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Acknowledgments Preface

bottom up top down

reasoning representation

Knowledge Representation is the area of Artificial Intelligence (AI) concerned with
how knowledge can be represented symbolically and manipulated in an automated
way by reasoning programs. It is at the very core of a radical idea about how to
understand intelligence: instead of trying to understand or build brains from the

, we try to understand or build intelligent behavior from the .
In particular, we ask what an agent would need to know in order to behave intelli-
gently, and what computational mechanisms could allow this knowledge to be made
available to the agent as required. This book is intended as a text for an introductory
course in this area of research.

There are many different ways to approach and study the area of Knowledge
Representation. One might think in terms of a representation language like that of
symbolic logic, and concentrate on how logic can be applied to problems in AI.
This has led to courses and research in what is sometimes called “logic-based AI.”
In a different vein, it is possible to study Knowledge Representation in terms of
the specification and development of large knowledge-based systems. From this
line of thinking arise courses and research in specification languages, knowledge
engineering, and what are sometimes called “ontologies.” Yet a different approach
thinks of Knowledge Representation in a Cognitive Science setting, where the focus
is on plausible models of human mental states.

The philosophy of this book is different from each of these. Here, we con-
centrate on as much as on . Indeed, we feel that it is the
interplay between reasoning and representation that makes the field both intellectu-
ally exciting and relevant to practice. Why would anyone consider a representation
scheme that was less expressive than that of a higher-order intensional “kitchen-
sink” logic if it were not for the computational demands imposed by automated
reasoning? Similarly, even the most comprehensive ontology or common sense
knowledge base will remain inert without a clear formulation of how the repre-
sented knowledge is to be made available in an automated way to a system requiring
it. Finally, psychological models of mental states that minimize the computational
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aspects run the risk of not scaling up properly to account for human level compe-
tence.

In the end, our view is that Knowledge Representation is the study of how what
we know can at the same time be represented as comprehensibly as possible and
reasoned with as effectively as possibly. There is a tradeoff between these two
concerns, which is an implicit theme throughout the book, and explicit in the final
chapter. Although we start with full first-order logic as a representation language,
and logical entailment as the basis for reasoning, this is just the starting point, and
a somewhat unrealistic one at that. Subsequent chapters expand and enhance the
picture by looking at languages with very different intuitions and emphases, and
approaches to reasoning sometimes quite removed from logical entailment. Our
approach is to explain the key concepts underlying a wide variety of formalisms,
without trying to account for the quirks of particular representation schemes pro-
posed in the literature. By exposing the heart of each style of representation, com-
plemented by a discussion of the basics of reasoning with that representation, we
aim to give the reader a solid foundation for understanding the more detailed and
sophisticated work found in the research literature.

The book is organized as follows. The first chapter provides an overview and
motivation for the whole area. Chapters 2 through 5 are concerned with the ba-
sic techniques of Knowledge Representation using first-order logic in a direct way.
These early chapters introduce the notation of first-order logic, show how it can
be used to represent commonsense worlds, and cover the key reasoning technique
of Resolution theorem-proving. Chapters 6 and 7 are concerned with representing
knowledge in a more limited way, so that the reasoning is more amenable to pro-
cedural control; among the important concepts covered there we find rule-based
production systems. Chapters 8 through 10 deal with a more object-oriented ap-
proach to Knowledge Representation and the taxonomic reasoning that goes with
it. Here we delve into the ideas of frame representations and description logics,
as well as spending time on the notion of inheritance. Chapters 11 and 12 deal
with reasoning that is uncertain or not logically guaranteed to be correct, includ-
ing default reasoning and probabilities. Chapters 13 through 15 deal with forms of
reasoning that are not concerned with deriving new beliefs from old ones, includ-
ing the notion of planning, which is central to AI. Finally, Chapter 16 explores the
tradeoff mentioned above.

A course based on the topics of this book has been taught a number of times at
the University of Toronto. The course comprises about 24 hours of lectures and oc-
casional tutorials, and is intended for upper-level undergraduate students or entry-
level graduate students in Computer Science or a related discipline. Students are
expected to have already taken an introductory course in AI where the larger picture
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of intelligent agents is presented and explored, and to have some working knowl-
edge of symbolic logic and symbolic computation, for example, in Prolog or Lisp.
As part of a program in AI or Cognitive Science, the Knowledge Representation
course fits well between a basic course in AI and research-oriented graduate courses
(on topics like probabilistic reasoning, nonmonotonic reasoning, logics of knowl-
edge and belief, and so on).

A number of the exercises used in the course are included at the end of each
chapter of the book. These exercises focus on the technical aspects of Knowledge
Representation, although it should be possible with this book to consider some
essay-type questions as well. Depending on the students involved, a course in-
structor may want to emphasize the programming questions and de-emphasize the
mathematics, or perhaps vice-versa.

Comments and corrections on all aspects of the book are most welcome and
should be sent to the authors.
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Chapter 1

Introduction

knowledge

unintelligently

thinking

Intelligence, as exhibited by people anyway, is surely one of the most complex
and mysterious phenomena that we are aware of. One striking aspect of intelligent
behaviour is that it is clearly conditioned by : for a very wide range of
activities, we make decisions about what to do based on what we know (or believe)
about the world, effortlessly and unconsciously. Using what we know in this way is
so commonplace, that we only really pay attention to it when it is not there. When
we say that someone behaved , like when someone uses a lit match
to see if there is any gas in a car’s gas tank, what we usually mean is not that there
is something that the person did not know, but rather that the person has failed to
use what he or she did know. We might say: “You weren’t thinking!” Indeed, it is

that is supposed to bring what is relevant in what we know to bear on what
we are trying to do.

