume that the tip is completely
determined given ¢, N and S, so that

Pr((tp=2)| G AN A S A (food = 2) A (service = y)) =
Pr(tp=2)| G AN AS).

SWhen o and 2 are not independent, the only requirement on the probability of (a A ) isthat it
be no larger than the probability of either one.

We assume a countable number of possible values for the tip. Otherwise, the summations here
would have to be integrals.
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Applying Bayes' rule, we get that thisis equal to
Pr(G AN AS|(tip=2z)) x Pr((tip=2z))
STPI(GANAS|(tip=u) x Pr((tip=u)

U

If we now assume that tips are a priori equally likely, thisisequal to
Pr(G AN AS|(tip=2))
STPI(GANAS|(tip=u)

For any value of u, we have that

PrGANAS

(tip = u))
can be assumed to be
min{Pr (G | (tip = u)), Pr(NV | (tip = u)), Pr(S| (tip = u))},

which can be calculated from the given degree curves for Stingy, Generous, and
Normal. This leaves us only with calculating

Pr(GANAS

(food = 2) A (service = y)),
which we can again assume to be

Pr(G | (food = z) A (service = y)),
min< Pr(& | (food = z) A (service = y)),
Pr(S| (food = z) A (service = y)).

To calculate these, we use the given production rules: we assume that the prob-
ability of a proposition like Generous is the maximum of the probability of the
antecedents of all ruleswhere it appears as a consequent. So, for example,

Pr(Generous | (food = ) A (service = y))
is assumed to be equal to

Pr(Excellent | (food = 2) A (service = y)),
Pr(Delicious | (food = ) A (service = y)).

Taking the food quality to be independent of the service quality, thisis equal to

Pr(Excellent | (service = y)),
Pr (Delicious | (food = 2)),

and for these we use the remaining degree curves for Excellent, Delicious, and so
on. This completes the required calculation.
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12,5 Bibliographic notes

12.6 Exercises

1. Oneway to understand probabilitiesisto imagine taking a snapshot of all the
entities in the domain of discourse (assuming there are only finitely many),
and looking at the proportion of them having certain properties. We can then
use elementary set theory to analyze the relationships among various prob-
abilities. Under this reading, the probability of « given b is defined as the
number of elementsin both « and b divided by the number of elementsin b
alone: Pr(a|b) = |a N b|/|b]. Similarly, Pr(«), the probability of « itself can
be thought of as Pr(«|«), where u is the entire domain of discourse. Note
that according to this definition, the probability of « is 1 and the probability
of the empty set isO.

Use this simple model of probability to do the following:

(@ Provethat Pr(a Nbne)=Pr(albnc)xPr(b|c) * Pr(c).
(b) ProveBayes Theorem: Pr(a|b) = Pr(b|a) « Pr(a)/Pr(b).

(c) Supposethat b1, by, ...b, are mutually exclusive events of which one
must occur. Prove that for any event a, we have that

Pr(a) = zn: Pr(a N b;).

=1

(d) Derive (and prove correct) an expression for Pr(a U b) that does not use
either disjunction or conjunction.

(e) Recall that two statistical variables « and b are said to be statistically
independent iff Pr(anb) = Pr(a)*Pr(b). However, just becausea and b
areindependent, it does not follow that Pr ((aNd)|c) = Pr(a|c)*Pr(b|c).
Explain why.

2. Consider the following example:

Metastatic cancer is a possible cause of a brain tumor
and is also an explanation for an increased total serum
calcium. In turn, either of these could cause a patient
to fall into an occasional coma. Severe headache could
also be explained by a brain tumor.
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(a) Represent these causal linksin abelief network. Let « stand for “meta-
static cancer,” b for “increased total serum calcium,” ¢ for “brain tu-
mor,” d for “occasional coma,” and e for “ severe headaches.”

(b) Give an example of an independence assumption that isimplicit in this
network.

(c) Suppose the following probabilities are given:

Pr(a) =.2

Pribla)=.8  Prb|a) = .2
Pr(cla)=.2  Pr(cla) =.05
Pr(e|c)=.8 Pr(ele) = .6

Pr(dlb,c)=.8 Pr(d|b,c)=.8
Pr(d|b,d)=.8 Pr(d|b,c) = .05

and assume that it is also given that some patient is suffering from se-
vere headaches, but has not fallen into a coma. Calculate joint proba-
bilities for the 8 remaining possibilities (that is, according to whether
a, b, and c aretrue or false).

(d) Accordingtothenumbersabove, theapriori probability that the patient
has metastatic cancer is .2. Given that the patient is suffering from
severe headaches but has not fallen into a coma, are we now more or
lessinclined to believe the hypothesis? Explain.

3. Consider the following example:

Thefirealarmin a building can go off if thereisafirein
the building or if the alarmis tampered with by vandals.
If thefire alarmgoes off, this can cause crowds to gather
at the front of the building and firetrucksto arrive.

(a) Represent these causal linksin abelief network. Let o stand for “alarm
sounds’, ¢ for “crowd gathers’, f for “fire exists’, ¢ for “firetruck ar-
rives’, and v for “vandalism exists’

(b) Give an example of an independence assumption that isimplicit in this
network.

(c) What are the 10 conditional probabilities that need to be specified to
fully determine the joint probability distribution? Suppose that thereis
acrowd in front of the building one day, but that no firetrucks arrive.
What is the chance that there is a fire, expressed as some function of
the 10 given conditional probabilities?
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(d) Supposewefind out that in addition to setting off thefirealarm, vandals
can cause afiretruck to arrive by phoning the Fire Department directly.
How would your belief network need to be modified. Assuming all the
given probabilities remain the same (including the a priori probability
of vandalism), there would still not be enough information to calculate
the full joint probability distribution. Would it be sufficient to be given
Pr(¢|v) and Pr(¢|v)? How about being told Pr(¢|a, v) and Pr(¢|a, v)
instead? Explain your answers.

4. Consider the following example:

Aching elbows and aching hands may be the result of
arthritis. Arthritisis also a possible cause of tennis el-
bow, which in turn may cause aching elbows. Dishpan
hands may also cause aching hands.

(a) Represent these factsin a belief network. Let ar stand for “arthritis,”
ah for “aching hands,” ae for “aching elbow,” te for “tennis elbow,”
and dh for “dishpan hands.”

(b) Givean example of an independence assumption that isimplicit in this
network.

(c) Write the formula for the full joint probability distribution over al 5
variables.

(d) Suppose the following probabilities are given:

Pr(ah|ar, dh) = Pr(ae|ar,te) = .1

Pr(ah|ar, =dh) = Pr(ae|ar, —te) = .99
Pr(ah|-ar,dh) = Pr(ae|—ar,te) = .99
Pr(ah|=ar, —~dh) = Pr(ae|-ar, =te) = .00001
Pr (te|ar) = .0001

Pr(te|-ar) = .01

Pr(ar) = .001

Pr(dh) = .0L.

Assume that we are interested in determining whether it is more likely
that a patient has arthritis, tennis elbow, or dishpan hands.

i. With no observations at al, which of the three is most likely a
priori?
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ii. If weobservethat the patient has aching elbows, which is now the
most likely?

iii. If we observe that the patient has both aching hands and elbows,
which isthe most likely?

iv. How would your rankings change if there were no causal con-
nection between tennis elbow and arthritis, where for example,
Pr(te|ar) = Pr(te|—ar) = .00999.

Show the calculations justifying your answers.
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Chapter 13

Abductive Reasoning

So far in this book we have concentrated on reasoning that is primarily deductive
in nature: given aKB representing some explicit beliefs about the world, we try to
deduce some «, to determine if it isan implicit belief, or perhaps to find a constant
(or constants) ¢ such that o isanimplicit belief. This pattern shows up not only in
ordinary logical reasoning, but aso in description logics and procedural systems.
In fact, avariant even shows up in probabilistic and default reasoning, where extra
assumptions might be added to the KB, or degrees of belief might be considered.

In this chapter, we consider a completely different sort of reasoning task. Sup-
pose we are given a KB and an « that we do not believe at all (even with default
assumptions). We might ask the following: given what we aready know, what
would it take for usto believe that o wastrue? In other words, what else would we
have to be told for « to become an implicit belief? One interesting aspect of this
guestion isthat the answer we are expecting will not be“yes’ or “no” or the names
of some individuals; instead, the answer should be aformula of the representation
language.!

Thetypical pattern for deductive reasoning is as follows:

given (p D ¢), from p, we can deduce ¢;
the corresponding pattern for what is called abductive reasoning is as follows:
given (p D ¢), from ¢, we can abduce p;

Abductive reasoning is in some sense the converse of deductive reasoning: instead
of looking for sentences entailed by p given what is known, we look for sentences

!In the last section of this chapter, we will see that it can be useful to have some deductive tasks
that return formulas as well.
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that would entail ¢ given what is known.?

Another way to look at abduction is asaway of providing an explanation. The
typical application of theseideasisin reasoning about causes and effects. Imagine
that p is acause (for example, “it israining”) and ¢ is an effect (for example, “the
grassiswet”). Deductive reasoning would be used to predict the effects of rain, i.e.,
wet grass, among others; abductive reasoning would be used to conjecture the cause
of wet grass, i.e,, rain, among others. In this case, we are trying to find something
that would be sufficient to explain a sentence's being true.

13.1 Diagnosis

One case of reasoning about causes and effects where abductive reasoning appears
especialy useful is diagnosis. Imagine that we have a collection of factsin a KB
of the form

(Disease A ... D Symptoms)

where the ellipsisis collection of hedges or qualifications. The goal of diagnosisis
to find a disease (or diseases) that best explains a given set of observed symptoms.

Note that in this setting we would not expect to be able to reason deductively
using facts of the form

(Symptoms A ... D Disease),

because facts like these are much more difficult to obtain. Typically, a disease will
have a small number of well-known symptoms, but a symptom can be associated
with alarge number of potential diseases (e.g., fever can be caused by hundreds of
afflictions). It isusualy much easier to account for an effect of agiven cause than
to prescribe a cause of agiven effect. So the diagnosiswe are looking for will not
be an entailment of what is known; rather, it is merely a conjecture.

For example, imagine a KB containing the following (in non-quantified form,
to keep things simple):

TennisElbow O SoreElbow,
TennisElbow DO TennisPlayer,
Arthritis A —Treated D SoreJoints,
SoreJoints O SoreElbow A SoreHips.

2The term “abduction” in this sense is due to the philosopher C. S. Peirce, who also discussed a

third possible form of reasoning, induction, which takes as given (a number of instances of) both p
and ¢, and inducesthat (p D ¢) istrue.
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Now suppose we would like to explain an observed symptom: SoreElbow. Infor-
mally, what we are after is a diagnosis like TennisElbow which clearly accounts
for the symptom, given what is known. Another equally good diagnosis would be
(Arthritis A = Treated) which aso explains the symptom. So we are imagining that
there will in general be multiple explanations for any given symptom, quite apart
from thefact that logically equivalent formulaslike (—Treated A =—Arthritis) would
work aswell.

13.2 Explanation

In characterizing precisely what we are after in an explanation, it useful to think in
terms of four criteria:

Given KB and aformula 3 to be explained, we are looking for a for-
mula«a satisfying the following:

1. aissufficient to account for 5. More precisely, we want to find
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would still satisfy the first two criteria, although the vegetarian
part is unnecessary. In general, we want « to use asfew termsas
possible. In the propositiona case, this means as few literals as
possible.

4. « isin the appropriate vocabulary. Note, for example, that ac-

cording to the first three criteria above, SoreElbow is aformula
that explains SoreElbow. We might call this the trivial explana-
tion. It isalso the case that SoreJoints satisfies the first three cri-
teria. For various applications, this may or may not be suitable.
Intuitively, however, in this case, since we think of SoreJoints in
thisKB as being almost just another name for the conjunction of
SoreElbow and SoreHips, it would not really be agood explana-
tion. Usualy, we have in mind a set H of possible hypotheses
(aset of atomic sentences) in terms of which explanations are to
be phrased. In the case of medical diagnoses, for instance, these
would be diseases or conditionslike ChickenPox or TennisElbow.
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an a such that KB U {a} E £, or equivaently, KB E (a D 3).
Any « that does not satisfy this property would be considered too
weak to serve as an explanation for 3.

. aisnot ruled out by the KB. More precisely, we want it to bethe
casethat KB U {«} isconsistent, or equivalently, that KB £ —a.
Without this, aformulalike (p A —p), which always satisfies the
first criterion above, would be a reasonable explanation. Simi-
larly, if =TennisPlayer were a fact in the above KB, then even
though TennisElbow would still entail SoreElbow, it would not
be an appropriate diagnosis.

.« is as simple and parsimonious as possible. By this we mean
that « does not mention extraneous conditions. A simple case of
the kind of situation we want to avoid iswhen « is unnecessarily
strong. In the above example, aformulalike

(TennisElbow A ChickenPox)

satisfies the first two criteria: it implies the symptom and is con-
sistent with the KB. But the part about chicken pox is unneces-
sary. Similarly (but less obviously), the o can be unnecessarily
weak. If —=Vegetarian wereafact inthe above KB, then aformula
like

(TennisElbow V Vegetarian)

In that case, SoreJoints would not be a suitable explanation.

We call an o that satisfies the four conditions above an abductive ex-
planation of /3 with respect to KB.

13.2.1 Somesimplifications

With this definition of an explanation in hand, we will see that in the propositional
case at least, certain simplifications to the task of generating explanations are pos-
sible.

First of all, while we have considered explaining an arbitrary formula 3, it is
sufficient to know how to explain asingle literal, or even just an atom. The reason
for thisis that we can choose anew atom p that appears nowhere else, and get that
a isan explanation for 3 with respect to KB if and only if « isan explanation for p
with respect to (KB U {(p = /3}), as can be verified by considering the definition of
explanation above. In other words, according to the criteriain the above definition,
anything that is an explanation for p would aso be considered an explanation for
3, and vice-versa

Next, while we have considered explanationsthat could be any sort of formula,
it issufficient to limit our attention to conjunctionsof literals. To see why, imagine
that some arbitrary formula « is an explanation for 3, and assume that when « is
converted into DNF, we get (d1 V - - - V d,,), where each d; is aconjunction of lit-
erals. Observethat each d; entails 3, and uses terms of the appropriate vocabulary.
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Moreover, at least one of the d; must be consistent with the KB (since otherwise «
would not be). Thisd; isaso as simple or simpler than « itself. So thissingle d;
by itself can be used instead of « as an explanation for 3.

Because a conjunction of literals is logically equivalent to the negation of a
clause, it then followsthat to explain aliteral p, it issufficient to look for aclause ¢
(in the desired vocabulary) with asfew literals as possibl e that satisfiesthe follow-
ing constraints:

1. KB F (—¢ D p), or equivaently, KB [ (¢ U {p}), and
2. KBFte.

This brings us to the topic of prime implicates.

13.2.2 Primeimplicates

A clause c issaid to be aprime implicate of aKB if and only if
1. KB E ¢, and
2. forevery ¢/ C ¢, itisthecasethat KB £ ¢'.

Note that for any clause ¢, if KB [ ¢, then some subset of ¢ or perhaps ¢ itself must
be a prime implicate of KB. For example, if we have aKB consisting of

{pAgAr D g),(pAg D g),(gAr D g)}

then among the prime implicates are (p vV —¢ V g) and (—r V g). Each of these
clausesis entailed by KB, and no subset of either of them is entailed. In thisKB,
thetautologies (pV —p) (¢V —q), (r vV —r), etc., areaso primeimplicates. Ingeneral,
note that for any atom p, unlessKB F p or KB F —p, the tautology (p V —p) will
be a prime implicate.

Returning now to explanationsfor aliteral p, aswe said, we want to find mini-
mal clauses ¢’ suchthat KB | (¢!U{p}) but KB [£ ¢’. Therefore, itwill be sufficient
to find prime implicates ¢ containing p, in which case, the negation of (¢ — p) will
be an explanation for p. For the example KB above, if we want to generate the ex-
planations for ¢, wefirst generate the prime implicates of KB containing ¢, which
are(pV qVyg), (-rVg),and(gV -g), and then we remove the atom g and negate
the clauses to obtain three explanations (as conjunctions of literals): (-p A q), r,
and ¢ itself. Note that tautologous prime implicates will always generate trivial
explanations.
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13.2.3 Computing explanations

From the above we can derive a procedure to compute explanations for any literal
p in some vocabulary H:

1. calculate the set of prime implicates of the KB that contain the literal p;
2. remove p from each of the clauses;

3. return as explanations the negations of the resulting clauses, provided that
the literals are in the language .

The only thing left to consider is how to generate prime implicates.

Asit turns out, Resolution can be used directly for this: it can be shown that
in the propositional case, Resolution is complete for non-tautologous prime im-
plicates. In other words, if KB is a set of clauses, and if KB F ¢ where cisa
non-tautologous prime implicate, then KB F ¢. The completeness of Resolution
for the empty clause, used in the Resolution chapter, is just a specia case: the
empty clause, if entailed, must be a primeimplicate. So we can compute all prime
implicates of KB containing p by running Resolution to completion, generating all
resolvents, and then keeping only the minimal ones containing p. If we want to
generate trivial explanations as well, we then need to add the tautologous prime
implicatesto this set.