One definition of Artificial Intelligence (AI) is that it is the study of intelligent
behaviour achieved through computational means. Knowledge Representation and
Reasoning, then, is that part of AI that is concerned with how an agent uses what
it knows in deciding what to do. It is the study of thinking as a computational
process. This book is an introduction to that field and the ways that it has invented
to create representations of knowledge, and computational processes that reason by
manipulating these knowledge representation structures.

If this book is an introduction to the area, then this chapter is an introduction
to the introduction. In it, we will try to address, if only briefly, some significant
questions that surround the deep and challenging topics of the field: what exactly
do we mean by “knowledge,” by “representation,” and by “reasoning,” and why
do we think these concepts are useful for building AI systems? In the end, these
are philosophical questions, and thorny ones at that; they bear considerable inves-
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proposition

true false

propositional attitudes

1.1 The key concepts: knowledge, representation, and
reasoning

Strictly speaking, we might want to say that the expressing the proposition are true
or false, and that the propositions themselves are either factual or non-factual. Further, because of
linguistic features such as indexicals (that is, words whose referents change with the context in which
they are uttered, such as “me” and “yesterday”), we more accurately say that it is actual tokens of
sentences or their uses in specific contexts that are true or false, not the sentences themselves.

c 2

tigation by those with a more philosophical bent and can be the subject matter of
whole careers. But the purpose of this chapter is not to cover in any detail what
philosophers, logicians, and computer scientists have said about knowledge over
the years; it is rather to glance at some of the main issues involved, and examine
their bearings on Artificial Intelligence and the prospect of a machine that could
think.

What is knowledge? This is a question that has been discussed by
philosophers since the ancient Greeks, and it is still not totally demystified. We
certainly will not attempt to be done with it here. But to get a rough sense of what
knowledge is supposed to be, it is useful to look at how we talk about it informally.

First, observe that when we say something like “John knows that . . . ,” we fill
in the blank with a simple declarative sentence. So we might say that “John knows
that Mary will come to the party” or that “John knows that Abraham Lincoln was
assassinated.” This suggests that, among other things, knowledge is a relation be-
tween a knower, like John, and a , that is, the idea expressed by a simple
declarative sentence, like “Mary will come to the party”.

Part of the mystery surrounding knowledge is due to the nature of proposi-
tions. What can we say about them? As far as we are concerned, what matters
about propositions is that they are abstract entities that can be or , right
or wrong. When we say that “John knows that ,” we can just as well say that
“John knows that it is true that ” Either way, to say that John knows something
is to say that John has formed a judgment of some sort, and has come to realize
that the world is one way and not another. In talking about this judgment, we use
propositions to classify the two cases.

A similar story can be told about a sentence like “John hopes that Mary will
come to the party.” The same proposition is involved, but the relationship John has
to it is different. Verbs like “knows,” “hopes,” “regrets,” “fears,” and “doubts” all
denote , relationships between agents and propositions. In
all cases, what matters about the proposition is its truth: if John hopes that Mary
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will come to the party, then John is hoping that the world is one way and not another,
as classified by the proposition.

Of course, there are sentences involving knowledge that do not explicitly men-
tion a proposition. When we say “John knows who Mary is taking to the party,” or
“John knows how to get there,” we can at least imagine the implicit propositions:
“John knows that Mary is taking so-and-so to the party”, or “John knows that to get
to the party, you go two blocks past Main Street, turn left, . . . ,” and so on. On the
other hand, when we say that John has a skill as in “John knows how to play piano,”
or a deep understanding of someone or something as in “John knows Bill well,” it
is not so clear that any useful proposition is involved. While this is certainly chal-
lenging subject matter, we will have nothing further to say about this latter form of
knowledge in this book.

A related notion that we are concerned with, however, is the concept of .
The sentence “John believes that ” is clearly related to “John knows that .” We
use the former when we do not wish to claim that John’s judgment about the world
is necessarily accurate or held for appropriate reasons. We sometimes use it when
we feel that John might not be completely convinced. In fact, we have a full range
of propositional attitudes, expressed by sentences like “John is absolutely certain
that ,” “John is confident that ,” “John is of the opinion that ,” “John suspects
that ,” and so on, that differ only in the level of conviction they attribute. For
now, we will not distinguish amongst of them. What matters is that they all
share with knowledge a very basic idea: John takes the world to be one way and
not another.

The concept of representation is as philosophically vexing as that
of knowledge. Very roughly speaking, representation is a relationship between two
domains where the first is meant to “stand for” or take the place of the second. Usu-
ally, the first domain, the representor, is more concrete, immediate, or accessible in
some way than the second. For example, a drawing of a milkshake and a hamburger
on a sign might stand for a less immediately visible fast food restaurant; the draw-
ing of a circle with a plus below it might stand for the much more abstract concept
of womanhood; an elected legislator might stand for his or her constituency.

The type of representor that we will be most concerned with here is the formal
, that is, a character or group of them taken from some predetermined alpha-

bet. The digit “7,” for example, stands for the number 7, as does the group of letters
“VII,” and in other contexts, the words “ ” and “ .” As with all represen-
tation, it is assumed to be easier to deal with symbols (recognize them, distinguish
them from each other, display them, etc.) than with what the symbols represent. In
some cases, a word like “John” might stand for something quite concrete; but many
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1.2 Why knowledge representation and reasoning?

Knowledge Representation

all

reasoning
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words, like “love” or “truth,” stand for abstractions.
Of special concern to us is when a group of formal symbols stands for a propo-

sition: “John loves Mary” stands for the proposition that John loves Mary. Again,
the symbolic English sentence is fairly concrete: it has distinguishable parts involv-
ing the 3 words, for example, and a recognizable syntax. The proposition, on the
other hand, is abstract: it is something like a classification of all the different ways
we can imagine the world to be into two groups: those where John loves Mary, and
those where he does not.

, then, is this: it is the field of study concerned with
using formal symbols to represent a collection of propositions believed by some
putative agent. As we will see, however, we do not want to insist that these symbols
must represent the propositions believed by the agent. There may very well be
an infinite number of propositions believed, only a finite number of which are ever
represented. It will be the role of to bridge the gap between what is
represented and what is believed.

So what is reasoning? In general, it is the formal manipulation of the
symbols representing a collection of believed propositions to produce representa-
tions of new ones. It is here that we use the fact that symbols are more accessible
than the propositions they represent: they must be concrete enough that we can
manipulate them (move them around, take them apart, copy them, string them to-
gether) in such a way as to construct representations of new propositions.

The analogy here is with arithmetic. We can think of binary addition as being
a certain formal manipulation: we start with symbols like “1011” and “10,” for
instance, and end up with “1101.” The manipulation here is addition since the
final symbol represents the sum of the numbers represented by the initial ones.
Reasoning is similar: we might start with the sentences “John loves Mary” and
“Mary is coming to the party,” and after a certain amount of manipulation produce
the sentence “Someone John loves is coming to the party.” We would call this
form of reasoning because the final sentence represents a logical
conclusion of the propositions represented by the initial ones, as we will discuss
below. According to this view (first put forward, incidentally, by the philosopher
Gottfried Leibniz in the 17th century), reasoning is a form of calculation, not unlike
arithmetic, but over symbols standing for propositions rather than numbers.

Why is knowledge even relevant at all to AI systems? The first answer that comes to
mind is that it is sometimes useful to describe the behaviour of sufficiently complex
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systems (human or otherwise) using a vocabulary involving terms like “beliefs,”
“goals,” “intentions,” “hopes,” and so on.

Imagine, for example, playing a game of chess against a complex chess-playing
program. In looking at one of its moves, we might say to ourselves something like
this: “It moved this way because it believed its queen was vulnerable, but still
wanted to attack the rook.” In terms of how the chess-playing program is actually
constructed, we might have said something more like, “It moved this way because
evaluation procedure using static evaluation function returned a value of +7
after an alpha-beta minimax search to depth .” The problem is that this second
description, although perhaps quite accurate, is at the wrong level of detail, and
does not help us determine what chess move we should make in response. Much
more useful is to understand the behaviour of the program in terms of the immediate
goals being pursued, relative to its beliefs, long-term intentions, and so on. This is
what the philosopher Daniel Dennett calls taking an towards the
chess-playing system.

This is not to say that an intentional stance is always appropriate. We might
think of a thermostat, to take a classic example, as “knowing” that the room is too
cold and “wanting” to warm it up. But this type of anthropomorphization is typi-
cally inappropriate: there is a perfectly workable electrical account of what is going
on. Moreover, it can often be quite misleading to describe an AI system in inten-
tional terms: using this kind of vocabulary, we could end up fooling ourselves into
thinking we are dealing with something much more sophisticated than it actually
is.

But there’s a more basic question: is what Knowledge Representation is all
about? Is all the talk about knowledge just that—talk—a stance one may or may
not choose to take towards a complex system?

To understand the answer, first observe that the intentional stance says nothing
about what is or is not represented symbolically within a system. In the chess-
playing program, the board position might be represented symbolically, say, but
the goal of getting a knight out early, for instance, may not be. Such a goal might
only emerge out of a complex interplay of many different aspects of the program,
its evaluation functions, book move library, and so on. Yet, we may still choose to
describe the system as “having” this goal, if this properly explains its behaviour.

So what role is played by a symbolic representation? The hypothesis underlying
work in Knowledge Representation is that we will want to construct systems that
contain symbolic representations with two important properties. First is that we
(from the outside) can understand them as standing for propositions. Second is that
the system is designed to behave the way that it does of these symbolic
representations. This is what is called the
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Any mechanically embodied intelligent process will be comprised of
structural ingredients that a) we as external observers naturally take
to represent a propositional account of the knowledge that the overall
process exhibits, and b) independent of such external semantic attri-
bution, play a formal but causal and essential role in engendering the
behaviour that manifests that knowledge.

knowledge-based systems
knowledge bases

printColour(snow) :- !, write("It’s white.").
printColour(grass) :- !, write("It’s green.").
printColour(sky) :- !, write("It’s yellow.").
printColour(X) :- write("Beats me.").

printColour(X) :- colour(X,Y), !,
write("It’s "), write(Y), write(".").

printColour(X) :- write("Beats me.").

colour(snow,white).
colour(sky,yellow).
colour(X,Y) :- madeof(X,Z), colour(Z,Y).
madeof(grass,vegetation).
colour(vegetation,green).

c 6

by the philosopher Brian Smith:

In other words, the Knowledge Representation Hypothesis implies that we will
want to construct systems for which the intentional stance is grounded by design in
symbolic representations. We will call such systems and
the symbolic representations involved their (KB’s).