Thisway of handling explanations suggests that it might be agood ideato pre-
compute all prime implicates of a KB using Resolution, then to generate explana-
tionsfor aliteral by consulting this set as needed. Unfortunately, thiswill not work
in practice. Even for aKB that is a set of Horn clauses, there can be exponentially
many prime implicates. For example, consider the following Horn KB over the
atoms p;, ¢;, F;, O; for 0 < i < n, and k£, and O,,. This example is aversion of
parity checking; p; means bit 7 is on, ¢; means off, £; means the count up to level
1 iseven, O; means odd:

EiAp; D O
FiNg D Fin
O;Ap; D Fin
OiNg; D Oin1
Fo

=00

This KB contains 4= + 2 Horn clauses of size 3 or less. Nonetheless there are 2~1
prime implicates that contain F,,: any clause of the form [z, ...z,_1, F,,] where
x; iseither p; or ¢; and an even number of them are p’s will be a primeimplicate.
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Figure 13.1: A circuit for afull adder

iny

bl : outy
iny ") J > bz

ing

Y

Y

a2

~—
outs
01 —
aq »-
.

13.3 A circuit example

In this section, we apply the above ideas to a circuit diagnosis problem. Overal,
the problem isto determine which component (or components) of aBoolean circuit
might havefailed given certain inputs and outputs, and abackground KB specifying
the structure of the circuit, the normal behaviour of logic gates, and perhaps afault
model.

The circuit in question is the full adder shown in Figure 13.1. A full adder
takes three bits as input—two addends and a carry bit from a previous adder—and
produces two outputs—the sum and the next carry bit. The facts we would expect
to havein aKB capturing this circuit are as follows:

¢ Components, using gate predicates:

Vz.Gate(z) = AndGate(z) V OrGate(z) V XorGate(z);
AndGate(a1), AndGate(ay),

XorGate(b;), XorGate(by),

OrGate(o1);

the whole circuit: FullAdder(f).

e Connectivity, using functions in; for input ¢, and out; for output 7 (where
inputs and outputs are numbered from the top down in the diagram):
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in1(b1) =ina(f), ina(b1) = in2(f),
in1(b2) = out(b1), in2(b2) =inz(f),
in1(a1) = in1(f), inz(a1) = in2(f),
in1(az2) =in3(f), in2(az2) = out(b1),
in1(01) = out(az), inz(o1) = out(aq),
outy(f) = out(bz), outa(f) = out(o1).

o Truth tablesin terms of functions and, or and xor:

and(0, 0) =0, and(0, 1) = O, etc.
or(0,0) = 0, or(0, 1) = 1, etc.
xor(0,0) = 0, xor(0, 1) = 1, etc.

¢ The normal behavior of logic gates, using a predicate Ab:3

Vaz.AndGate(z) A = Ab(z) D out(z) = and(ini(z), inz(z)),
Va.OrGate(z) A 7 Ab(z) D out(z) = or(ini(z), inz(z)),
Ya.XorGate(z) A 7 Ab(xz) D out(x) = xor(iny(z), iny(z)).

e Finally, we may or may not wish to include some specification of possible
abnormal behaviorsof thecircuit. Thisiswhat isusually called afault model.
For example, we might have the following specification:

short circuit:
Ya.[OrGate(z) vV XorGate(z)] A Ab(z) D out(z) =iny(z)

In this example, nothing is specified regarding the behavior of abnormal and-gates.
Of course by leaving out parts of afault model like this, or by making it too weak,
we run the risk that certain abnorma behaviors may be inexplicable, as we will
discuss further below. Note aso that abnormal behavior can be compatible with
normal behavior on certain inputs (the output is the same whether or not the gateis
working).

13.3.1 Thediagnosis

The abductive diagnosistask is as follows: given a KB as above, and some input
settings of the circuit, for example,

in1(f) =1, in2(f) = 0, ing(f) = 1,

3Although this predi cate was used for minimal entailment in Chapter 11, no default reasoning will
be used here.
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explain some output observations of the circuit, for example,
out1(f) = 1, outa(f) =0,

in the language of Ab. What we are looking for, in other words, is a minimal
conjunction « of ground Ab(c) and - Ab(c) terms such that

KB U Settings U {a} | Observations

To do this computation, we can use the techniques described above, athough we
first haveto“ propositionalize” by observing, for example, that the universally quan-
tified = in the above need only range over the five given gates.

To do this by hand, the easiest way is to make a table of all 2° possibilities
regarding which gates are normal or abnormal, seeing which of them entail the ob-
servations, and then looking for commonalities (and thus simplest possible expla-
nations). In Figure 13.2, in each row of the table, the sixth column says whether or
not the conjunction of Ab literals (either positive or negative) together with the KB
and the input settings entails the output observations. (Ignore the seventh column
for now.) For example, in row 5, we see that

Ab(by) A Ab(by) A = Ab(ar) A Ab(az) A Ab(o1)
entails the outputs; however, it is not an explanation since
Ab(b]_) A ﬁ/”)(a,l) A /U)(Ol)

aso entails the outputs (as can be verified by examining the 4 rows of the table
with these values) and is simpler. Moreover, no subset of these literals entails the
outputs. Continuingin this way, we end up with 3 abductive explanations:

1. Ab(b1) A —Ab(a1) A Ab(o1),
gates b1 and o1 are defective, but a; isworking;

2. Ab(by) AN ~Ab(ar) A ~Ab(ap),
gate b1 is defective, but a1 and a, are working;

3. Ab(b2) A ~Ab(ag) A Ab(o1);,
gates b, and o1 are defective, but a; isworking.

Observe that not all components are mentioned in these explanations. Thisis be-
cause, given the settings and the fault model, we would get the same resultswhether
or not the components were working normally. Different settings (or different fault
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Figure 13.2: Diagnosis of the full adder

by b ay ap 01 entailed? | consistent?
Ab(b)  Ab(b)  Ab(ay)  Ab(as)  Ab(o) | no yes
Ab(bl) Al)(bz) Ab(ul) Al)(uz) —|Al)(01) no yes
A b(bl) Ah(bz) Ab((],l) ‘!Ab((],z) /—”)(()1) no yes
Ab(bl) Al)(bz) Ab(al) —|Ab(a2) —|Ab(01) no yes
Ab(b))  Ab(bz) —Ab(a)  Ab(az)  Ab(or) | yes yes
Ab(by)  Ab(b)) —Ab(a)  Ab(ap) —Ab(oy) | o yes
Ab(b)  Ab(b2) —Ab(a) —Ab(az)  Ab(on) yes yes
A h(bl) Ah(hz) ‘!Af)((ll) ‘!Ah((],z) ‘!Ah({)l) yes yes
Ab(bl) —|Ab(b2) Ab(al) Ab(uz) Ab(ol) no yes
A b(bl) ‘!Ah(bz) Ah((],l) Ab((],z) ‘!Ah(()l) no yes
Ab(bl) —|Al)(b2) Ab(ul) —|AI)(LL2) AI)(();[) no yes
Ab(bl) —|Ab(b2) Ab((ll) —|Ab((12) —|Ab(01) no yes
Ab(by)  —Ab(b2) —Ab(ar)  Ab(az)  Ab(o1) yes yes
Ab(bl) —|Ab(b2) —|Ab(a1) Ab(az) —|Ab(01) no yes
Ab(b1) —Ab(b2) —Ab(ai)) —Ab(az) Ab(o01) yes yes
Ab(b)  —Ab(b2)  —Ab(a) —Ab(az)  —AD(0n) yes yes
—|Ab(b1) Ab(bz) Ab((ll) Ab((lz) Ab(ol) no yes
—Ab(b)  Ab(by)  Ablar)  Ab(as) —Ab(or) | no ves
—|Al)(b1) Al)(bz) Ab(ul) —|Ab(a2) Ab(ol) no yes
—Ab(b)  Ab(by)  Ablar) —Ab(as) —Ab(or) | no no
—Ab(b)  Ab(b2)  —Ab(a)  Ab(az)  Ab(oa) yes yes
‘!,45(!)1) Ah(bz) ‘!Af)((ll) /—”}((1,2) ‘!/—”}(()1) no yes
—Ab(by)  Ab(h2) —Ab(ar) —Ab(az)  Ab(on) yes yes
—|Ab(b1) Ab(bz) —|Ab(a1) —|Ab(a2) —|Ab(01) no no
‘!Ah(hl) ‘!Ah(hz) Ah((],l) Ah((],z) Ah({)l) no no
—|Ab(b1) —|Ab(b2) Ab(al) Ab(az) —|Ab(01) no no
‘!,45(’)1) ‘!Ah(bz) Ah((],l) ‘!Ah((],z) Ah(()l) no no
—|AI)(I)1) —|Al)(b2) Ab(ul) —|AI)(LL2) —|AI)(()1) no no
—|Ab(b1) —|Ab(b2) —|Ab((ll) Ab((lg) Ab(r)l) no no
—Ab(by) —Ab(by)) —Ab(ag) Ab(az) —Ab(01) no no
—|Ab(b1) —|Ab(b2) —|Ab(a1) —|Ab((12) Ab(ol) no no
—Ab(by) —Ab(by) —Ablar) —Ab(a) —Ab(o1) no no

models) could lead to different diagnoses. In fact, a key principle in this areais
what is called differential diagnosis, that is, trying to discover tests that would dis-
tinguish between competing explanations. In the case of the circuit, thisamountsto
trying to find different input settingsthat would provide different outputs depending
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onwhat isor is not working normally. One principle of good engineering designis
to make a circuit testable, that is, configured in such away as to facilitate testing
its (usually inaccessible) internal components.

13.3.2 Consistency-based diagnosis

One problem with the abductive form of diagnosis presented above is that it re-
lies crucially on the presence of a fault model. Without a specification of how a
circuit would behave when it is not working, certain output observations can be
inexplicable, and this form of diagnosis can be much less helpful.

In many cases, however, we know how a circuit is supposed to work, but may
not be able to characterize its failure modes. We would like to find out which com-
ponents could be at fault when output observations conflict with this specification.
Of course, with no fault model at all, we would be free to conjecture that all com-
ponents were at fault. What we are really after, then, isaminimal diagnosis, that
is, one that does not assume any unnecessary faults.*

This second version of diagnosis can be made precise as follows:

Assume KB usesthe predicate Ab asbefore. (The KB may or may not
include a fault model.) We want to find a set of components D such
that the set

{Ab(c)|lc € D} U {=Ab(c)|c ¢ D}

is consistent with the set
KB U Settings U Observations

and no proper subset of D is. Any such D iscalled aconsistency-based
diagnosisof the circuit.

So for consistency-based diagnosis, we look for (minimal sets of) assumptions of
abnormality that are consistent with the settings and observations, rather than (min-
imal sets of) assumptions of normality and abnormality that entail the observations.

In the case of the circuit example above (with the given fault model), we can
look for the diagnoses by hand by again making a table of all 2° possibilities re-
garding which gates are normal or abnormal, seeing which of them are consistent
with the settings and observations, and then looking for commonalities (and thus
minimal sets of faulty components). Returning to the table in Figure 13.2, in each

“Note that in the abductive account, we do not necessarily minimize the set of components as-
sumed to be faulty, in that the literals Ab(c) and - Ab(c) have equal status.
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row of the table, the seventh column says whether or not the conjunction of Ab
literals (either positive or negative) is consistent with the KB together with the in-
put settings and the output observations. (Ignore the sixth column thistime.) For
example, in row 5, we see that

{Ab(b1), Ab(b2), ~Ab(az), Ab(az), Ab(o1)}
is consistent with the inputsand outputs. Thisdoesnot yet giveusadiagnosissince
{Ab(b1), ~Ab(b2), ~ Ab(a1), ~ Ab(az), = Ab(0o1)}

is also consistent (row 16), and assumes a smaller set of abnormal components.

Continuing in thisway, thistimewe end up with 3 consi stency-based diagnoses:
{b1}, {b2, a2}, and {b2, 01}. Further testing could then be used to narrow down the
possibilities.

Whileitisdifficult to compare the two approachesto diagnosisin general terms,
it is worth noting that they do behave quite differently regarding fault models. In
the abductive case, with less of a fault model, there are usually fewer diagnoses
involving abnormal components, since nothing follows regarding their behaviour;
in the consistency-based case, the opposite usually happens, since anything can be
assumed regarding their behaviour. For example, one of three possibilities consid-
ered in the consistency-based account is that both b, and a, are abnormal, since
it is consistent that a; is producing a0, and then that the output of o, is 0. In the
abductive case, none of the explanations involve a; being abnormal, since there
would then be no way to confirm that the output of o1 is0. In general, however, it
isdifficult to give hard and fast rules about which type of diagnosis should be used.

13.4 Beyond the basics

We conclude this chapter by examining some complications to the simple picture
of abductive reasoning we have presented, and then finally sketching some non-
diagnostic applications of abductive reasoning.

13.4.1 Extensions

There are are anumber of waysin which our account of abductive reasoning could
be enlarged for more redlistic applications.

Variables and quantification: In the first-order case of abductive reasoning,
we might need to change, at the very least, our definition of what it means for
an explanation to be as simple as possible. It might also be useful to consider
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explaining formulas with free variables, as a way of answering certain types of
WH-questions, in away that goes beyond answer extraction. Imagine we have a
query like P(x). We might return the answer (x = john) using answer extraction,
since this is one way of explaining how P(x) could be true. But we might also
return something like @ («) as the answer to the question. For example, if we ask
the question “what are yellow song birds that serve as pets?’ the answer we are
expecting is probably not the names of some individual birds, but rather another
predicate like “canaries.” Note however that it is not clear how to use Resolution
to generate explanations in afirst-order setting.

Negative evidence: We haveinsisted that explanations entail everything to be
explained. We might, however, imagine cases where missing observations need to
be accounted for. For example, we might be interested in amedical diagnosis that
does not entail fever, without necessarily requiring that it entail —fever.

Defaults: We have used logical entailment as the relation between an expla-
nation o and what is being explained 5. In a more genera setting, it might be
preferable to require that it be reasonable to believe 3 given «, where this belief
could involve default assumptions. For example, being a bird might explain an
animal being able to fly, even though it would not entail it.

Probabilities: We have preferred explanations and diagnoses that are as sim-
ple as possible. However, in general, not al simplest ones would be expected to be
equaly likely. For example, we may have two circuit diagnoses, each involving a
single component, but it may be that one of them is much more likely to fail than
the other. Perhaps the failure of one component makes it very likely that another
will fail aswell. Moreover, the “causa laws’ we have between (say) diseases and
symptoms would typically have a probabilistic component: only a certain percent-
age of the time would we expect a disease to show a symptom.

13.4.2 Other applications

Finaly, let us consider other applications of abductive reasoning.

Object recognition: Thisisan application where a systemis given input from
acamera, say, and must determine what isbeing viewed. At onelevel, the question
isthis: what scene would explain the image elements being observed? Abduction
isrequired here since, as with diseases and symptoms, it is presumed to be easier
to obtain facts that tell us what would be visible if an object were present, than to
obtain facts that tell us what object is present if certain patterns are visible. At a
higher level, once certain properties of the object have been determined, another
question to consider is this: what object(s) would explain the collection of proper-
ties discovered? Both of these tasks can be nicely formulated in abductive terms.
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Plan recognition: Inthiscase, the observations are the actions of an agent, and
the explanation we seek is one that relates to the high-level goals of the agent. If
we observe the agent boiling water, and heating a tomato sauce, we might abduce
that apasta dish is being prepared.

Hypothetical reasoning: As a fina application, consider the following. In-
stead of asking “what would | have to be told to believe that /5 is true?” asin
abductive reasoning, we ask “what would | learn if | were told that o were true?’
For example, we might be looking for new symptoms that would be entailed if a
disease were present. Thisis clearly aform of deductive reasoning, but one where
we are interested in returning a formula, rather than a yes/no answer or the names
of someindividuas. In asense, it is the dual of explanation: we are looking for
aformula s that is entailed by « together with the KB, but one that is not aready
entailed by the KB itself, that is simple and parsimonious, and that isin the correct
vocabulary.

Interestingly, there is a precise connection between this form of reasoning and
the type of explanation we have aready defined: we should learn 5 on being told
a in the above sense if and only if the formula -/ is an abductive explanation for
-« asdready defined. For instance, to go back to the tennis exampl e at the start of
the chapter, one of new things we ought to learn on being told

(Arthritis A —SoreElbow)

would be Treated (that is, the arthritis is being treated). If we now go back to
the definition of explanation, we can verify that —Treated is indeed an abductive
explanation for

—(Arthritis A ~SoreElbow),

since —Treated entails this sentence, is consistent with the KB, and is as smple
as possible. The nice thing about this account is that an existing procedure for
abductive reasoning could be used directly for this type of deductive reasoning.