To see what a knowledge-based system amounts to, it is helpful to look at two very
simple programs with identical behaviour. Consider the first:

And here is an alternate:

Observe that both programs are able to print out the colour of various items (getting
the sky wrong, as it turns out). Taking an intentional stance, both might be said
to “know” that the colour of snow is white. The crucial point, as we will see,
however, is that only the second program is designed according to the Knowledge
Representation Hypothesis.
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Consider the clause , for example. This is a sym-
bolic structure that we can understand as representing the proposition that snow is
white, and moreover, we know, by virtue of knowing how the interpreter
works, that the system prints out the appropriate colour of snow precisely
it bumps into this clause at just the right time. Remove the clause and the system
would no longer do so.

There is no such clause in the first program. The one that comes closest is the
first clause of the program which says what to print when asked about snow. But
we would be hard-pressed to say that this clause literally represents a belief, except
perhaps a belief about what ought to be printed.

So what makes a system knowledge-based, as far as we are concerned, is not
the use of a logical formalism (like ), or the fact that it is complex enough
to merit an intentional description involving knowledge, or the fact that what it
believes is true; rather it is the presence of a KB, a collection of symbolic structures
representing what it believes and reasons with during the operation of the system.

Much (though not all) of AI involves building systems that are knowledge-
based in this way, that is, systems whose ability derives in part from reasoning over
explicitly represented knowledge. So-called “expert systems” are a very clear case,
but we also find KBs in the areas of language understanding, planning, diagnosis,
and learning. Many AI systems are also knowledge-based to a somewhat lesser
extent—some game-playing and high-level vision systems, for instance. And fi-
nally, some AI systems are not knowledge-based at all: low-level speech, vision,
and motor control systems typically encode what they need to know directly in the
programs themselves.

How much of intelligent behaviour needs to be knowledge-based in this sense?
At this point, this remains an open research question. Perhaps the most serious
challenge to the Knowledge Representation Hypothesis is the so-called “connec-
tionist” methodology, which attempts to avoid any kind of symbolic representation
and reasoning, and instead advocates computing with networks of weighted links
between artificial “neurons.”

So an obvious question arises when we start thinking about the two pro-
grams of the previous section: what advantage, if any, does the knowledge-based
one have? Wouldn’t it be better to “compile out” the KB and distribute this knowl-
edge to the procedures that need it, as we did in the first program? The performance
of the system would certainly be better. It can only slow a system down to have
to look up facts in a KB and reason with them at runtime in order to decide what
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actions to take. Indeed advocates within AI of so-called “procedural knowledge”
take pretty much this point of view.

When we think about the various skills we have, such as riding a bicycle or
playing a piano, it certainly like we do not reason about the various actions to
take (shifting our weight or moving our fingers); it seems much more like we just
know what to do, and do it. In fact, if we try to think about what we are doing, we
end up making a mess of it. Perhaps (the argument goes), this applies to most of
our activities, making a meal, getting a job, staying alive, and so on.

Of course, when we first learn these skills, the case is not so clear: it seems
like we need to think deliberately about what we are doing, even riding a bicycle.
The philosopher Hubert Dreyfus first observed this paradox of “expert systems.”
These systems are claimed to be superior precisely because they are knowledge-
based, that is, they reason over explicitly represented knowledge. But novices are
the ones who think and reason, claims Dreyfus. Experts do not; they learn to rec-
ognize and to react. The difference between a chess master and a chess novice is
that the novice needs to figure out what is happening and what to do, but the master
just “sees” it. For this reason (among others), Dreyfus believes that the develop-
ment of knowledge-based systems is completely wrong-headed, if it is attempting
to duplicate human-level intelligent behaviour.

So why even consider knowledge-based systems? Unfortunately, no definitive
answer can yet be given. We suspect, however, that the answer will emerge in our
desire to build systems that deal with a set of tasks that is . For any fixed
set of tasks, it might work to “compile out” what the system needs to know; but if
the set of tasks is not determined in advance, the strategy will not work. The ability
to make behaviour depend on explicitly represented knowledge seems to pay off
when we cannot specify in advance how that knowledge will be used.

A good example of this is what happens when we read a book. Suppose we
are reading about South American geography. When we find out for the first time
that approximately half of the population of Peru lives in the Andes, we are in no
position to distribute this piece of knowledge to the various routines that might
eventually require it. Instead, it seems pretty clear that we are able to assimilate
the fact in declarative form for a very wide variety of potential uses. This is a
prototypical case of a knowledge-based approach.

Further, from a system design point of view, the knowledge-based approach
exhibited by the second program seems to have a number of desirable
features:

We can add new tasks and easily make them depend on previous knowledge.
In our program example, we can add the task of enumerating all
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objects of a given color, or even of painting a picture, by making use of the
KB to determine the colours.

We can extend the existing behaviour by adding new beliefs. For example, by
adding a clause saying that canaries are yellow, we automatically propagate
this information to any routine that needs it.