13.5 Bibliographic notes

13.6 Exercises

1. In Chapter 4, we saw that Resolution was logically complete for the empty
clause, but not for clauses in general. Prove that Resolution is complete for
prime implicants that are not tautologous. Hint: Assume that ¢ is a prime
implicant of aset of clausesZ. Thenthereisaderivationof O, given > and the
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3. Consider the binary circuit for logical AND depicted in Figure 13.3, where

Figure 13.3: A circuit for AND 11,12, and I3 are logical inverters, and O1 is an OR gate.

(a) Write sentences describing this circuit: its components, connectivity,

~ and normal behaviour.
}O (b) Write a sentence for a fault model saying that afaulty inverter has its
output the same asits input.
ol) %@ (c) Assuming the above fault model and that the output is 1 given inputs of
—L/ V 0 and 1, generate the three abductive explanations for this behaviour.
} (d) Generate the three consistency-based diagnoses for this circuit under
i2 O -
L— the same conditions.

(e) Compare the abductive and consistency-based diagnoses and explain
informally why they are different.

negation of ¢. Show how to modify this derivation to obtain anew Resolution
derivation that ends with ¢ but uses only the clausesin X.

2. Inthisquestion we explore what it could mean to say that a KB “ says some-
thing” about some topic. More precisely, we say that a set of propositional
clauses S is relevant to an atom p iff p appears (either positively or nega-
tively) in a non-tautologous prime implicate of 5.

(a) Give an example of a consistent set of clauses 5 where an atom p is
mentioned, but where S is not relevant to p.

(b) Suppose we have aclause ¢ € §, and aliteral p € ¢. Show that if
S ¢ —{p}, then p appearsin aprimeimplicate of 5.

(c) Suppose we have aclause ¢ € 5, and aliteral p € ¢. Show that if
S Ec¢—{p}, then S islogicaly equivalent to 5’ where 5’ is S with ¢
replaced by ¢ — {p}.

(d) Suppose $'isconsistent. Use parts (b) and (c) to show that .S isrelevant
to p iff thereisanon-tautologousclause ¢ € S withp € ¢, wherep = p
or p=-psuchthat S £ ¢ — {p}.

(e) Usepart (d) to argue that there is polynomial time procedure that takes
aset of Horn clauses 5 and an atom p asarguments and decides whether
S isrelevant to p. Note: the naive way of doing this would take expo-
nential time since S’ can have exponentially many prime implicates.
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Chapter 14

Actions

The language of FOL is sometimes criticized as being an overly “static” represen-
tation formalism. Sentences of FOL are either true or falsein an interpretation and
stay that way. Unlike procedural representations or production systems, there is
seemingly nothing in FOL corresponding to any sort of change.

Infact, therearetwo sortsof changesthat we might want to consider. First, there
isthe idea of changing what is believed about the world. Suppose « is a sentence
saying that birds are the descendants of dinosaurs. At some point, you might come
tobelievethat a istrue, perhapsby being told directly. If you had no beliefs about o
before, thisisastraightforward process that involves adding « to your current KB.
If you had previously thought that o wasfalse, however, perhaps having concluded
this from a number of other beliefs, dealing with the new information is a much
more complicated process. The study of which of your old beliefs to discard is
an important area of research known as belief revision, but one that is beyond the
scope of this book.

The second notion of change to consider is when the beliefs themselves are
about a changing world. Instead of merely believing that John is a student, for
example, you might believe that John was not astudent initially, but that he became
astudent by enrolling at a university, and that he later graduated, and ceased to be
astudent. In thiscase, while theworld you areimagining is certainly changing, the
beliefs you have about John’s history as a whole need not change at all .

In this chapter, we will study how beliefs about a changing world of this sort
can in fact be represented in a dialect of FOL called the situation calculus. This
is not the only way to represent a changing world, of course, but it is asimple and

Of course, we might also have changing beliefs about a changing world, but we will not pursue
this here.
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powerful way to do so. It also naturally lends itself to various sorts of reasoning,
including planning, discussed separately in the next chapter.

14.1 Thesituation calculus

One way of thinking about change is to imagine being in a certain situation, with
actionsmoving you from onesituationto thenext. Thesituation calculusisadialect
of FOL in which such situations and actions are taken to be objects in the domain.
In particular, there are two distingui shed sorts of first-order terms:

e actions: such as jump (the act of jumping), kick(x) (kicking object ), and
put(r, x, y) (robot r putting object = on top of object y). The constant and
function symbols for actions are compl etely application-dependent.

¢ situations, which denote possible world histories. A distinguished constant
So and function symbol do are used. 5y denotes the initial situation, before
any action has been performed; do(«, s) denotesthesituation that resultsfrom
performing action « in situation s.

For exampl e, the situation term do(pickup(b2), do(pickup(b1), So)) denotes the situ-
ation that results from first picking up object 1 in S and then picking up object b5.
Note that this situation is not the same as do(pickup(b1), do(pickup(b2), So)), Since
they have different histories, even though the resulting states may be indistinguish-
able.

14.1.1 Fluents

Predicates and functions whose values may vary from situation to situation are
caled fluents, and are used to describe what holds in a situation. By convention,
the last argument of afluent isasituation. For example, the fluent Holding(r, , s)
might stand for the relation of robot » holding object « in situation s. Thus, we can
have formulaslike

=Holding(r, ,s) A Holding(r, z,do(pickup(r, =), s))

which says that robot  is not holding « in some situation s, but isholding = in the
situation that results from picking it up. Note that in the situation calculus thereis
no distinguished “current” situation. A single formulalikethis can talk about many
different situations, past, present, or future.
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Finally, adistinguished predicate Poss(a, s) is used to state that action « can be
performed in situation s. For example,

Poss(pickup(r, x), So)
says that the robot » isableto pick up object z in theinitia situation.
This completes the specification of the dialect.

14.1.2 Precondition and effect axioms

To reason about a changing world, it is necessary to have beliefs not only about
what istrueinitially, but also about how the world changes as the result of actions.

Actionstypically have preconditions, that is, conditions that need to be true for
the action to occur. For example, in arobotics setting, we might have thefollowing:

e arobot can pick up an object if and only if it is not holding anything, the
object is not too heavy, and the robot is next to the object:?2

Poss(pickup(r, z), s) =
Vz.=Holding(r, z, s) A =Heavy(z) A NextTo(r, x, s);

o itispossiblefor arobot to repair an object if and only if the object is broken
and thereis glue available:

Poss(repair(r, x), s) = Broken(z, s) A HasGlue(r, s).

Actions typically aso have effects, that is, fluents that are changed as a result of
performing the action. For example,

o dropping a fragile object causesit to break:
Fragile(z) D Broken(z, do(drop(r, 2), s));

e repairing an object causesit to be unbroken:
—-Broken(z, do(repair(r, ), s)).

Formulas like those above are often called precondition axioms and effect axioms
respectively.3 Effect axioms are called positive if they describe when afluent be-
comes true, and negative otherwise.

2In this chapter, free variables should be assumed to be universally quantified from the outside.
3These are called “axioms’ for historical reasons: a KB can be thought of as the axioms of a
logical theory (like number theory or set theory), with the entailed beliefs considered as theorems.
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14.1.3 Frameaxioms

To fully capture the dynamics of asituation, we need to go beyond the preconditions
and effects of actions. So far, if afluent is not mentioned in an effect axiom for an
action a, we would not know anything at al about it in the situation do(a, s). To
really know how the world can change, it is aso necessary to know what fluents
are unaffected by performing an action. For example,

¢ dropping an object does not change its colour:
Colour(z, ¢, s) D Colour(z, ¢, do(drop(r, z), s));
o dropping an object y does not break an object 2 whenz % y or = isnot fragile:

—Broken(z, s) A [z Zy V —Fragile(z)] D
—Broken(z, do(drop(r, y), $)).

Formulas like these are often called frame axioms. Observe that we would not
normally expect them to be entailed by the precondition or effect axioms for the
actionsinvolved.

Frame axioms do present a serious problem, however, sometimes called the
frame problem. Simply put, the problem is that it will be necessary to know and
reason effectively with an extremely large number of frame axioms. Indeed, for
any given fluent, we would expect that only a very small number of actions affect
the value of that fluent; therest leaveit invariant. For instance, an object’scolour is
unaffected by picking things up, opening adoor, using the phone, making linguini,
walking the dog, electing a new Prime Minister of Canada etc. etc. All of these
will require frame axioms. It seems very counterintuitive that we should need to
even think about these =~ 2 x A x F facts (where A is the number of actions, and
F, the number of fluents) about what does not change when we perform an action.

What counts as a solution to this problem? Suppose the person responsible for
building a KB has written down all the relevant effect axioms. That is, for each
fluent F'(#, s) and action « that can cause the fluent to change, we have an effect
axiom of the form

NZ, s) D (-)F(Z,dofa, s)),

where ¢(Z, s) is some condition on situation s. What we would likeis a systematic
procedure for generating all the frame axioms from these effect axioms. Moreover,
if possible, we aso want a parsimonious representation for them, since in their
simplest form, there are too many.

And why do we want such asolution? There are at least three reasons:
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¢ Frame axioms are necessary beliefs about a dynamic world that are not en-
tailed by other beliefs we may have.

¢ For the convenience of the KB builder: generating the frame axioms auto-
matically gives us modularity, since only the effect axioms need to be given
by hand. This ensuresthere is no inadvertent omission or error.

¢ Such a solution is useful for theorizing about actions. we can see what as-
sumptions need to be made to draw conclusions about what does not change.

We will examine a simple solution to the frame problem in Section 14.2.

14.1.4 Usingthe situation calculus

Given aKB containing facts expressed in the situation calculus as above, there are
various sorts of reasoning tasks we can consider. We will see in the next chapter
that we can do planning. In Section 14.3, we will see that we can figure out how
to execute a high-level action specification. Here we consider two basic reasoning
tasks: projection and legality testing.

The projection task is the following: given asequence of actions and someini-
tial situation, determine what would betrueif those actionswere performed starting
inthat initial situation. This can be formalized as follows:

Suppose that ¢(s) isaformulawith asingle free variable s of the situ-
ation sort, and that @ is a sequence of actions (ay, ..., a, ). Tofind out
if ¢(s) would be true after performing @ starting in theinitial situation
So, we determine whether or not KB F ¢(do(d, So)), where do(@, So)
isan abbreviation for do(a,,, do(a,,—1, . .., do(az, do(a1, So)) . . .))-

For example, using the above effect and frame axioms, it follows that the fluent
—-Broken(b2, s) would hold after the sequence of actions

{pickup(b1), pickup(bz), drop(hz), repair(bz), drop(bs))-
In other words, the fluent holds in the situation
s = do(drop(b1), do(repair(bz), do(drop(bz), do(pickup(bz), do(pickup(b1), 50)))))-

It isaseparate matter to determine whether or not the given sequence of actions
could in fact be performed starting in the initial situation. Thisiscalled thelegality
testing task. For example, a robot might not be able to pick up more than one
object at atime. We call a situation term legal if it is either the initial situation,
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or the result of performing an action whose preconditions are satisfied starting in a
legal situation. For example, although the term

do(pickup(b2), do(pickup(b1), So))

iswell formed, it is not alega situation, since the precondition for picking up b2
(e.g not holding anything) will not be satisfied in a situation where b, has aready
been picked up. So the legality task is determining whether a sequence of actions
leadsto alegal situation. This can be formalized as follows:

Suppose that @ is a sequence of actions (a1, ..., a,,). To find out if &
can be legally performed starting in the initia situation 5o, we deter-
mine whether or not KB | Poss(a;, do({a1, ..., a;_1), So)) for every
isuchthat1 < i < n.

Before concluding this section on the situation calculus, it is perhaps worth
noting some of the representational limitations of this language:

e single agent: there are no unknown or unobserved exogenous actions per-
formed by other agents, and no unnamed events;

e notime: wehavenot talked about how long an action takes, or whenit occurs;

e no concurrency: if asituation isthe result of performing two actions, one of
them is performed first and the other afterwards;

¢ discrete actions: there are no continuous actions like pushing an object from
one point to another, or a bathtub filling with water;

¢ only hypotheticals: we cannot say that an action has occurred in reality, or
will occur;

o only primitive actions: there are no actions that are constructed from other
actions as parts, such asiterations or conditionals.

Many of these limitations can be dealt with by refinements and extensions to the
dialect of the situation calculus considered here. We will deal with the last of these
in Section 14.3 below.

But first we turn to a solution to the frame problem.
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14.2 A simple solution to the frame problem

The solution to the frame problem we will consider depends on first putting all
effect axioms into anormal form.

Suppose, for example, that there are two positive effect axioms for the fluent
Broken:

Fragile(z) D Broken(z, do(drop(r, z), s))
NextTo(b, =, s) D Broken(z, do(explode(b), s)).

So an object is broken if it is fragile and it was dropped, or something next to it
exploded. Using a universally quantified action variable a, these can be rewritten
asasingle formula

Jr{a = drop(r, z) A Fragile(z)} v
3b{a = explode(b) A NextTo(b, z:,s)} D
Broken(z, do(a, s))

Similarly, a negative effect axiom like
—Broken(z, do(repair(r, x), s)),

saying that an object is not broken after it is repaired, can be rewritten as
Ir{a = repair(r,z)} D -Broken(z,do(q, s)).

In general, for any fluent #'(Z, s), we can rewrite al of the positive effect axioms
asasingle formula of the form

Ng(%,a,s) D F(&,do(a, s)), (1)
and all the negative effect axioms as a single formula of the form

Nr(Z, a,8) D —F(&,do(a, s)), (@)
where Mz (Z, a, s) and Ny (2, a, s) are formulas whose free variables are among the
x4, @, and s.
14.2.1 Explanation closure

Now imagine that we make a completeness assumption about the effect axioms
we have for a fluent: assume that formulas (1) and (2) above characterize all the
conditions under which an action « changes the value of fluent . We can in fact
formalize this assumption using what are called explanation closure axioms as fol-
lows:
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- F(Z,8) A F(Z,do(a, s)) D MNp(Z,a,s) 3)
if F" werefalse, and made true by doing action «, then condition Mz
must have been true;
F(Z,s) N —F(Z,do(a, s)) D Nr(Z,a,s) 4
if F" were true, and made false by doing action «, then condition Nz
must have been true.

Informally, these axioms add an “only if” component to the normal form effect
axioms: (1) saysthat ¥’ ismadetrueif M, holds, while (3) saysthat F’ ismadetrue
only if Mg holds.# In fact, by rewriting them dlightly, these explanation closure
axioms can be seen to be disguised versions of frame axioms:

= F(@,s) A -Ngp(Z,a,s) D - F(F,do(a, s))

F(Z,8) A =Np(Z,a,s) D F(Z,do(a, s)).
In other words, #' remainsfalse after doing « when Mz isfalse, and #' remainstrue
after doing @ when Nz isfalse.

14.2.2 Successor state axioms

If we are willing to make two assumptions about our KB, the formulas (1), (2), (3),
and (4) can be combined in a particularly simple and elegant way. Specifically, we
assume that our KB entails the following:

o integrity of the effect axioms for every fluent £
=37, a, 8. Mp(Z, a,8) A Np(F, a, s)
e unique names for actions:

A(T) = 4(17) D ('/151 = yl) A-e-A (xn = yn)
A(Z) # B(¥), where A and B are distinct action names

The first assumption is merely that no action « satisfies the condition to make the
fluent #' both true and false. The second assumption is that the only action terms
that can be equal are two identical actions with identical arguments.

With these two assumptions, it can be shown that for any fluent £’ KB entails
that (1), (2), (3), and (4) together are logically equivalent to the following formula:

F(Z,do(a,s)) = Np(Z,a,s) VvV (F(Z,s) A =Ng(7,a,s)).

“Note that in (3) we need to ensure that F' was originally false and was made true to be able to
conclude that M held, and similarly for (4).
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A formulaof thisform is called a successor state axiomfor the fluent F' because it
completely characterizes the value of fluent £ in the successor state resulting from
performing action « in situation s. Specifically, F' istrue after doing « if and only
if before doing «, Mg (the positive effect condition for F) was true or both F* and
-Nr (the negative effect condition for F) were true. For example, for the fluent
Broken, we have the following successor state axiom:

Broken(z, do(a, s)) =
dr{a = drop(r, ) A Fragile(z)} V
db{a = explode(b) A NextTo(b, z, s)} V
Broken(z, s) A Vr{a # repair(r,z)}

Thissaysthat an object « is broken after doing action « if and only if « isadropping
action and z isfragile, or « isabomb exploding action when z is near to the bomb,
or ¢ was aready broken and « is not the action of repairing it.

Note that it follows from this axiom that dropping a fragile object will break
it. Moreover, it aso follows logically that talking on the phone does not affect
whether or not an object is broken (assuming unique names, i.e. talking on the
phone is distinct from any dropping, exploding, or repairing action). Thus a KB
containing thissingle axiom would entail al the necessary effect and frame axioms
for the fluent in question.

1423 Summary

We have, therefore, asimple solution to the frame problemin termsof the following
axioms:

e successor state axioms, one per fluent,
¢ precondition axioms, one per action,
¢ unigue name axiomsfor actions.

Observethat we do not get asmall number of axiomsat the expense of prohibitively
long ones. The length of a successor state axiom is roughly proportional to the
number of actionsthat affect the value of the fluent, and, as we noted earlier, we do
not expect in general that very many of the actions would change the value of any
given fluent.

The conciseness and perspicuity of this solution to the frame problem clearly
depends on three factors:
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1. the ability to quantify over actions, so that only actions changing the fluent
need to be mentioned by name;

2. theassumption that relatively few actions affect each fluent, which keeps the
successor state axioms short;

3. the completeness assumption for the effects of actions, which alows us to
conclude that actions that are not mentioned explicitly in effect axiomsleave
the fluent invariant.

The solution also depends on being ableto put effect axiomsin the normal form used
above. This would not be possible, for example, if we had actions whose effects
were nondeterministic. For example, imagine an action flipcoin whose effect isto
make either the fluent Heads or the fluent Tails true. An effect axiom like

Heads(do(flipcoin, s)) V Tails(do(flipcoin, s))

cannot be put into the required normal form. In general, we need to assume that
every action « is deterministic in the sense that all the given effect axioms are of
the form

o(Z,s) D (m)F(Z,do(a, s)).
How to deal in some way with nondeterministic choice and other complex actions
isthe topic of the next section.

14.3 Complex actions

So far, in our treatment of the situation calculus, we have assumed that there are
only primitive actions, with effects and preconditions independent of each other.
We have no way of handling complex actions, that isto say, actions that have other
actions as components. Examples of these are actions like the following:

e conditionals: if the car isin the driveway then drive and otherwise walk;
o iterations; while there are blocks on the table, remove one;

e nondeterministic choice: pick ared block up off the table and put it on the
floor;

and others, as described below. What wewould liketo doisto definesuch actionsin
terms of their primitive componentsin such away that we can inherit their solution
to the frame problem. To do this, we need a compositional treatment of the frame
problem for complex actions. This is precisely what we will provide, and we will
see that it resultsin anovel kind of programming language.
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14.3.1 TheDoformula

To handle complex actionsin general, it is sufficient to show that for each complex
action A we care about, there is aformula of the situation calculus, which we call
Do(A, s, s'), that saysthat action A when started in situation s canterminatelegally
in situation s’. Because complex actions can be nondeterministic, there may be
more than one such s’. Consider, for example, the complex action

[pickup(by) ; if INRoom(kitchen) then putaway(b;) €lse goto(kitchen)].

For this action to start in situation s and terminate legally in s’, the following sen-
tence must be true:

Poss(pickup(b1), s) A
[ (InRoom(kitchen, do(pickup(b1), s))
A Poss(putaway(b1), do(pickup(b1), s))
A s = do(putaway(b1), do(pickup(b1), s)))
\
(=InRoom(kitchen, do(pickup(b1), s))
A Poss(goto(kitchen), do(pickup(b1), $))
A s = do(goto(kitchen), do(pickup(by), s))) ]

In general, we define the formula Do recursively on the structure of the complex
action asfollows:

1. For any primitive action A, we have
A dif ! —
Do(A,s,s") = Poss(A,s) A s’ =do(A, s).

2. For the sequential composition of complex actions A and B, [A ; B], we
have

Do([A; Bl,s,s') = Do(A,s,s") AN Do(B,s", ).
3. For aconditional involving atest ¢° of theform[if ¢ then A else B], wehave

Do([if & then A ese B], s, s) <
[¢(s) A Do(A,s,5)] V [¢(s) A Do(B, s, s)].
5If ¢(s) isaformulaof the situation calculuswith afree variable s, then ¢ isthat formulawith the

situation argument suppressed. For example, in a complex action we would use the test Broken(z)
instead of Broken(z, ).

(©2003 R. Brachman andH. Levesque July17, 2003 290

4. For atest action, [¢7], determining if a condition ¢ currently holds, we have
Do([¢,5,5) & o) A =

5. For anondeterministic branch to action A or action B, [4 | B], we have
Do([A | B],s,s") =l Do(A,s,s")V Do(B, s, s").

6. For a nondeterministic choice of avaluefor variable z, [ 2. A], we have
Do([rx.A],s,s") =4 dz.Do(A, s, s').

7. For an iteration of the form [while ¢ do A], we have®
Do([while 6 do 4], s,s') "< ¥P{... 5 P(s, )}

where the dllipsisis an abbreviation for the conjunction of

Vs1. mg(s1) O P(s1,1)
Vs1, 82, 83. #(s1) A Do(A, s1,32) A P(s2,53) D P(s1,$3)

Similar rules can be given for recursive procedures, and even constructs involv-
ing concurrency and interrupts. The main point is that what it means to perform
these complex actions can be fully specified in the language of the situation cal-
culus. What we are giving, in effect, is a purely logical semantics for many of the
constructs of traditional programming languages.

1432 GOLOG

What we end up with, then, is aprogramming language, called coroa, that gener-
alizes conventional imperative programming languages.” It includes the usual im-
perative constructs (sequence, iteration, etc.), as well as nondeterminism and other
features. The main difference, however, isthat the primitive statements of coroa
are not operations on internal states, like assignment statements or pointer updates,
but rather primitive actions in the world, such as picking up a block. Moreover,

5The rule for iteration involves second-order quantification: the P in this formulais a quantified
predicate variable. The definition says that an iteration takes you from s to s’ iff the smallest relation
P satisfying certain conditions does so. The details are not of concern here.

"The name comes from “Algol in logic,” after one of the original and influential programming
languages.
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what these primitive actions are supposed to do is not fixed in advance by the lan-
guage designer, but is specified by the user separately by precondition and successor
state axioms.

Given that the primitive actions are not fixed in advance or executed internally,
it isnot immediately obviouswhat it should mean to execute aGoLoOG program A.
There are two steps:

1. find a sequence of primitive actions @ such that Do(A, So, do(@, So)) is en-
tailed by the KB;

2. passthe sequence of actions @ to arobot or simulator for actual execution in
the world.

In other words, to execute a program we must first find a sequence of actions that
would take us to alegal terminating situation for the program starting in theinitial
situation 5o, and then run that sequence.

Note that to find such a sequence, it will be necessary to reason using the given
precondition and effect axioms, performing projection and legality testing. For
example, suppose we have the program

[A ; if Holding(z) then B else C].
To decide between B and ', we need to determine whether or not Holding(z, s)
would be true in the situation that results from performing action A.

14.3.3 An example

To see how thiswould work, consider asimple examplein aroboticsdomaininvolv-
ing three primitive actions, pickup(z) (picking up a block), putonfloor(z) (putting
a block on the floor), and putontable(z) (putting a block on the table), and three
fluents Holding(z, s) (the robot is holding a block), OnFloor(x, s) (ablock ison the
floor), and OnTable(z, s) (ablock ison the table).

The precondition axioms are the following:

o Poss(pickup(z), s) = Vz.=Holding(z, s);
¢ Poss(putonfloor(z), s) = Holding(z, s);
¢ Poss(putontable(z), s) = Holding(z, s).

The successor state axioms are the following:
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e Holding(z,do(a, s)) = a = pickup(z) V
Holding(z, s) A a Z putonfloor(z) A @ 7 putontable(z);

e OnFloor(z,do(a, s)) = a = putonfloor(z) V
OnFloor(z, s) A a 7 pickup(z);

e OnTable(z, do(a, s)) = a = putontable(z) V
OnTable(z, s) A a 7 pickup(z).

We might also have the following facts about the initial situation:
e —Holding(xz, So);
e OnTable(z, So) = (x =b1) V (2 = by).

So initidly, the robot is not holding anything, and b1 and b, are the only blocks on
the table. Finaly, we can consider two complex actions, removing a block, and
clearing the table:

e proc RemoveBlock(z) : [pickup(x) ; putonfloor(x)];

e proc ClearTable : while 32.0OnTable(xz) do
mx[OnTable(z)?; RemoveBlock(z)].

This completes the specification of the example.

ToexecutethecoLoc program ClearTable, it isnecessary to first find an appro-
priate terminating situation, do(@, o), which determines the actions @ to perform.
To find this situation, we can use Resolution theorem-proving with answer extrac-
tion for the query

KB F 3s. Do(ClearTable, So, ).

We omit the details of this derivation, but the result will yield avaluefor s like

s = do(putonfloor(b2), do(pickup(b2)
do(putonfloor(b1), do(pickup(b1), 50))))

from which the desired sequence starting from S is
(pickup(b1), putonfloor(by), pickup(bz), putonfloor(by)).

In amore genera setting, an answer predicate could be necessary. In fact, in some
cases, it may not be possible to obtain a definite sequence of actions. This happens,
for example, if what is known about the initial situation is that either block b1 or
block b, is on thetable.
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Observe that if what is known about the initial situation and the actions can be
expressed as Horn clauses, the evaluation of coLoG programs can be done directly
in PROLOG. Instead of expanding Do(4, s, s’) into along formula of the situation
calculus and then using Resolution, we write PrRoLOG clauses such as

do(A S1,S2) - /* for primitive actions */
pri maction(A), poss(A Sl), S2=do(A, S1).

do(seq(A B), S1, S2) - 1* for sequences*/
do(A, S1, S3), do(B, S3, S2).

do(whil e(F, A), S1,S2) - /* for while loops (test false) */
not hol ds(F, S1), S2=S1.

do(whil e(F, A, S1,S2) - /* for while loops (test true) */

hol ds(F, S1), do(seq(A while(F, A)), S1, S2).
and so on. Then the proLOG goal
?- do(clear _table,s0,S).

would return the binding for the final situation.

This idea of using Resolution with answer extraction to derive a sequence of
actions to perform will be taken up again in the next chapter on planning. When
the problem can be reduced to ProLOG, we get a convenient and efficient way of
generating a sequence of actions. This has proven to be an effective method of
providing high-level control for arobot.

14.4 Bibliographic notes

145 Exercises

In the exercises below, and in the follow-up exercises of Chapter 15, we consider
three application domains where we would like to be able to reason about action
and change:

Pots of water: Consider aworld with pots that may contain water. Thereisasin-
gle fluent, Contains, where Contains(p, w, ) is intended to say that a pot p
contains w litres of water in situation s. There are only two possible actions,
which can always be executed: empty(p) which discards all the water con-
tained in the pot p, and transfer(p, p’), which pours as much water as possible
without spilling from pot p to p’, with no change when p = p’. To simplify
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Figure 14.1: The 15-puzzle

1/6|3|8 12|34
100 2| 7|15 5/6|7]|8
—_—
13| 5| 4 9110|1112
9 14|11 |12 13| 14|15
initial state goal state

the formalization, we assume that the usual arithmetic constants, functions
and predicates are also available. (You may assume that axioms for these
have already been provided or built-in.)

15 puzzle: The 15-puzzle consists of 15 consecutively numbered tileslocated in a
4 x 4 grid. The object of the puzzle is to move the tiles within the grid so
that each tileends up at its correct location, as shownin Figure 14.1. Thedo-
main consists of locations, numbered 1 to 16, tiles, numbered 1 to 15, and of
course, actionsand situations. There will be asingle action move(t, [) whose
effect isto movetile ¢ to location /7, when possible. We will also assume a
single fluent, which is a function loc, where loc(¢, s) refers to the location
of tile t in situation s. The only other non-logical terms we will use is the
situation calculus predicate Poss and, to simplify the formalization, a pred-
icate Adjacent(/1, 2) which holds when location /1 is one move away from
location [. For example, location 5 is adjacent only to locations 1, 6, and 9.
(You may assume that axioms for Adjacent have already been provided.)

Note that in the text we concentrated on fluents that were predicates. Here
we have afluent that isafunction. Instead of writing Loc(¢, /, s), you will be
writing loc(t, s) = [.

Blocksworld: Imagine that we have a collection of blocks on a table, and that
we have arobot arm that is capable of picking up blocks and putting them
elsewhere as shown in Figure 14.2

We assume that the robot arm can hold at most one block at a time. We
aso assume that the robot can only pick up a block if there is no other
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Figure 14.2: The blocks word

block on top of it. Finaly, we assume that a block can only support or
be supported by at most one other block, but that the table surface is large
enough that all blocks can be directly on the table. There are only two ac-
tions available: puton(z, i) which picks up block = and movesit onto block
y, and putonTable(x) which movesblock z onto thetable. Similarly, we have
only two fluents: On(z, v, s) which holds when block = is on block y, and
OnTable(x, s) which holds when block z is on the table.

For each application, the questions are the same:

1
2.
3.

Write the precondition axioms for the actions.
Write the effect axioms for the actions.

Show how successor state axiomsfor the fluentswould be derived from these
effect axioms. Arguethat the successor state axiomsarenot logically entailed
by the effect axioms, by briefly describing an interpretation where the effect
axioms are satisfied but the successor state ones are not.

. Show how frame axioms are logically entailed by the successor state axioms.
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Chapter 15

Planning

When we explored reasoning about action in Chapter 14, we considered how a
system could figure out what to do, given a complex nondeterministic action to
execute, by using what it knows about the world and the primitive actions at its
disposal. In this chapter, we consider arelated but more fundamental reasoning
problem: how to figure out what to do to make some arbitrary condition true. This
type of reasoning is usually called planning. The condition that we want to achieve
is called the goal, and the sequence of actions we seek that will make the goal true
iscaled aplan.

Planning is one of the most useful ways that an intelligent agent can take ad-
vantage of the knowledge it has and its ability to reason about actions and their
consequences. If we think of Artificial Intelligence as the study of intelligent be-
havior achieved through computational means, then planning iscentral to thisstudy
since it is concerned precisely with generating intelligent behavior, and in partic-
ular, with using what is known to find a course of action that will achieve some
goa. The knowledgein this case involves information about the world, about how
actions affect the world, about potentially complex sequences of events, and about
interacting actions and entities, including other agents.

Inthe real world, because our actions are not totally guaranteed to have certain
effects, and because we simply cannot know everything there is to know about
a situation, planning is usually an uncertain enterprise, and it requires attention
to many of the issues we have covered in earlier chapters, such as defaults and
reasoning under uncertainty. Moreover, planning in the real world involvestrying
to determine what future states of the world will be like, but also observing the
world as plans are being executed, and replanning as necessary. Nonetheless, the
basic capabilities needed to begin considering planning are already available to us.
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15.1 Planningin thesituation calculus

Given its appropriateness for representing dynamically changing worlds, the situa-
tion calculusisan obvious candidate to support planning. We can useit to represent
what is known about the current state of the world and the available actions.

The planning task can be formulated in the language of the situation calculus
asfollows:

Given aformula, Goal(s), of the situation calculus with asingle free
variable s, find asequence of actions @ = (ay, ... a,), such that

KB E Goal(do(d@, So)) A Legal(do(@, So))

where do(@, So) abbreviates do(a,,, do(a,,_1, . . ., do(a1, So) . . .)), and
Legal(do(@, So)) abbreviates A~; Poss(a;, do({a1, . ..a;_1), 50)).

In other words, given a goa formula, we wish to find a sequence of actions such
that it follows from what is known that

1. the goal formula will hold in the situation that results from executing the
actions in sequence starting in the initial state, and

2. itis possibleto execute each action in the appropriate situation (that is, each
action’s preconditions are satisfied).

Note that this definition says nothing about the structure of the KB—for example,
whether or not it represents complete knowledge about the initia situation.

Having formulated the task this way, to do the planning, we can use Resolution
theorem-proving with answer extraction for the following query:

KB E Js. Goal(s) A Legal(s).

Aswith the execution of complex actionsin Chapter 14, if the extracted answer is
of theform do(@, So), then @ isacorrect plan. But aswe will seein Section 15.4.2,
there can be cases where the existential is entailed, but where the planning task
is impossible because of incomplete knowledge. In other words, the goal can be
achieved, but we can't find a specific way that is guaranteed to achieve it.

15.1.1 An example

Let us examine how this version of planning might work in the simple world de-
picted in Figure 15.1. A robot can roll from room to room, possibly pushing ob-
jects through doorways between the rooms. In such aworld, there are two actions:
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Figure 15.1: A simple robot world

office supplies

ﬂ ‘ doorA box1

doorB

box2
closet

pushThru(z, d, 71, 72), in which the robot pushes object : through doorway d from
room r1 to rp, and goThru(d, r1, r2), in which the robot rolls through doorway d
from room r to r,. To be ableto execute either action, d must be the doorway con-
necting r1 and r», and therobot must belocated in 1. After successfully completing
either action, the robot ends up in room 7. In addition, for the action pushThru,
the object » must be located initially in room r1, and will also end up in room 5.

We can formalize these properties of the world in the situation calculus using
the following two precondition axioms:

Poss(goThru(d, 71, 72), 8) =
Connected(d, r1,72) A InRoom(robot, r1, s);

Poss(pushThru(z, d, r1,72),8) =
Connected(d, r1,72) A InRoom(robot, 71, s) A InRoom(z, 71, ).

Inthisformulation, we use asingle fluent, InRoom(x, r, s), with the following suc-
cessor state axiom:

InRoom(z, r, do(a, s)) = M(r) V (InRoom(z,r,s) A —=3r'. [1(r')),
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where M(r) istheformula

2 =robot A 3d3ry.a = goThru(d, r1,7)
Va2 =robot A 3d3ri1Iy. a = pushThru(y, d, 1, 7)
vV 3d3ri.a = pushThru(z, d, 1, 7).