We can debug faulty behaviour by locating the erroneous beliefs of the sys-
tem. In the example, by changing the clause for the colour of the
sky, we automatically correct any routine that uses colour information.

We can concisely explain and justify the behaviour of the system. Why did
the program say that grass was green? It was because it believed that grass is
a form of vegetation and that vegetation is green. We are justified in saying
“because” here since if we removed either of the two relevant clauses, the
behaviour would indeed change.

Overall, then, the hallmark of a knowledge-based system is that by design it has the
ability to be facts about its world and adjust its behaviour correspondingly.

This ability to have some of our actions depend on what we believe is what the
cognitive scientist Zenon Pylyshyn has called . Consider,
for example, responding to a fire alarm. The normal response is to get up and leave
the building. But we would not do so if we happened to believe that the alarm
was being tested, say. There are any number of ways we might come to this belief,
but they all lead to the same effect. So our response to a fire alarm is cognitively
penetrable since it is conditioned on what we can be made to believe. On the other
hand, something like a blinking reflex as an object approaches your eye does not
appear to be cognitively penetrable: even if you strongly believe the object will not
touch you, you still blink.

To see the motivation behind reasoning in a knowledge-based system, it suffices to
observe that we would like action to depend on what the system about the
world, as opposed to just what the system has . In the second

example, there was no clause representing the belief that the colour of
grass was green, but we still wanted the system to know this. In general, much of
what we expect to put in a KB will involve quite general facts, which will then need
to be applied to particular situations.

For example, we might represent the following two facts explicitly:



0

0

0

0

x m:

m m :

m x;

x m ;

p

p

x m

S p

p S:

S p

p p

retrieve

logical entailment

difficult

2003 R. Brachman and H. Levesque July 17, 2003c 10

1. Patient is allergic to medication

2. Anyone allergic to medication is also allergic to medication

In trying to decide if it is appropriate to prescribe medication for patient nei-
ther represented fact answers the question. Together, however, they paint a picture
of a world where is allergic to and this, together with other represented facts
about allergies, might be sufficient to rule out the medication. So we do not want to
condition behaviour only on the represented facts that we are able to , like
in a database system. The beliefs of the system must go beyond these.

But beyond them to where? There is, as it turns out, a simple answer to this
question, but one which, as we will discuss many times in subsequent chapters,
is not always practical. The simple answer is that the system should believe if,
according to the beliefs it has represented, the world it is imagining is one where

is true. In the above example, facts (1) and (2) are both represented. If we now
imagine what the world would be like if (1) and (2) were both true, then this is a
world where

3. Patient is allergic to medication

is also true, even though this fact is only implicitly represented.
This is the concept of : we say that the propositions repre-

sented by a set of sentences entail the proposition represented by a sentence
when the truth of is implicit in the truth of the sentences in In other words, if
the world is such that every element of comes out true, then does as well. All
that we require to get some notion of entailment is a language with an account of
what it means for a sentence to be true or false. As we argued, if our representa-
tion language is to represent knowledge at all, it must come with such an account
(again, to know is to take to be true). So any knowledge representation lan-
guage, whatever other features it may have, whatever syntactic form it may take,
whatever reasoning procedures we may define over it, ought to have a well-defined
notion of entailment.

The simple answer to what beliefs a knowledge-based system should exhibit,
then, is that it should believe all and only the entailments of what it has explicitly
represented. The job of reasoning, then, according to this account, is to compute
the entailments of the KB.

What makes this account simplistic is that there are often quite good reasons
not to calculate entailments. For one thing, it can be too computationally
to decide which sentences are entailed by the kind of KB we will want to use.
Any procedure that always gives us answers in a reasonable amount of time will



www.manaraa.com



p

p

p

1.3 The role of logic

2003 R. Brachman and H. Levesque July 17, 2003

logically incomplete
logically unsound

entail

every

identify

logic
is

c 11

occasionally either miss some entailments or return some incorrect answers. In the
former case, the reasoning process is said to be ; in the latter
case, the reasoning is said to be .

But there are also conceptual reasons why we might consider unsound or incom-
plete reasoning. For example, suppose is not entailed by a KB, but is a reasonable
guess, given what is represented. We might still want to believe that is true. To
use a classic example, suppose all I know about an individual Tweety is that she is a
bird. I might have a number of facts about birds in the KB, but likely none of them
would that Tweety flies. After all, Tweety might turn out to be an ostrich.
Nonetheless, it is a reasonable assumption that Tweety flies. This is logically un-
sound reasoning since we can imagine a world where everything in the KB is true
but where Tweety does not fly.

Alternately, a knowledge-based system might come to believe a collection of
facts from various sources which, taken together, cannot all be true. In this case,
it would be inappropriate to do logically complete reasoning, since then sen-
tence would be believed: because there are no worlds where the KB is true, every
sentence will be trivially true in all worlds where the KB is true. An incomplete
form of reasoning would clearly be more useful here until the contradictions were
dealt with, if ever.

But despite all this, it remains the case that the simplistic answer is by far the
best starting point for thinking about reasoning, even if we intend to diverge from it.
So while it would be a mistake to reasoning in a knowledge-based system
with logically sound and complete inference, it is the right place to begin.