In other words, the robot is in room r after an action if that action was either a
goThru or apushThru to r, or the robot was aready in r, and the action was not a
goThru or apushThru to some other /. For any other object, the object isin room
r after an action if that action was apushThru to » for that object, or the object was
aready in r, and the action was not a pushThru to some other »/ for that object.

Our KB should also contain facts about the specific initial situation depicted
in Figure 15.1: there are three rooms, an office, a supply room, and a closet, two
doors, two boxes, and the robot, with their locations as depicted. Finaly, the KB
needs to state that the robot and boxes are distinct objects and, for the solution to
the frame problem presented in Chapter 14, that goThru and pushThru are distinct
actions.

15.1.2 Using Resolution

Now suppose that we want to get some box into the office—that is, the goal we
would liketo achieve is

dz. Box(z) A InRoom(z, office, s).

To use Resolution to find a plan to achieve this goal, we must first convert the KB
to CNF. Most of thisisstraightforward, except for the successor state axiom, which
expands to a set of clauses that includes the following (for one direction of the =
formulaonly):

x Zrobot, a Z goThru(d, 71, 72), InRoom(z, v, do(a, s))]
x Zrobot, a Z pushThru(y, d, 71, 72), INRoom(z, r2, do(e, s))]
a 7 pushThru(z, d, 71, 72), INRoom(z, r2, do(a, s))]
=InRoom(z, r, 8), @ = robot, a = pushThru(z, to, t1, t2),
InRoom(z, r, do(a, s))]
[=InRoom(z, r, 8), @ = goThru(s, t4, t5), a = pushThru(ts, t7, tg, tg),
InRoom(z, 7, do(a, 3))].

[
[
[
[

Thet; here are Skolem terms of the form f;(x, r, a, s) arising from the existentials
in the subformula(r).
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Figure 15.2: Planning using Resolution

[-Box(z), mInRoom(z,office,s1), —Legal(s1)]
[Box(box1)]

~ /T/box1

Successor state axiom [-InRoom(box1,office,s1), —Legal(s1)]
[a # pushThru(z,d,r1,72), INRoom(z,r2,do(a,s))]
\ / s1/do(pushThru(box1,d,r1,0office),s2)

precondition axiom [-Poss(pushThru(box1,d,r1,0ffice),s2), —Legal(s2)]
[=InRoom(xz,r1,s), Poss(pushThru(z,d,r1,72),s),
=InRoom(robot,r1,s), /
—Connected(d,r1,r2)] \
[-Connected(d,r1,office), ~InRoom(robot,ry,s2),
[Connected(doorA,supplies,office)] =InRoom(box1,rq,s2), =Legal(s2)]
\ /d/doorA,n/suppIi&s
Successor state axiom [-InRoom(robot,supplies, sz), —Legal(sz),
[a # goThru(d,r1,72), INRoom(z,r2,do(a,s)), —InRoom(box1,supplies,s2)]
= 7 robot] \ /52/do(goThru(d,rl,s.JppIi&),sg)

suiccessor state axiom [=InRoom(box1,supplies,do(goThru(d,r1,supplies),s3)),

[=InRoom(z,r,s), INnRoom(z,r,do(a,s)), =Poss(goThru(d,r1,supplies),s3),
x = robot, « = pushThru(z,to,t1,t2)] \ / —Legal(ss)]
initial state [-InRoom(box1,supplies,s3), —Legal(ss),

[INRoom(box1,supplies,Sop)] / =Poss(goThru(d,r1,supplies),s3)]
s3/So

~~

precondition axiom [~Poss(goThru(d,r1,supplies),So)]
[=Connected(d,r1,r2), Poss(goThru(z,d,r1,r2),s), /

—InRoom(robot,r1,s)] \

[=Connected(d,r1,supplies), =InRoom(robot,r1,50)]
[Connected(doorA,office,supplies)]

\ /d/doorA,n/office

initial state [=InRoom(robat,office, Sp)]
[InRoom(robot,office,Sp)] /

~~

(1

The Resolution proof tree for this planning problem is sketched in Figure 15.2.
The formulas on the | eft are taken from the KB, while those on the right start with
the negation of the formulato be proved:

dspdz. Box(z) A InRoom(z, office, s1) A Legal(s1).
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Notice that whenever a Legal literal is derived, it is expanded to a clause contain-
ing Poss, or to the empty clause in the case of —Legal(5p). For example, in the
second step of the derivation, s; is replaced by aterm of theform do(.. ., s»), and
so —Legal (s1) expands to a clause containing =Poss(. . ., sp) and —Legal(s2). Also
observe that the successor state axiomsin the KB use equality, which would require
some additional machinery (asexplained in Chapter 4), and which we have omitted
from the diagram here for simplicity.

To keep the diagram simple, we have aso not included an answer predicatein
this derivation. Looking at the bindings on the right side, it can be seen that the
correct substitution for s; is

do(pushThru(box1, doorA, supplies, office),
do(goThru(doorA, office, supplies), 50)).

and so the planisto first perform the goThru action and then the pushThru one.

All but one of the facts in this derivation (including a definition of Legal) can
be expressed as Horn clauses. The final use of the successor state axiom has two
positive equality literals. However, by using negation as failure to deal with the
inequalities, we can use a PROLOG program directly to generate a plan, as shown
in Figure 15.3. The goa would be

?- box(X), inRoom X office,S), legal (9).
and result of the computation would then be

X
S

box1
do( pushThru(box1, door A, suppl i es, of fice),
do(goThru(door A of fice, supplies),s0))

as it was above. Using proOLOG in thisway is very delicate, however. A small
change in the ordering of clauses or literals can easily cause the depth-first search
strategy to go down an infinite branch.

In fact, more generally, using Resolution theorem-proving over the situation
calculus for planning is rarely practical for two principal reasons. First of all, we
are required to explicitly draw conclusions about what is not changed by doing
actions. We saw thisin the derivation above (in the final use of the successor state
axiom), where we concluded that the robot moving from the office to the supply
room did not change the location of the box (and so the box was till ready to
be pushed into the office). In this case, there was only one action and one box to
worry about; in alarger setting, wemay have to reason about the properties of many
objects remaining unaffected after the performance of many actions.
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Figure 15.3: Planning using Prolog

i nRoon( robot, of fi ce, s0O).
box(box1). inRoom box1, supplies,s0).
box(box2). inRoom box2,cl oset, s0).

connect ed(door A, of fi ce, supplies).
connect ed( door A, suppl i es, of fice).
connect ed(door B, cl oset, suppl i es).
connect ed( door B, suppl i es, cl oset).

poss(goThru(D, R1,R2),S) :-
connect ed(D, Rl, R2), inRoon(robot,RL,S).
poss(pushThru(X, D, R, R2),S) :-
connect ed(D, R, R2), inRoon(robot,RL,S),
inRoom X, RL, S).

i nRoon( X, R2, do(A, 9)) :-
X=robot, A=goThru(D, Rl, R2).
i nRoon( X, R2, do(A, S)) : -
X=robot, A=pushThru(Y, D, R1, R2).
i nRoon( X, R2, do(A, S)) : -
A=pushThru(X, D, Rl, R2) .
i NRoom X, R, do(A, S)) :- inRoom X, R'S),
not (X=robot),
not (A=pushThru(X, TO, T1, T2)).
i nRoon( X, R, do(A, S)) :- inRoomM X, R'S),
not (A=goThru(T3,T4,T5)),
not (A=pushThru(T6, T7,T8,T9)).

| egal (s0).
|l egal (do(A, S)) :- poss(A'S), legal (S).

Secondly, and more seriously, the search for a sequence of actions using Res-
olution (or the ProLOG variant) is completely unstructured. Notice, for example,
that in the derivation above, the first important choice that was made was to bind
thez to box1. If your goal isto get somebox into the office, it issilly tofirst decide
on abox and then search for asequence of actionsthat will work for that box. Much
better would be to decide on the box opportunistically based on the current situation
and what else needs doing. In some cases the search should work backwards from
the goal; in others, it should work forward from the current state. Of course, all of
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this search should be quite separate from the search that is needed to reason about
what does or does not hold in any given state.

Inthe next section, we deal with thefirst of theseissues. We deal with searching
for aplan effectively in Section 15.3.

15.2 The STRIPS Representation

StTrIPs isan aternative representation to the pure situation calculus for planning.
It derives from work on a mobile robot (called “Shakey”) at SRI International in
the 1960's. InsTrIPS, we assumethat the world we are trying to deal with satisfies
the following:

e only one action can occur at atime;
e actions are effectively instantaneous,
¢ nothing changes except as the result of planned actions.

Inthiscontext, the above has been called the“sTrips assumption,” but it clearly ap-
pliesjust aswell to our version of the situation calculus. What really distinguishes
sTrIps from the situation calculus is that knowledge about the initial state of the
world is required to be complete, and knowledge about the effects and non-effects
of actionsisrequired to beinaspecific form. Inwhat follows, we use avery simple
version of the representation, although many of the advantages we claim for it hold
more generally.

InsTrIPS, we do not represent histories of the world like we do in the situation
calculus, but rather we deal with a single world state at atime. The world state
is represented by what is called a world model, which is a set of ground atomic
formulas, similar to adatabase of factsinthe pL.ANNER System of Chapter 6, and the
working memory of a production system of Chapter 7. These facts can be thought
of as ground fluents (with the situation argument suppressed) under closed-world,
unique-name, and domain-closure assumptions (asin Chapter 11). For the example
depicted in Figure 15.1, we would have the following initial world model, DB:

InRoom(box1,supplies) Box(box1)

InRoom(box2,closet) Box(box2)

InNRoom(robot,office)

Connected(doorA,office,supplies)  Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

In this case there is no need to distinguish between a fluent (like InRoom) and a
predicate that is unaffected by any action (like Box).
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Further, in sTRr1PS, actions are not represented explicitly as part of the world
model, which meansthat we cannot reason about them directly. Instead, actionsare
thought of as operators, which syntactically transform world models. An operator
takes the world model database for some state, and transforms it into a database
representing the successor state. The main benefit of this way of representing and
reasoning about plansisthat it avoids frame axioms: an operator will change what
it needs to in the database, and thereby |eave the rest unaffected.

STRIPs operators are specified by pre- and postconditions. The preconditions
are sets of atomic formulas of the language that need to hold before the operator
can apply. The postconditions come in two parts: a delete list, which is a set of
atomic formulas to be removed from the database; and an add list, which isa set of
atomic formulas to be added to the database. The delete list represents properties
of the world state that no longer hold after the operator is applied, and the add
list represents new properties of the world state that will hold after the operator is
applied. For the example above, we would have the following two operators:

pushThru(z, d, r1, 72)
Precondition: InRoom(robot, 1), INnRoom(z, r1), Connected(d, r1, 72)
Deletelist:  InRoom(robot, r1), INnRoom(z, 71)
Add list: InRoom(robot, r2), INRoom(z, 72)
goThru(d, r1,72)
Precondition: InRoom(robot, 1), Connected(d, 71, 72)
Deletelist:  InRoom(robot, 71)
Add list: InRoom(robot, r7)

Note that the arguments of operators are variables that can appear in the the pre-
and postcondition formulas.

A sTrips problem, then, isrepresented by aninitial world model database, aset
of operators, and agoal formula. A solution to the problem isaset of operatorsthat
can be applied in sequence starting with the initial world model without violating
any of the preconditions, and which resultsin aworld model that satisfies the goal
formula.

More precisely, asTrIPs problemis characterized by (DBg, Operators, Goal)
where DBy is a list of ground atoms, Goal is a list of atoms (whose free vari-
ables are understood existentially), and Operatorsisalist of operators of the form
(Act, Pre, Add, Del) where Act is the name of the operator, and Pre, Add, and Del
arelists of atoms. A solution is a sequence

<ACt:|_t9:|_7 ey ACtn9n>
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Figure 15.4: A depth-first progressive planner

Input: aworld model and agoal formula
Output: aplan or fail
ProgPlan[DB,Goal] =
If Goal C DB then return the empty plan
For each operator (Act, Pre, Add, Del) such that Pre C DB do
Let DB’ = DB + Add — Del
Let Plan = ProgPlan[DB’, Goal]
If Plan # fail then return Act - Plan
end for
Return fail

where Act; is the name of an operator in the list (with Pre;, Add;, and Del; asthe
other corresponding components) and ¢; is a substitution of constants for the vari-
ablesin that operator, and where the sequence satisfies the following:

o foral 1< i <n, DB, = DB;_1 + Add;4; — D€l;6;;

o forall 1 << n, Pred;, C DB;_q;

o for somed, Goald C DB,,.

The + and — in this definition refer to the union and difference of lists respectively.

15.2.1 Progressive planning

The characterization of a solution to the sTriprs planning problem above imme-
diately suggests the planning procedure shown in Figure 15.4. For simplicity, we
have |eft out the details concerning the substitutions of variables. Thistype of plan-
ner is called a progressive planner, since it works by progressing the initial world
model forward until we obtain aworld model that satisfies the goal formula.

Consider once again the planning problem in Figure 15.1. If called with the
initial world model above (DBy), and goal

Box(z), InRoom(z, office),

the progressive planner would first confirm that the goal is not yet satisfied, and
then within the loop, eventually get to the operator goThru(doorA office,supplies)
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whose precondition is satisfied in the DB. It then would call itself recursively with
the following progressed world model:

InRoom(box1,supplies) Box(box1)

InRoom(box2,closet) Box(box2)
InRoom(robot,supplies)

Connected(doorA,office,supplies)  Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

The god is still not setisfied, and the procedure then continues and gets to the op-
erator pushThru(box1,doorA,supplies,office) whose precondition is satisfied in the
progressed DB. It would then call itself recursively with anew world model:

InRoom(box1,office) Box(box1)

InRoom(box2,closet) Box(box2)

InRoom(robot,office)

Connected(doorA,office,supplies)  Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

At this point, the goal formulais satisfied, and the procedure unwinds successfully
and produces the expected plan.

15.2.2 Regressive planning

In some applications, it may be advantageousto use aplanner that works backwards
from the goal rather than forward from the initial state. The process of working
backwards, repeatedly simplifying thegoal until we obtain onethat issatisfied inthe
initial stateis called goal regression. A regressive planner isshown in Figure 15.5.
In this case, the first operator we consider isthe last onein the plan. This operator
obviously must not delete any atomic formulathat appearsinthegoal. Furthermore,
to beableto usethisoperator, we must ensurethat its preconditionswill be satisfied;
so they become part of the next goal. However, the formulas in the add list of
the operator we are considering will be handled by that operator, so they can be
removed from the goal aswe regress it.
If called with theinitial world model from Figure 15.1 and goal

Box(z), InRoom(z, office),

the regressive planner would first confirm that the goal is not yet satisfied, and
thenwithintheloop, eventually get to pushThru(box1,doorA supplies,office) whose
deletelist does not intersect with the goal .* It then would call itself recursively with

As before, we are omitting details about variable bindings. A more realistic version would cer-
tainly leave the z in the goal unbound at this point, for example.
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Figure 15.5: A depth-first regressive planner

Input: aworld model and agoal formula
Output: aplan, or fail
RegrPlan[DB,Goal] =
If Goal C DB then return the empty plan
For each operator (Act, Pre, Add, Del) such that Del N Goal = {} do
Let Goal’ = Goal + Pre — Add
Let Plan = RegrPlan[DB, Goal’]
If Plan # fail then return Plan - Act
end for
Return fail

the following regressed goal:

Box(box1), InRoom(robot, supplies), InRoom(box1, supplies),
Connected(doorA, supplies, office).

The goal is still not satisfied in the initial world model, so the procedure continues
and within the loop, eventually gets to the operator goThru(doorA,office,supplies)
whose delete list does not intersect with the current goal. It would then call itself
recursively with anew regressed goal:

Box(box1), InRoom(robot, office), INnRoom(box1, supplies),
Connected(doorA, supplies, office), Connected(doorA, office, supplies).

At thispoint, the goal formulais satisfied in the initial world model, and the proce-
dure unwinds successfully and produces the expected plan.

15.3 Planning asareasoning task

While the two planners above (or their breadth-first variants) work much better
in practice than the Resolution-based planner considered earlier, neither of them
works very well on large problems. Thisis not too surprising sinceit can be shown
that the planning task is NP-hard, even for the simple version of sTrips we have
considered, and even when the sTRIPS operators have no variables. It is therefore
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extremely unlikely that there is any procedure that will work well in al cases, as
this would immediately lead to a corresponding procedure for satisfiability.?

Aswith deductive reasoning, there are essentially two optionswe can consider:
we can do our best to make the search as effective as possible, especially by avoid-
ing redundancy in the search, or we can make the planning problem easier by al-
lowing the user to provide control information.

15.3.1 Avoiding redundant search

One major source of redundancy is the fact that actions in a plan tend to be inde-
pendent and can be performed in different orders. If the goal is to get both box1
and box2 into the office, we can push box1 first or push box2 first. The problemis
that when searching for a sequence of actions (either progressing aworld model or
regressing agoal), we consider totally ordered sequence of actions. Before we can
rule out a collection of actions asinappropriate for some goal, we end up consider-
ing many permutations of those same actions.