The reason is relevant to knowledge representation and reasoning is simply
that, at least according to one view, logic the study of entailment relations—
languages, truth conditions, and rules of inference. Not surprisingly, we will bor-
row heavily from the tools and techniques of formal symbolic logic. Specifically,
we will use as our first knowledge representation language a very popular logical
language, that of the predicate calculus, or as it sometimes called, the language
of first-order logic (FOL). This language was invented by the philosopher Gottlob
Frege at the turn of the (twentieth) century for the formalization of mathematical
inference, but has been co-opted for knowledge representation purposes.

It must be stressed, however, that FOL itself is also just a starting point. We
will have good reason in what follows to consider subsets and supersets of FOL, as
well as knowledge representation languages quite different in form and meaning.
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Just as we are not committed to understanding reasoning as the computation of
entailments, even when we do so, we are not committed to any particular language.
Indeed, as we shall see, certain representation languages suggest forms of reasoning
that go well beyond whatever connections they may have ever had with logic.

Where logic really does pay off from a knowledge representation perspective is
at what Allen Newell has called the . The idea is that we can under-
stand a knowledge-based system at two different levels (at least). At the knowledge
level, we ask questions concerning the representation language and its semantics.
At the , on the other hand, we ask questions concerning the computa-
tional aspects. There are clearly issues of adequacy at each level. At the knowledge
level, we deal with the expressive adequacy of a representation language and the
characteristics of its entailment relation, including its computational complexity;
at the symbol level, we ask questions about the computational architecture and the
properties of the data structures and reasoning procedures, including their algorith-
mic complexity.

The tools of formal symbolic logic seem ideally suited for a knowledge level
analysis of a knowledge-based system. In the next chapter, we begin such an anal-
ysis using the language of first-order logic, putting aside for now all computational
concerns.

These exercises are all taken from [4].

1. Consider a task requiring knowledge like baking a cake. Examine a recipe
and state what needs to be known to follow the recipe.

2. In considering the distinction between knowledge and belief in this book,
we take the view that belief is fundamental, and that knowledge is simply
belief where the outside world happens to be cooperating (the belief is true,
is arrived at by appropriate means, is held for the right reasons, and so on).
Describe an interpretation of the terms where knowledge is taken to be basic,
and belief is understood in terms of it.

3. Explain in what sense reacting to a loud noise is and is not cognitively pen-
etrable.
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4. It has become fashionable to attempt to achieve intelligent behaviour in AI
systems without using propositional representations. Speculate on what such
a system should do when reading a book on South American geography.

5. Describe some ways in which the first-hand knowledge we have of some
topic goes beyond what we are able to write down in a language. What ac-
counts for our inability to express this knowledge?
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2.1 Introduction
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syntax
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Before any system aspiring to intelligence can even begin to reason, learn, plan,
or explain its behaviour, it must be able to formulate the ideas involved. You will
not be able to learn something about the world around you, for example, if it is
beyond you to even express what that thing is. So we need to start with a
of some sort, in terms of which knowledge can be formulated. In this chapter, we
will examine in detail one specific language that can be used for this purpose: the
language of first-order logic, or for short. FOL is not the only choice, but is
merely a simple and convenient one to begin with.

What does it mean to “have” a language? Once we have a set of words, or a set of
symbols of some sort, what more is needed? As far as we are concerned, there are
three things:

1. : we need to specify which groups of symbols, arranged in what way,
are to be considered properly formed. In English, for example, the string
of words “the cat my mother loves” is a well-formed noun phrase, but “the
my loves mother cat” is not. For knowledge representation, we need to be
especially clear about which of these well-formed strings are the
of the language, since these are what express propositions.

2. : we need to specify what the well-formed expressions are sup-
posed to mean. Some well-formed expressions like “the hard-nosed decimal

x

y z

a b c f g h

P Q R
2.2 The syntax
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holiday” might not mean anything. For sentences, we need to be clear about
what idea about the world is being expressed. Without such an account, we
cannot expect to say what believing one of them amounts to.

3. : we need to specify how the meaningful expressions in the lan-
guage are to be used. In English, for example, “There is someone right behind
you” could be used as a warning to be careful in some contexts, and a request
to move in others. For knowledge representation, this involves how we use
the meaningful sentences of a representation language as part of a knowledge
base from which inferences will be drawn.

These three aspects apply mainly to declarative languages, the sort we use to rep-
resent knowledge. Other languages will have other aspects not discussed here, for
example, what the words sound like (for spoken languages), or what actions are
being called for (for imperative languages).

We now turn our attention to the specification of FOL.

In FOL, there are two sorts of symbols: the ones, and the ones.
Intuitively, the logical symbols are those that have a fixed meaning or use in the
language. There are three sorts of logical symbols:

1. punctuation: “(“, “)”, and “.”.

2. connectives: “ ”, “ ”, “ ”, “ ”, “ ”, and “=”. Note the usual interpreta-
tion of these logical symbols: is logical negation, is logical conjunction
(“and”), is logical disjunction (“or”), means “there exists. . . ,” means
“for all. . . ”, and = is logical equality. and are called “quantifiers.”

3. variables: an infinite supply of symbols, which we will denote here using ,
and , sometimes with subscripts and superscripts.

The non-logical symbols are those that have an application-dependent meaning or
use. In FOL, there are two sorts of non-logical symbols:

1. , an infinite supply of symbols, which we will denote using
, , , , , and , with subscripts and superscripts.