To deal with this issue, let us consider a new type of plan, which is a finite
set of actions that are only partially ordered. Because such a plan is not a linear
sequence of actions, it is sometimes called a nonlinear plan. In searching for such
a plan, we order one action before another only if we are required to do so. For
getting the two boxes into the office, for example, we would want a plan with two
paralel branches, one for each box. Within each branch, however, the moving
actions(s) of the robot to the appropriate room would need to occur strictly before
the corresponding pushing action(s).

To generate this type of plan, a different sort of planner, called a partial-order
planner, is often used. In apartia order planner, we start with an incomplete plan,
consisting of the initial world model at one end and the goa at the other end. At
each step, we insert new actions into the plan, and new constraints on when that
action needs to take place relative to the other actions in the plan, until we have
filled @l the gaps from one end to the other. It is worth noting, however, that the
efficacy of thisapproach to planningis still somewhat controversial because of the
amount of extra bookkeeping it appearsto require.

A second source of redundancy concerns applying sequence of actions repeat-
edly. Consider, for example, getting a box into the office. This aways involves
the same operators. some number of goThru actions followed by a corresponding
number of pushThru actions. Furthermore, this sequence as a whole has a fixed

20ne popular planning method involves encoding the task directly as a satisfiability problem, and
using satisfiability procedures to find a plan.
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precondition and postcondition that can calculated once and for all from the com-
ponent operators. The authors of sTRrIPs considered an approach to the reuse of
such sequences of actions, and created a set of macro-operators, or “MACROPS,”
which were parameterized and abstracted sequences of operators. While adding
macro-operators to a planning problem means that a larger number of operators
will need to be considered, if they are chosen wisely, the resulting plans can be
much shorter. Indeed, many of the practical planning systems work primarily by
assembling precompiled plan fragments from alibrary of macro-operators.

15.3.2 Application-dependent control

Even with careful attention to redundancy in the search, planning remains imprac-
tical for many applications. Often the only way to make planning effective is to
make the problem easier, for example, by giving the planner explicit guidance on
how to search for a solution. We can think of the macro-operators, for example, as
suggesting to the planner a sequence to use to get a box into aroom. But in some
cases, we can be more definite. Suppose, for example, we wish to reorganize all of
the boxes in a certain distant room. We might tell the planner that it should handle
this by first planning on getting to the distant room (ignoring any action dealing
with the boxes) and only then planning on reorganizing the boxes (ignoring any ac-
tion involving motion to other rooms). Aswith the procedural control of Chapter 6,
constraints of this sort clearly ssimplify the search by ruling out various sequences
of action.

Infact, we can imagine two extreme versions of this guidance. At one extreme,
we let the planner search for any sequence of actions, with no constraints; at the
other extreme, the guidance we giveto aplanner would specify acompl ete sequence
of actions, where no search would be required at all. This idea does not require us
to use sTriPS, Of course, and the situation calculus, augmented with the coLoa
programming language, provides a convenient notation for expressing application-
dependent search strategies.

Consider the following highly nondeterministic coLoG program:

while -Goal do {7a.a}.

The body of the loop says that we should pick an action a« nondeterministically,
and then do «. To executethe entire program, we need to find a sequence of actions
corresponding to performing theloop body repeatedly, ending upin afinal situation
s where Goal(s) istrue. But thisis no more and no less than the planning task. So
using GOLOG, wecan represent guidance to aplanner at variouslevelsof specificity.
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The program above provides no guidance at al; on the other hand, the deterministic
program
{ goThru(doorA, office, supplies) ;
pushThru(box1, doorA, supplies, office) }
requires no search at al. In between, however, we would like to provide some
application-dependent guidance, leaving a more manageabl e search problem.

One convenient way to control the search process during planning is by using
what is called forward filtering. Theideais to modify very slightly the above pro-
gram so that not every action ¢ whose precondition is satisfied can be selected as
the next action to perform in the sequence, but only those actions that also satisfy
some application-dependent criterion:

while -Goal do {7a.Acceptable(a)?; a}.

Theintent is that the fluent Acceptable(a, s) should be defined by the user to filter
out actions which may be legal but are not useful at this point in the plan. For
example, if wewant to tell the planner that it first needsto get to the closet and only
then consider moving any boxes, we might have the something like the following
intheKB:
Acceptable(a, s) = InRoom(robot, closet, s) A BlockAction(a)
V =InRoom(robot, closet, s) A MoveAction(a),

for some suitable BlockAction and MoveAction predicates. Of course, defining
Acceptable properly for any particular application is not easy, and requires a deep
understanding of how to solve planning problems in that application.

We can use the idea of forward filtering to define a complete progressive plan-
ner in goLoc. The procedure DFPlan below is a recursive variant of the loop
above that takes as an argument abound on the length of the action sequence it will
consider. It then does a depth-first search for a plan of that length or shorter:

proc DFPlan(n) :
Goal? | {(n > 0)?; wa (Acceptable(a)?; «) ; DFPlan(n — 1)}

Of course, the plan it finds need not be the shortest one that works. To get the
shortest plan, it would be necessary to first look for plans of a certain length, and
only then look for longer ones:

proc IDPlan(r) : IDPlan’(0, n)
proc IDPlan’(m, n) : DFPlan(m) | {(m < n)?; IDPlan’(m +1,n)}
The procedure IDPlan does a form of search called iterative deepening. It uses

depth-first search (that is, DFPlan) at ever larger depthsasaway of providing many
of the advantages of breadth-first search.
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154 Beyond the basics

Inthisfinal section, we briefly consider a small number of more advanced topicsin
planning.

15.4.1 Hierarchical planning

The basic mechanisms of planning that we have covered so far, even including at-
temptsto simplify the process with macro-operators, still preserve all detail needed
to solve a problem all the way through the process. In reality, attention to too much
detail can derail a planner to the point of uselessness. It would be much better, if
possible, to first search through an abstraction space, where unimportant details
were suppressed. Once a solution in the abstraction space were found, then all we
would have to do would be to account for the details of the linkup of the steps.

In an attempt to separate levels of abstraction of the problem in the planning
process, thesTrips team invented the ABsTrIPS approach. The detailsare not im-
portant here, but we can note afew of the elements of thisapproach. First, precondi-
tionsin the abstraction space have fewer literal sthan thosein the ground space, thus
they should be less taxing on the planner. For example, in the case of pushThru,
at the highest level of abstraction, the operator is applicable whenever an object
is pushable and a door exists; without those basic conditions, the operator is not
even worth considering. At alower level of abstraction, like the one we used in
our earlier example, the robot and object have to be in the same room, which must
be connected by adoor to the target room. At an even finer-grained level of detail,
it would be important to ascertain whether or not the door was open (and attempt
to open it if not). But that isreally not relevant until we have a plan that involves
going through the door with the object. Finally, in the least abstract representation,
it would be important to get the robot right next to the object, and both the robot
and object right next to the doorway, so that they could move through it.

15.4.2 Conditional planning

In very many applications, there may not be enough information available to plan
a full course of action to achieve some goal. For example in our robot domain,
imagine that each box has a printed label on it that says either office or closet, and
suppose our goa is to get box1 into the room printed on its label. With no further
information, the full, advance planning task isimpossible since we have no way of
knowing where the box should end up. However, we do know that there exists a
sequence of actions that will achieve the goal, namely, to go into the supply room,
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and push the box either to the office or to the closet. If we were to use Resolution
with answer extraction for this example, the existential query would succeed, but
we would end up with a clause with two answer literals, corresponding to the two
possible sequences of action.

But now imagine that our robot is equipped with a sensor of some sort that
tells it whether or not there is a box located in the same room, with a label on it
that says office. In this case, we would now like to say that the planning task, or a
generalization of it, is possible. The plan that we expect, however, is not alinear
sequence of actions, but is tree-structured, based on the outcome of sensors. go to
the supply room, and if the sensor indicates the presence of a box labeled office,
then push box1 into the office, and otherwise push box1 into the closet. Thistype
of branching plan isacalled aconditional plan, and a planner that can generate one
is called aconditional planner.

There are various ways of making this notion precise, but perhaps the simplest
is to extend the language of situation calculus so that instead of just having terms
S and do(a, s) denoting situations, we also have terms of the form cdo(p, s), where
p is atree-structured conditional plan of some sort. The situation denoted by this
term would depend on the outcome of the sensors involved, which of course would
need to be specified. To describe, for example, the sensor mentioned above, we
might state something like the following:

Fires(sensorl, s) = dx3dr.InRoom(robot, r, s) A
Box(z) A InRoom(z,r,s) A Label(z, office)

With termslike cdo(p, s) in the language, we could once again use Resolution with
answer extraction to do planning. How to do conditional planning efficiently, on
the other hand, is amuch more difficult question.

1543 *“Eventhebest-laid plans...”

Situation calculus representations, and especialy sTrips, make many restrictive
assumptions. As we discussed in our section on complex actions, there are many
aspects of action that bear investigation and may potentially impact the ability of
an Al agent to reason appropriately about the world. Among the many issues in
real-world planning that are currently under active investigation we find thingslike
simultaneous interacting actions (e.g., lifting a piano, opening a doorlatch where
the key must be turned and knob turned at the same time), external events, nonde-
terministic actions or those with probabilisti c outcomes, non-instantaneousactions,
non-static predicates, plansthat explicitly include time, and reasoning about termi-
nation.
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An even more fundamental challenge for planning is the suggestion made by
some that explicit, symbolic production of formal plansis something to be avoided
atogether. Thisis generally areaction to the computational complexity of the un-
derlying planning task. Some advocateinstead theideaof amore*“reactive’ system,
which observes conditions and just “reacts’ by deciding—or looking up—what to
do next. This one-step-at-a-time-like process is more robust in the face of unex-
pected changes in the environment. A reactive system could be implemented with
akind of “universal plan”—alarge lookup table (or boolean circuit) that tells you
exactly what to do based on conditions. In some cases where they have been tried,
reactive systems have had impressive performance on certain low-level problems,
like learning to walk; they have even appeared intelligent in their behavior. At the
current time, though, it is very unclear how far one can go with such an approach
and what itsintrinsic limitations are.

15.5 Bibliographic notes

15.6 Exercises

The exercises below are continuations of the exercises from Chapter 14. For each
application, we consider a planning problem involving an initial setup and agoal.

Pots of water: Imaginethat in theinitial situation, we have two pots, a 5-litre one
filled with water, and an empty 2-litre one. Our goal is to obtain 1 litre of
water in the 2-litre pot.

15 puzzle: Assumethat every tileisinitialy placed in its correct position, except
for tile 9 which isin location 13, tile 13 in location 14, tile 14 in location
15, and tile 15 in location 16. The goal, of course, isto get every tile placed
correctly.

Blocksworld: Intheinitia situation, the blocks are arranged asin Figure 14.2 of
Chapter 14. The goal isto get them arranged asin Figure 15.6.

For each application, the questions are the same:

1. Write a sentence of the situation calculus of the form 3s.a which asserts the
existence of thefinal goa situation.

2. Writeaground situation term e (that is, aterm that is either 5o or of theform
do(a, €’) where a is a ground action term and ¢’ is itself a ground situation
term) such that e denotes the desired goal situation.
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¢ for the blocks world, we should never move a block that is in its final
position, where a block « is considered to be in its final position iff
either (a) = ison thetable and = will be on thetablein the goal state or
(b) z ison another block y, « will beon y inthegoa state, and y isalso

Figure 15.6: The blocks word goal

to define a more restricted search problem which incorporates heuristicslike
these. Sketch briefly what the coLoa program would look like.

. AA initsfinal position.
C
. — Explain how the complex actions of coroc from Chapter 14 can be used
HA D
B E ‘ F ‘

3. Explain how you could use Resolution to automatically solve the problem
for any initial state: how would you generate the clauses, and assuming the
process stops, how would you extract the necessary moves? (Do not attempt
towrite down a derivation!) Explain why you need to use the successor state
axioms, and not just effect axioms.

4. Supposewewereinterested in formalizing the problem using asTr1ps repre-
sentation. Decide what the operators should be, and then write the precondi-
tion, add list, and delete list for each operator. You may change the language
as necessary.

5. Consider the database corresponding to the initial state of the problem. For
each sTrips operator, and each binding of its variables such that the precon-
dition is satisfied, state what the database progressed through this operator
would be.

6. Consider the final goal state of the problem. For each sTriPs operator, de-
scribe the bindings of its variables for which the operator can be the fina
action of a plan, and in those cases, what the goal regressed through the op-
erator would be.

7. Without any additional guidance, a very large amount of search is usualy
required to solve planning problems. There are often, however, application-
dependent heuristics that can be used to reduce the amount of search. For
example,

o for the 15-puzzle, we should get the first row and first column of tiles
into their correct positions (tiles 1, 2, 3, 4, 5, 9, 13); then recursively
solve the remaining 8-puzzle without disturbing these outside tiles;
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Chapter 16

The Tradeoff Between
Expressiveness and Tractability

Thefocusof our exploration thusfar has been the detailed investigati on of anumber
of representational formalisms aimed at various uses or applications. Each had
its own features, usualy knit together in a cohesive whole that was justified by a
particular point of view on the world (e.g., object-oriented, or procedural, or rule-
based). Many of the formalismswe discussed can be viewed as extensionsto abare
knowledge representation formalism based on FOL. Even features like defaults or
probabilities can be thought of as additions to a basic FOL framework.

As we have proceeded through the discussion, lurking in the background has
been a potential nagging question: since, in the end, we would like to be able to
formally represent anything that can be known, why not strive for a highly expres-
sive language, one that includes all of the features we have seen so far? Or even
more generally, why do we not attempt to define aformal knowledge representation
language that is co-extensive with a natural language like English?

The answer is the linchpin of the art of practicing KR: although such a highly
expressive language would certainly be desirable from arepresentation standpoint,
it leads to serious difficultiesfrom areasoning standpoint. If al we cared about was
to formally represent knowledge in order to be able to prove occasiona properties
about it by hand, then perhaps we could go ahead. But if we are thinking of using
amechanical reasoning procedure to manipulate the expressions of this language,
especialy in support of reasoning by an artificial agent, then we need to worry about
what we can do with them in a reasonable amount of time. Aswe will seein this
chapter, reasoning procedures that seem to be required to deal with more expressive
representation languages do not appear towork well in practice. A fundamental fact
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of lifeisthat there is a tradeoff between the expressiveness of the representation
language and the computational tractability of the associated reasoning task.

In this chapter, we will explore thisissuein detail. Wewill begin with asimple
description language of the sort considered in Chapter 9, and show how avery small
change in its expressiveness completely changes the sort of reasoning procedure it
requires. Then we will consider theidea of languages more limited than FOL, and
what seems to happen as they are generalized to full FOL. We will see that “rea
soning by cases’ in various formsis a serious concern, and that one extreme way to
guarantee tractability isto limit ourselves to representation languages where only a
single “case” isever considered. Finally, we will see that thereis still room to ma-
neuver and that even limited representation languages can be augmented in various
ways to make them more useful in practice. Indeed, it can be argued that much of
the research that is concerned with both knowledge representation and reasoning
is concerned with finding interesting points in the tradeoff between tractability and
exXpressiveness.

It is worth noting before beginning, however, that the topic of this chapter is
somewhat controversial. People, after all, are able to reason with what they know,
even if much of what they know comes from hearing or reading sentences in seem-
ingly unrestricted English. How is this possible? For one thing, people do not nat-
uraly explore al and only the logical consequences of what they know. This sug-
geststhat oneway of dealing with thetradeoff isto allow very expressivelanguages,
but to preserve tractability by doing aform of reasoning that is somehow less de-
manding. Researchers have proposed aternative logical systems with weaker no-
tions of entailment, which might be candidates for exploration of limited reasoning
with expressive representation languages. However, since the tradeoff between ex-
pressiveness and complexity is so fundamental to the understanding of knowledge
representation and reasoning, wewill here concentrate on that issue and leave aside
the issue of weak logics.

16.1 A description logic case study

To illustrate the tradeoff between expressiveness and tractability most clearly, we
begin by examining a very concrete case involving description logics and the sub-
sumption task as discussed in Chapter 9. We will present a new description logic
language called L, and subset of it called F£~, and show that what is needed to
calculate subsumption is quite different in each case.
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16.1.1 Two description logic languages

Aswith DL in Chapter 9, the 7L language consists of concepts and roles (but no
constants) and is defined by the following grammar:

e every atomic concept is a concept;

o if risaroleand d isaconcept, then [ALL r d] isaconcept;
o if risarole, then [EXISTS 1 r] is aconcept;

e if dy...d, areconcepts, then [AND ds...d,] isaconcept;
e every atomicroleisarole;

o if risaroleand d isaconcept, then [RESTR r d] isarole.

Thereisone simpledifference between £ and avariant that wewill call 7£~: the
grammar for the 7£~ language is as above, but without the RESTR operator. We
will use[SOME r] asashorthand for [EXISTS 1 7].