2. , an infinite supply of symbols, which we will denote using
, and , with subscripts and superscripts.
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One distinguishing feature of non-logical symbols is that each one is assumed to
have an , that is, a non-negative integer indicating how many “arguments” it
takes. (This number is used in the syntax of the language below.) It is assumed
that there is an infinite supply of function and predicate symbols of each arity. By
convention, , , are only used for function symbols of arity 0, which are called

, and and are only used for function symbols of non-zero arity. Pred-
icate symbols of arity 0 are sometimes called .

If you think of the logical symbols as the reserved keywords of a programming
language, then non-logical symbols are like its identifiers. For example, we might
have “ ” as a predicate symbol of arity 1, “ ” as a predicate symbol of
arity 2, “ ” as a function symbol of arity 1, and “ ” as a constant.
Note that we are treating “=” not as a predicate symbol, but as a logical connective
(unlike the way that it is handled in some logic textbooks).

There are two types of legal syntactic expressions in FOL: and .
Intuitively, a term will be used to refer to something in the world, and a formula will
be used to express a proposition. The set of terms of FOL is the least set satisfying
these conditions:

every variable is a term;

if . . . are terms, and is a function symbol of arity ,
then ( . . . ) is a term.

The set of formulas of FOL is the least set satisfying these constraints:

if . . . are terms, and is a predicate symbol of arity ,
then ( . . . ) is a formula;

if and are terms, then = is a formula;

if and are formulas, and is variable, then , ( ), ( ), ,
and are formulas.

Formulas of the first two types (containing no other simpler formulas) are called
or .

At this point, it is useful to introduce some notational abbreviations and con-
ventions. First of all, we will add or omit matched parentheses and periods freely,
and also use square and curly brackets to improve readability. In the case of pred-
icates or function symbols of arity 0, we will usually omit the parentheses since
there are no arguments to enclose. We will also sometimes reduce the parentheses
by assuming that has higher precedence than (the way has higher precedence
than +). john

x
t

i

i

2.3 The semantics
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By the of FOL, we mean the language with no terms, no
quantifiers, and where only propositional symbols are used. So, for example,

( ( ))

where , , and are propositional symbols, would be a formula in this subset.
We also use the following abbreviations:

( ) for ( ), and

( ) for (( ) ( ))

We also need to discuss the scope of quantifiers. We say that a variable oc-
currence is in a formula if it lies within the scope of a quantifier, and
otherwise. That is, appears bound if it appears in a subformula or of
the formula. So, for example, in a formula like

( ) [ ( ) ( )]

the first occurrence of the variable is free, and the final two occurrences of are
bound; both occurrences of are bound. If is a variable, is a term, and is a
formula, we use the notation to stand for the formula that results from replacing
all free occurrences of in by . If is a sequence of variables, is a sequence
of constants of the same length, and is a formula whose free variables are among
those in , then [ ] means itself and [ ] means with each free replaced
by the corresponding .

Finally, a of FOL is any formula without free variables. The sentences
of FOL are what we use to represent knowledge, and the rest is merely supporting
syntactic machinery.

As noted above, the concern of semantics is to explain what the expressions of a
language mean. As far as we are concerned, this involves specifying what claim a
sentence of FOL makes about the world, so that we can understand what believing
it amounts to.

Unfortunately, there is a bit of a problem here. We cannot realistically expect to
specify once and for all what a sentence of FOL means, for the simple reason that
the non-logical symbols are used in an application-dependent way. I might use the
constant “ ” to mean one individual, and you might use it to mean another. So
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there’s no way we can possibly agree on what the sentence “ ” claims
about the world, even if we were to agree on what “ ” means.

But here is what we can agree to: the sentence “ ” claims that the
individual named by “ ” (whoever that might be) has the property named by
“ ” (whatever that might be). In other words, we can agree once and for all
on how the meaning of the sentence derives from the interpretation of the non-
logical symbols involved. Of course, what we have in mind for these non-logical
symbols can be quite complex and hard to make precise. For example, our list of
non-logical symbols might include terms like

and the like. We should not (and cannot) expect the semantic specification of FOL
to tell us precisely what terms like these mean. What we are after, then, is a clear
specification of the meaning of sentences

.
To get to such a specification, we take the following (simplistic) view of what

the world could be like:

There are objects in the world.

For any predicate of arity 1, some of the objects will satisfy and
some will not. An of settles the question, deciding
for each object whether it has or does not have the property in ques-
tion. (So borderline cases are ruled in separate interpretations: in one,
it has the property; in another it does not.) Predicates of other arity
are handled similarly. For example, an interpretation of a predicate of
arity 3 decides on which triples of objects stand in the ternary relation.
Similarly, a function symbol of arity 3 is interpreted as a mapping from
triples of objects to objects.

No other aspects of the world matter.

The assumption made in FOL is that this is all you need to say regarding the mean-
ing of the non-logical symbols, and hence the meaning of all sentences.

For example, we might imagine that there are objects that include people, coun-
tries, and flavours of ice cream. The meaning of “ ” in some in-
terpretation will be no more and no less than those objects that are countries that
we consider to be democratic. We may disagree on which those are, of course,
but then we are simply talking about different interpretations. Similarly, the mean-
ing of “ ” would be a specific mapping from people to

1
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times
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flavours of ice cream (and from non-people to some other arbitrarily chosen object,
say). Note that as far as FOL is concerned, we do not try to say what “

” means the way a dictionary would, in terms of free elections, represen-
tative governments, majority rule, and so on; all we need to say is which objects
are and are not democratic countries. This is clearly a simplifying assumption, and
other languages would handle the terms differently.