Asusual, concepts can be thought of as 1-place predicates and roles as 2-place
predicates. Unlike in DL, both concepts and roles here can be either atomic (with
no internal structure) or non-atomic, indicated by an operator (like ALL or RESTR)
with arguments.

Themeaning of all the operators except for RESTR wasexplained in Chapter 9.
The RESTR operator isintended to denote arestricted role. For example, if :Child
isarole (to befilled by a person who is a child of someone), then [RESTR :Child
Female] isalso arole (to befilled by a person who is a daughter of someone). Itis
important then to distinguish clearly between the following two concepts:

[AND Person [ALL :Child [AND Female Student]]]
[AND Person [ALL [RESTR:Child Female] Student]]

Thefirst describes a person whose children are all female students; the second de-
scribes a person whose femal e children are all students. In the second case, nothing
is said about the male children, if any.

Formally, the semantics for 7L islike that of DL. The interpretation mapping
7 isrequired to satisfy one additional requirement for RESTR:

e Z[[RESTRr d]l ={(z,y) € D x D | {z,y) € Z[r], and y € Z[d]}.

Thus, the set of [RESTR :Child Female] relationships is defined to be the set of
child relationships where the child in question is female. With this definition in
place, subsumption for FL is as before: dq subsumes d; (given an empty KB) if
and only if for every interpretation (D, Z), Z[d1] isasuperset of Z[d2].
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16.1.2 Computing subsumption

As we saw previoudly, the principal form of reasoning in description logics is the
calculation of subsumption. We begin by considering this reasoning task for ex-
pressionsin FL£~, where we can use a procedure very similar to the one for DL:

o first put the expressions into an equivalent normal form,

[AND a1, ..., ay
[SOME 71], ..., [SOME 7,,],
[ALL s1dal, ..., [ALL sy di]l,

where a; are atomic concepts, the r; and s; are atomic roles, and the d; are
themselves concept expressionsin normal form;

o to seeif normal form expression d subsumes normal form expression d’, we
check that for every part of d thereisamatching partind’:

— foreverya € d,a € d';
— for every [SOME 1] € d,[SOME ] € d;

— forevery [ALL s €] € d, thereisa[ALL s ¢€'] € d', such that e recur-
sively subsumese’.

This procedure can be shown to be sound and complete for FL~: it returns with
success if and only if the concept d subsumes d’ according to the definition above
(with interpretations). Furthermore, it is not hard to see that the procedure runs
quickly: conversion to normal form can be done in O(n?) time (where » is the
length of the concept expression), and the structural matching part requiresat worst
scanning d' for each part of d, and so is again O (n?).

But let us now consider subsumption for all of F£, including the RESTR op-
erator. Here we see that subsumption is not so easy. Consider, for example, the
following two descriptions:

[ALL [RESTR :Friend [AND Male Doctor]]
[AND Tall Rich]]

and

[AND [ALL [RESTR :Friend Male]
[AND Tall Bachelor]]
[ALL [RESTR :Friend Doctor]
[AND Rich Surgeon]]].
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Itisnot hard to seethat thefirst subsumesthe second: looking at the second expres-
sion, if al your male friends are tall bachelors and all your doctor friends are rich
surgeons, then it followsthat al your male doctor friends are both tall and rich. On
the other hand, we cannot settle the subsumption question by finding a matching
part in the second concept for each part in thefirst. The interaction among the parts
is more complicated than that. Similarly, adescription like

[SOME [RESTR r [AND a b]1]
subsumes one like

[AND [SOME [RESTR r [AND ¢ d]]]
[ALL [RESTR 7 ¢] [AND a €]]
[ALL [RESTR r [AND d €]] b]]

even though we have to work through al the parts of the second one to see why.

Because of possible interactions among the parts, the sort of reasoning that
is required to handle FL appears to be much more complex than the structural
matching sufficient for F£~. Isthisjust afailure of imagination on our part, or is
JFL truly harder to reason with? In fact, it can be proven that subsumption in FC
is as difficult as proving the unsatisfiability of propositional formulas. there is a
polynomial-time function Q that maps CNF formulas into concept expressions of
JFL that has the property that for any two CNF formulas « and 3, (o D ) isvalid
if and only if Q(«) issubsumed by Q(3). Since (a D (p A —p)) isvadid if and only
if o isunsatisfiable, it follows that a procedure for F£ subsumption could be used
to check whether a CNF formulais unsatisfiable. Sinceit is believed that no good
agorithm exists to compute unsatisfiability for CNF formulas, it follows that no
good algorithm existsfor FL expressions either.

Themoral: Even small doses of expressive power—in this case adding
one natural, role-forming operator—can come at a significant compu-
tational price.

Thisraises a number of interesting questions that are central to the KR enterprise:

1. What properties of a representation language affect or control its computa-
tional difficulty?

2. How far can expressiveness be pushed without losing the prospect of good
algorithms?

3. When are inexpressive but tractable representation languages sufficient for
the purposes of knowledge representation and reasoning?
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Whilethese questions remain largely unanswered, some progress has been made on
them. Aswe will see below, reasoning by casesisamajor source of computational
intractability. As for description logics, the space of possible languages has been
extensively explored, together with proofs about which combinations of operators
preserve tractability.

Finally, asfor making do with inexpressive languages, thisisamuch more con-
troversial topic. For some researchers, anything less than “English” is a cop-out,
and inappropriate for Al research; others are quite content to look for inexpressive
languages tailored to applications, although they might prefer to call this, “exploit-
ing constraints in the application domain,” rather than the more negative sounding,
“getting by with an expressively limited language.” Aswe will see, thereisindeed
significant mileage to be gained by looking for reasoning tasks that can be formu-
lated in limited but tractable representation languages, and then making efforts to
extend them as necessary.

16.2 Limited languages

The main ideain the design of useful limited languagesis that there are reasoning
tasks that can be easily formulated in terms of FOL entaillment, i.e., in terms of
whether or not KB F «, but that can also be solved by special-purpose methods
because of restrictions on the KB or on .

A simpleexampleof thisisHorn clause entailment. We could obviously usefull
Resolution to handle Horn clauses, but there is no need to, since SLD Resolution
offers a much more focused search. In fact, in the propositiona case, we know
that there is a procedure guaranteed to run in linear time for doing the reasoning,
whereas a full Resolution procedure need not and likely would not do as well.

A less obvious example of alimited language is provided by description logics
in general. It is not hard to formulate subsumption in terms of FOL entailment.
We can imagineintroducing predicate symbolsfor concept expressions and writing
meaning postulates for them in FOL. For example, for the concept

[AND [ALL :Friend Rich]
[ALL :Child [ALL :Friend Happy]]]

we introduce the predicate symbol P and the meaning postul ate

Vz. P(z) = Yy (Friend(z,y) D Rich(y)) A
Yy (Child(z, y) D Vz.Friend(y, z) D Happy(z)).

This has the effect of defining P to be anything that satisfies the stated property. If
we have two concept descriptions and introduce two predicate symbols P and @,
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along with two meaning postulates 1. and g, then it is clearly the case that the
first concept is subsumed by the second if and only if

{tp.pe} E Va. P(z) D Q).

So if wewanted to, we could use full Resolution to calculate concept subsumption.
But aswe saw, for some descriptionlogic languages (like 7£ ), thereare very good
subsumption procedures. It would beextremely awkward totry to coax thisefficient
structure-matching behavior out of a general-purpose Resolution procedure.

As athird and final example, consider linear equations. Let £ be the usual
Peano axioms of arithmetic writtenin FOL:

YaVy. 2 +y=y+ua,
Ve.z+0=u,

and so on. From thiswe can derive, for example, that
EEVaVy. (e+2y=4 ANz —y=1) D (x=2Ay=1).

That is, Resolution (with some form of answer extraction) can be used to solve
systems of linear equations. But thereis a much better way, of course: the Gauss-
Jordan method with back substitution. For the example above, we subtract the
second equation from the first to derive that 3y = 3; we divide both sides by 3 to
get y = 1; we substitutethis value of y in thefirst equation to get « = 2. In genera,
aset of » linear equations can be solved by this method in O(»3) steps, whereas
the Resolution procedure can offer no such guarantee.

Thisidea of limited languages obviously generalizes: it will always be advan-
tageous to use a special-purpose reasoning procedure when one exists even if a
general-purpose procedure like Resolution is applicable.

16.3 What makesreasoning hard?

So when do we expect not to be able to use a specialized procedure to advantage?
Suppose that instead of having asystem of linear equations as above, our reasoning
task started with the following formulas:*

(x+2y=4VvV 3 —y=7) AN z—y=1

We can still show using Resolution that thisimpliesthat y > 0. But if we wanted
to use an efficient procedure like Gauss-Jordan to draw this conclusion, we would
have to split the problem into two cases:

Of course we would not expect to find a disjunction in a textbook on mathematical equations.
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Givenz +2y=4andz —y =1,

we infer using Gauss-Jordanthat y = 1, andso y > O.
Given3z —y=7andz —y =1,

we infer using Gauss-Jordan that y = 2,andso y > O.
Either way, we conclude that y > 0.

Reasoning this way may still be better than using Resolution. But what if we have
two digunctionsto consider, (e1 V f1) A(e2V f2), wherethee; and f; are equations?
Then we would have four casesto consider. If we had n disunctions

(eaV f1) Ae2V o) A ooi(en V fr)

we would need to call the Gauss-Jordan method 2" times to see what follows. For
even a modestly sized formula of this type—say when n is 30—this method is no
longer feasible, even though the underlying Gauss-Jordan procedure is efficient.

The conclusion: Special purpose reasoning methods will not help usif we are
forced to reason by cases and invoke these procedures exponentially often.

But can we avoid this type of case analysis? Unfortunately, it seems to be
demanded by languages like FOL. The constructs of FOL are ideally suited to ex-
pressing incomplete knowledge. Consider what we can say in FOL:

1. In(blockA, box) V In(blockB, box)
Either block A or B isin the box.
But which one?

2. —In(blockC, box)
Block Cisnot in the box.
But whereisit?

3. Jz.In(z, box)
Something isin the box.
But what isit?

4. Yz.In(z,box) D Light(z)
Everything in the box islight (in weight).
But what are the things in the box?

5. heaviestBlock Z blockA
The heaviest block is not block A.
But which block is the heaviest block?
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6. heaviestBlock = favorite(john)
The heaviest block is also John’sfavorite.
But what block is this?

In al cases, the logical operators of FOL allow us to express knowledge in a way
that does not force us to answer the questions posed in italics above. In fact, we
can understand the expressiveness of FOL not in terms of what it allows us to say,
but in terms of of what it allows usto leave unsaid.

From areasoning point of view, however, the problem is that if we know that
block A or block B isthe box, but not which, and we want to consider what follows
from thisand what theworld must be like, we have to somehow cover the two cases.
And again, thetrouble with casesisthat they multiply together, and so very quickly
there are too many of them to enumerate.2 Not too surprisingly then, the limited
languages we examined above (Horn clauses, description logics, linear equations)
do not alow this form of incomplete knowledge to be represented.

This then suggests ageneral direction to pursueto avoid intractability: restrict
the contents of a KB somehow so that reasoning by casesis not required.

One natural question along these linesisthis: is complete knowl edge sufficient
to ensure tractability? That is, if for every sentence « we care about, the KB entails
« or the KB entails —a, can we efficiently determine which? The answer unfortu-
nately is no; aproof isbeyond the scope of this book,3 but an informal argument is
that if we have aKB like

{(wV q),(=pVa),(=pV-9)}

then we have a KB with complete knowledge about p and ¢, since it only has one
satisfying interpretation. But we need to reason carefully with the entire KB to
come to this conclusion, and determine, for example, that ¢ is entailed.

16.4 Vivid knowledge

We saw in the previous section that one way to keep reasoning tractable isto some-
how avoid reasoning by cases. Unfortunately, we also saw that merely insisting on
complete knowledge in a KB was not enough. In this section, we will consider an
additional restriction that will be sufficient to guaranteethe tractability of reasoning.

2Thisis not to suggest that we are required to enumerate the cases to reason correctly. Indeed,
whether or not we need areasoning procedure that scal es with the number of casesremains open, and
is perhaps the deepest open problem in Computer Science.

31t can be shown that finding a satisfying interpretation for a set of clauses that has at most one
satisfying interpretation, while not NP-hard, is still unlikely to be solvable in polynomial time.
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We begin with the propositional case. One property we do have for a KB with
complete knowledge is that if it is satisfiable at all, then it is satisfied by a unique
interpretation. To seethis, supposethat KB hascompl ete and consistent knowledge,
and define the interpretation & such that for any atom p, & F p if and only if
KB E p. Now consider any other interpretation S’ that satisfies KB. If KB [ p,
it follows that S’ [ p; furthermore, because KB is complete, if KB £ p, then
KB E -p, and so it follows that S’ £ —p, and thus that, S’ | p. Therefore, & and
S’ agree on all atoms, and so are the same interpretation.

It follows by thisargument that if aKB has complete and consistent knowledge
(for some vocabulary), then there is an interpretation < such that for any sentence
a, KB E «aif and only if & F «. In other words, there is a (unique) interpretation
such that the entailments of the KB are nothing more than the sentencestrue in that
interpretation. Because calculating what istruein an interpretation is such asimple
matter once we are given the interpretation, we find that calculating entailments
in this case will be easy too. The problem, as we saw in the previous section,
is that it may be difficult to find this interpretation. The simplest way, then, to
ensure tractability of reasoning isto insist that a KB with complete and consistent
knowledge wear this unique interpretation on its sleeve.

In the propositiona case, then, we define a KB to be vivid if and only if it is
a complete and consistent set of literals (over some vocabulary). A KB in this
form exhibits the unique satisfying interpretation in avery obviousway. To answer
gueries with such a KB we need only use the positive literalsin the KB, as we did
with the CWA in Chapter 11. In fact, avivid KB is simply one that has the CWA
builtin.

In the first-order case, we will do exactly the same, and base our definition on
thefirst-order version of the CWA. We say that afirst-order KB isvivid if and only
if for somefinite set KB* of positive function-free ground literals, it is the case that

KB=KB" U
{-p|pisatomicand KB £ p} U
{(ci #¢j) | i, ¢; aredistinct constants} U
{Va[z =e1V ...V 2 =¢,], wherethe ¢; are all the constantsin KB*}.

Again, we have aKB that hasthe CWA built in, and again we get asimplerecursive
algorithm for determining whether or not KB E «:

1. KB E(aAJ)iff KB Faand KB E 3;
2. KB E(aV §)iffKB EaorKB E 4;
3. KB F ~aiff KB [ a;
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4. KB E Jza iff KB F a®, for some ¢ appearing in KB;
5. KB E (e = b) iff « and b are the same constants;
6. if a isatomic, then KB F a iff a € KB*,

Notice that the algorithm for determining what is entailed by a vivid KB is just
database retrieval over the KB* part. Only this part of the KB is actually needed to
answer queries, and could be stored in a collection of database relations.

16.4.1 Analogues

One interesting aspect of this definition of avivid KB is how well it accounts for
what is called “analogical,” “diagrammatic,” or “model-based” reasoning.

Itisoften argued that aform of reasoning that is even more basic than reasoning
with sentences representing knowledge about some world (as we consider in this
book) is reasoning with models representing worlds directly. Instead of reasoning
by asking what is entailed by a collection of sentences, we are presented with a
model or adiagram of some sort, and we reason by asking ourselves if a sentence
is satisfied by the model or holdsin the diagram.

Here is the type of example that is used to argue for this form of reasoning:
imagine the President of the US standing directly beside the Prime Minister of
Canada. Itisobserved that people have a hard time thinking about this scene with-
out either imagining the President as being on the left or the Prime Minister as
being on the left. In acollection of sentences representing beliefs about the scene,
we could easily leave out who ison the left. But in amodel or diagram of the scene,
we cannot represent the leaders as being beside each other without also committing
to this and other visually salient properties of the scene.

This constraint on how we seem to think about the world has led many to con-
clude that reasoning with models or diagrams is somehow amore basic and funda-
mental form of reasoning than the manipulation of sentences.

But viewed another way, it can be argued what what we are really talking about
is a form of reasoning where certain kinds of properties of the world cannot be
left unspecified and must be spelled out directly in the representation. A vivid KB
can in fact be viewed as a model of the world in just this sense. In fact, there
is clear structural correspondence between a vivid KB and the world it represents
knowledge about:

o for each object of interest in the world, there is exactly one constant in KB*
that stands for that object;
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o for each relationship of interest in the world, there is a corresponding pred-
icate in the KB such that the relationship holds among certain objectsin the
world if and only if the predicate with the constants as argumentsis an ele-
ment of KB™.

In this sense, KB* is an analogue of the world it represents knowledge about.
Notethat thisclose correspondence between the structure of ak B and theworld
it represents knowledge about does not hold in general. For example, if aKB con-
sists of the sentences { P(a), Q(b)}, it might be talking about a world where there
are five objects, two of which satisfy property P and four of which satisfy ¢). On
the other hand, if we have avivid KB where KB* is { P(a), Q(b)}, then we must be
talking about a world with exactly two objects, one of which satisfies P, and the
other of which satisfies (). In the propositional case, we said that a vivid KB was
uniquely satisfied; in the first-order case, avivid KB is not uniquely satisfied, but
all of the interpretations that satisfy it look the same—they are isomorphic.
Theresult of this close correspondence between the structure of avivid KB and
the structure of its satisfying interpretations is that many reasoning operations are
much simpler on avivid KB than they would bein ageneral setting. Just as, givena
model of ahouse, we can find out how many doors the house has by counting them
in the model, given avivid KB, we can find out how many objects have a certain
property by counting how many constants have the property. Similarly, we can
represent changes to the world directly by changes to the analogue KB*, adding or
removing elementsjust as we did with the procedural representationsin Chapter 6.

16.5 Beyond vivid

While vivid knowledge bases seem to provide a platform for tractable reasoning,
they are quite limited as representations of knowledge. Inthis section, wewill con-
sider some extensions that have been proposed that appear to preserve tractability.

16.5.1 Setsof literals

First, let us consider in the propositional case a KB as any finite set of literas, not
necessarily complete (that is, with no CWA built in). Because such a knowledge
base does not use disjunction explicitly, we might think it would be easier to reason
with. It is not, however. Notice that if this KB happens to be the empty set of
literals, it will entail an « if and only if « is a tautology. So a good algorithm
for reasoning from a set of literals would imply a good algorithm for testing for
tautologies, an unlikely prospect.
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However, let us now assume that the « in question is small in comparison with
an exponentially larger KB. For example, imagine a query that uses at most 20
atoms, whereas the KB might use millions. In this case, here is what we can do:
First, we can put « into CNF, to obtain a set of clauses c¢1,¢o,...,¢,. Next, we
discard tautologous clauses (containing an atom and its negation). We then get that
KB E «a iff KB £ ¢; for every remaining ¢; (and if there are no remaining ones,
then o was a tautology). Finally, we have this property:*

KB E ¢, iff (KB N ¢;) 7 0.

So under these conditions, we do get tractable reasoning even in the absence of
complete knowledge. However, thisis for a propositional language; it is far from
clear how to extend thisideato an a with quantifiers.

16.5.2 Incorporating definitions

As a second extension, imagine that we have avivid KB as before. Now assume
that we add to it a sentence of the form VZ. P(¥) = «, where « is any formula
that uses the predicatesin the KB, and P isanew predicate that does not appear in
the KB. For example, we might have avivid KB that uses the predicate Parent and
Female, and we could add a sentence like

YaVy. Mother(z,y) = Parent(z, y) A Female(x).

These sentences serve essentially to define the new predicate in terms of the old
ones.

We can still reason efficiently with avivid KB that has been extended with defi-
nitionsinthisway: if wehaveaquery that containsaterms P(t1, .. .,t,) where P is
one of the defined predicates, we can simply replaceit inthequery by a(t1, ..., t,),
and continue as before. Note that this formula o can contain arbitrary logical op-
erations (including disunctionsand existential quantifications) since they will end
up being part of the query, not of the KB. Furthermore, it is not too hard to see that
we could allow recursive definitions like

YaVy. Ancestor(z, y) = Parent(z, y) vV 3z(Parent(z, z) A Ancestor(z, y)).

provided that we were careful about how the expansion would take place. In this
case, it would be undecidable whether or not a sentence was entailed, but arguably,
this would be a very modest and manageable form of undecidability.

“The argument isthis: if the intersection of KB and ¢; is not empty, then clearly, KB = ¢;; if itis
empty, we can find an interpretation that makes KB true and makes c; false, and so KB [# c;.
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Thisideaof avivid KB together with definitions of unrestricted logical form has
aclear connection with proLOG. A good case can be made that in fact this, rather
than Horn clauses, is the proper way to understand rroLoc from a Knowledge
Representation point of view.

16.5.3 Hybrid reasoning

Having seen various forms of limited special-purpose reasoning agorithms, we
might pose the natural question of whether or not these can be combined inasingle
system. What we would like is a system that can use efficient procedures such as
equation solvers or subsumption checkers as appropriate, but can also do general
first-order reasoning (like reasoning by cases) inthose perhapsrare situationswhere
itis necessary to do so. We might have, for example, a Resolution-based reasoning
system where we attempt, as much as possible, to use special-purpose reasoning
procedures whenever we can, as part of the derivation process.

One proposal in thisdirection iswhat is called semantic attachment. The idea
here is that procedures can be attached to certain function and predicate symbols.
For example, in the domain of numbers, we might attach the obvious proceduresto
the function times and the predicate LessThan. Then, when we are dealing with a
clause that has ground instances of these expressions, we attempt to simplify them
before passing them on to Resolution. For example, the literal P(a, times(5, 3), )
would simplify to P(a, 15, 2) using the procedure attached to times. Similarly, a
clause of the form [LessThan(quotient(36, 6),5) Vv ¢] would simplify to ¢ itself,
oncethefirst literal had simplified to false. Obviously this reasoning could be done
without semantic attachment using Resolution and the axioms of arithmetic. How-
ever, asweargued, thereismuch to be gained by using special-purpose procedures.

A more general version of this idea that is not restricted to ground terms is
what is called theory resolution. Theidea hereisto build a background theory into
the unification processitself, the way paramodulation encodes atheory of equality.
Rather than attaching procedures to functions and predicates, we imagine that the
special-purpose reasoner will extend the notion of which literals are considered to
be complementary. For example, suppose we have two clauses,

[e1 V LessThan(2, )] and [¢2 V LessThan(z, 1)].

Using a background theory of LessThan, we can inform Resolution that the two
literals in question are complementary, exactly as if one had been p and the other
had been —p. Inthis case, we would get the theory resolution resolvent (¢1 V ¢) in
one step, using this special-purpose reasoner.
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One nice application of theory resolution is the incorporation of a description
logic into Resolution. Suppose that some of the predicates in a Resolution system
are the names of concepts defined elsewhere in a description logic system. For
example, we might have the two clauses

[P(z) v —=Male(z)] and [Bachelor(john) V & (¥)]

where no Resolution steps are possible. However, if both Male and Bachelor are
defined in adescription logic, we can determine that the former subsumesthe latter,
and so the two literals are indeed complementary. Thus, we infer the clause

[P(ohn) v Q(y)]

by theory resolution. In this case, we are using a description logic procedure to
quickly decide if two predicates are complementary, instead of letting Resolution
work with meaning postulates, as discussed earlier.

One concern in doing this type of hybrid reasoning is making sure we do not
miss any conclusions. we would like to draw exactly the same conclusions we
would get if we used the axioms of a background theory. To preserve thisform of
completeness, it is sometimes necessary to consider literals that are “amost com-
plementary”. Consider, for example, the two clauses

[P(x) v Male(z)] and [-Bachelor(john) vV Q(y)].

There are no complementary literals here, even assuming Male and Bachelor have
their normal definitions. However, there is a connection between the two literals,
in that they are contradictory unlesstheindividual in questionismarried. Thus, we
would say that the two clauses should resolve together to produce the clause

[P(john) v Q(y) vV —Single(john)],

where the third literal in the clause is considered to be aresidue of the unification.
It is a simple matter in description logics to calculate such residues, and it turns
out that without them, or without a significantly more complex form of Resolution,
completeness would be lost.

16.6 Bibliographic notes

16.7 Exercises
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Figure 16.1: A taxonomy of pets

pet
~

reptile carnivore mammal fish

fish rodent
eater eater

carnivorous /
mammal  rodent

TN

turtle snake cat ferret dog mouse gerbil hamster goldfish guppy

1. Many of the digunctive facts that arise in practice state that a specific in-
dividua has one property or another, where the two properties are similar.
For example, we may want to represent the fact that a person is either 4 or
5 years old, that a car is either a Chevrolet or a Pontiac, or that a piece of
music is either by Mozart or by Haydn. In genera, to calculate the entail-
ments of a KB containing such facts, we would need to use a mechanism
that considered each case individually, such as Resolution. However, when
the conditions being disjoined are sufficiently similar, abetter strategy might
be to try to sidestep the case analysis by finding a single property that sub-
sumes the disjoined ones. For example, we might treat the original fact as if
it merely said that the person is a pre-schooler, that the car is made by GM,
and that the music is by a classical composer, none of whichinvolve explicit
digunctions.

Imagine that you have a KB which contains among other things a taxonomy
of one place predicateslikein Figure 16.1 that can be used to find subsuming
cases for disunctions. Assume that this taxonomy is understood as exhaus-
tive, so that, for example, it implies

Va[Mammal(z) = Rodent(z) V CarnivorousMammal(z)].

(a) Given the above taxonomy, what single atomic sentence could be used
to replace the digunction (Turtle(fred) v Cat(fred))? Explain why no
information islost in this translation.

(b) What atomic sentence would replace the disunction

(Gerbil(stan) vV Hamster(stan))?
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In this case, information about Stan is lost. Give an example of a sen-
tence that follows from the original KB containing the disjunction, but
that no longer follows once the disjunction is eliminated.

(c) What should happen to the disiunction

(Dog(sam) V Snake(sam) V Rabbit(sam))?

(d) Presentinformally aprocedurewhich, given ataxonomy like the above
and adisunction (P1(a) V...V P,(a)), wherethe P; are predicates that
may or may not appear in the taxonomy, replaces it by a disunction
containing as few cases as possible.

(e) Argue that areasoning process that first eliminates digunctions as we
have done above will always be sound.

2. In Chapter 11, we saw that under the closed world assumption, complex

queries can be broken down to queries about their parts. In particular, re-
stricting ourselves to the propositional case, for any formulas o and 3, we
have that KB £ (o v 8) iff KB £ a or KB [ 3. This way of handling
digunction clearly does not work for regular entailment since, for instance,

Vv F@EVvgbutpve Fpand(@Vq) g

(a) Prove that this way of handling disjunction does work for regular en-
tailment when the KB happens to be a complete set of literals (that is,
containing every atom or its negation).

(b) Show that the completeness of the KB matters here by finding a set of
literals S and formulas @ and 3 suchthat S E (o v 3), S £ a, S F 3,
and i (a Vv ).

(c) Provethat when aKB isaset of literals (not necessarily complete) and
aso « and 8 have no atomsin common, then onceagain KB £ (a V )
iff KB FaorKB [ 3.

. In this question we will consider reasoning with avivid KB and definitions,
in asimple propositional form. So assume that a KB consists of two parts,
avivid part V', which is a complete and consistent set of literals over some
set of atoms A, and for some set of atoms {¢1,...,¢,} notin A, aset of
definitions D = {(¢1 = S1),..-, (g = ()}, where each j; is an arbitrary
propositional formula whose atoms are al from A. Intuitively, we are using
D to define ¢; as 3;. We want to examine the conditions under which we can
reason efficiently with such aKB.
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(a) Prove that for any propositional formula «, that D entails (o = o),
where o islike a except with ¢; replaced by §;. Hint: show by induc-
tion on the size of « that any interpretation satisfying D will satisfy a
iff it satisfies o’.

(b) Using part (@), prove that for any propositional formula o, KB entails
aiff V entails o/, where o’ is as above.

(c) Explainusing part (b) how it ispossibleto efficiently determine whether
KB entails an arbitrary propositional «. State precisely what assump-
tions are needed regarding the sizes of the various formulas.

(d) Would thisthis still work if V' were a collection of propositional Horn
clauses? Explain briefly.

(e) Supposethat 1 contained “ necessary but not sufficient conditions” (like
we saw in description logics) of the form (¢; O ;). D might contain,
for example, (dog D animal). For efficiency reasons, it would beniceto
still replace o by o’ and then use V, aswe did above. Give an example
showing that the resulting reasoning process would not be sound.

(f) Under the same conditions as part (€), suppose that instead of using o’
and V, we use o, defined as follows: when (¢; = 3;) isin D, we
replace ¢; in « by 3; as before; but when (¢; O 8;) isin D, wereplace
q; by (8; A7), where r; is some new atom used nowhereelse. Theidea
hereis that we are treating (¢; D 5;) asif it were (¢; = (6; A ry)) for
some atom r; about which we know nothing. Show that the reasoning
process is now both sound and complete. Hint: repeat the argument
from part (b).

4. Consider the following KB:

Man(sandy) V Woman(sandy)
Va[Person(z) O Woman(mother(z))]

From this KB, we would like to conclude that Female(mother(sandy)), but
obviously thiscannot be done asis using ordinary Resol ution, without saying
more about the predicatesinvolved.

Imagine a version of Theory Resolution that works with Description Logic
from Chapter 9 asfollows: for unary predicates, instead of requiring P(¢) in
one clause and - P(u) in the other (where ¢t and « are unifiable), we instead
allow Q(t) inone clauseand — P(u) inthe other provided that P subsumes().
The assumption hereisthat some of the unary predicatesin the KB will have

www.manaraa.com



(©2003 R. Brachman andH. Levesque July 17, 2003 335

associated definitions in Description Logic. In the above example, assume
we have the following:

Man = [AND Person Male]
Woman = [AND Person Female]

where Person, Male, and Female are primitive concepts.

(@) Show using Theory Resolution that the conclusion now follows.

(b) Show that this derivation is sound by writing meaning postulates MP
for the two definitions such that the conclusionisentailed by KB U MP.

(c) Show that this form of Theory Resolution is incomplete by finding a
sentence that is entailed by KB U MP, but not derivable from KB using
Theory Resolution as above.

5. We saw in Section 16.5.1 that it was possible to determine entailments effi-
ciently when aKB was an arbitrary set of literals (not necessarily complete)
and the query wassmall relativetothesizeof the KB. Inthisquestion, wewill
generalize thisresult to Horn KBs. More precisely, assume that [KB| > 21,
where KB is aset of propositional Horn clauses, and « is an arbitrary propo-
sitional sentence. Provethat it is possible to decide whether KB entails o in
timethat ispolynomial in [KB|. Why doesthis not work if « isthe same size
asthe KB?

6. Inthis question, we will explore a different way of dealing with the compu-
tational intractability of ordinary deductive reasoning than what we saw in
the text. Theideais that instead of determining if KB E «a, which can be
too difficult in general, we determineif KB * o, where F* isavariant of |
that is easier to calculate. To define this variant, we first need two auxiliary
definitions:

Definition 1 AninterpretationZ maximally satisfies a set of (propositional)
clauses §'iff for every clause ¢ € 5, 7 satisfies some literal in ¢ (as usual),
and falsifies at most one of the literalsin c.

(a) If aset of clauses has a maximally satisfying interpretation then it is
clearly satisfiable, but the converse need not hold. Present a set of
clauses (with no unit clauses) that is satisfiable but not maximally sat-
isfiable.
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(b) Let H beaset of Horn clauseswith no unit clauses and no empty clause.
Show that H isaways maximally satisfiable.

(c) For any set S of clauses, let 7'(5) = {[«1, 2] | forsomec € S, 21 €
¢, 2 € ¢,xv1 # x2}. Prove that when S contains no unit clauses, 7
maximally satisfies 5 iff Z satisfies 7'(.5).

In the second definition, we eliminate unit clauses from aset of clauses:

Definition 2 For any set of (propositional) clauses S, let BP(.5), whichisthe
binary propagation of .9, be the set of clauses resulting from resolving away
all unit clausesin 5. Moreformally, for any literal z, such that [z] € 5, let
Ste={c|lce S, adc,xdc}U{c—T|ce S, ax¢&c,zec} Then
BP(.9) istheresult of startingwith 5 and any unit clause[z] in 5, calculating
51z, and then repeating this process with 572 (assuming it contains a unit
clause) and so on, until no unit clauses remain.

(d) What isBP(S) when S'is
il [p, sl Lg: 4l [5, 75w, 0], [a), [7), (2o g £ 0] 32

(e) Present an example of aunsatisfiable set of clauses.S such that BP(.51)
contains the empty clause, and another unsatisfiable set 55 such that
BP(.57) does not contain the empty clause.

(f) Provethat S issatisfiableiff BP(5) issatisfiable. Itissufficient to prove
that for any S and 2 suchthat[2] € S,Z F SiffZ F STz and T F x,
and the rest follows by induction.

Finally, we define KB |* p, where for simplicity, we assume that KB is a set
of clauses and p is atomic:

Definition 3 KB F* p iff BP(KB U {[p]}) isnot maximally satisfiable.

(9) Present an example KB and a query p such that F* does not give the
sameanswer as k. Hint: Usepart (a) above. Explain whether reasoning
with = isunsound or incomplete (or both).

(h) Provethat reasoning with = isboth sound and completefor ak B that is
Horn. Hint: Where H isHorn, consider the cases according to whether
BP(H) contains the empty clause, and use parts (b) and (f) above.
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(i) Argue that for any KB it is possible to determine if KB £* p in poly-
nomial time. You may use the fact that BP(S) can be calculated in
polynomial time, and that 2SAT (i.e. satisfiability restricted to clauses
of length 2) can aso be solved in polynomial time.

(j) Calasetof clauses 5 generalized Hornif aset of Horn clauses could be
produced by inverting some of its atomic formulas, that is, by replacing
all occurrences of the letter by its negation. Is =* sound and complete
for aKB that is generalized Horn? Explain.
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