Meanings are typically captured by specific interpretations, and we can now be
precise about them. An in FOL is a pair where is any
non-empty set of objects called the of the interpretation, and is a mapping
called the from the non-logical symbols to functions and
relations over , as described below.

It is important to stress that an interpretation need not only involve mathemat-
ical objects. can be set, including people, garages, numbers, sentences, fair-
ness, unicorns, chunks of peanut butter, situations, and the universe, among others
things.

The interpretation mapping will assign meaning to the predicate symbols as
follows: to every predicate symbol of arity , [ ] is an -ary relation over ;
that is,

[ ]

So for example, consider a unary predicate symbol . Here, [ ] would be
some subset of , presumably the set of dogs in that interpretation. Similarly,

[ ] would be some subset of [ ], presumably the set of pairs of
objects in where the first element of the pair is older than the second.

The interpretation mapping will assign meaning to the function symbols as
follows: to every function symbol of arity , [ ] is an -ary function over ;
that is,

[ ] [ ]

So for example, [ ] would be some function [ ], presumably
the function that maps a person to his or her best friend (and does something rea-
sonable with non-persons). Similarly, [ ] would be some element of ,
presumably somebody called John Smith.
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It is sometimes useful to think of the interpretation of predicates in terms of
their characteristic function. In this case, when is a predicate of arity , we view

[ ] as an -ary function to 0 1 :

[ ] [ 0 1 ]

The relationship between the two specifications is that a tuple of objects is consid-
ered to be in the relation over if and only if the characteristic function over those
objects has value 1. This characteristic function also allows us to see more clearly
how predicates of arity 0 (i.e., the propositional symbols) are handled. In this case,

[ ] will be either 0 or 1. We can think of the first one as meaning “false” and the
second “true.” For the propositional subset of FOL, we can ignore completely,
and think of an interpretation as simply being a mapping from the propositional
symbols to either 0 or 1.

Given an interpretation = , we can specify which elements of are de-
noted by any variable-free term of FOL. For example, to find the object denoted
by the term “ ” in , we use to get hold of the function
denoted by “ ”, and then we apply that function to the element of de-
noted by “ ,” producing some other element of . To deal with terms
including variables, we also need to start with a over , that
is, a mapping from the variables of FOL to the elements of . So if is a variable
assignment and is a variable, [ ] will be some element of the domain.

Formally, given an interpretation and variable assignment , the
of term , written , is defined by these rules:

1. if is a variable, then = [ ];

2. if . . . are terms, and is a function symbol of arity , then

( . . . ) = ( . . . )

where = [ ], and = .

Observe that according to these recursive rules, is always an element of .

Given an interpretation = , and the relation defined above, we
can now specify which sentences of FOL are true and which false according to this

=

= =

0 0

0 0

1

1 1

1 2 1 2
n

n n

i i ;�

;� ;�

2.4 The pragmatics

satisfied

is true
is false

logical model

2003 R. Brachman and H. Levesque July 17, 2003

Dog(bestFriend(johnSmith))
Dog

bestFriend(johnSmith)



=

I D

=

= = j

= j h i 2 P P I

k k

= j k k k k D

= j : = j

= j ^ = j = j

= j _ = j = j

= j 9 = j

= j 8 = j

= j =

I I I j

= j
= =

�

� ; � �

t ; ; t P n � �

x

; � P t ; ; t d ; ; d P

d t

; � t t t t

; � � ; � �

; � � � ; � � ; � �

; � � � ; � � ; � �

; � x:� ; � � �

� x

; � x:� ; � � �

� x
�

� �

�

� � �

S S

S S
c 22

interpretation. For example, “ ” would be true in iff
the following holds: we use to get hold of the subset of denoted by “ ” and
the object denoted by “ ”, and then we say that the sentence is
true when that object is in the set. To deal with formulas containing free variables,
we again use a variable assignment, as above.

More formally, given an interpretation and variable assignment , we say
that the formula is in , written = according to these rules:

Assume that . . . are terms, is a predicate of arity , and
are formulas, and is a variable.

1. = ( . . . ) iff . . . , where = [ ], and
= ;

2. = = iff and are the same element of ;

3. = iff it is not the case that = ;

4. = ( ) iff = and = ;

5. = ( ) iff = or = (or both);

6. = iff = , for some variable assignment that differs from
on at most ;

7. = iff = , for every variable assignment that differs from
on at most .

When the formula is a sentence, it is easy to see that satisfaction does not depend
on the given variable assignment (recall that sentences do not have free variables).
In this case, we write = and say that in the interpretation , or that

otherwise. In the case of the propositional subset of FOL, it is sometimes
convenient to write [ ] = 1 or [ ] = 0 according to whether = or not. We
will also use the notation = , where is a set of sentences, to mean that all of
the sentences in are true in . We say in this case that is a of .

The semantic rules of interpretation above tell us how to understand precisely the
meaning of any term or formula of FOL in terms of a domain and an interpretation
for the non-logical symbols over that domain. What is less clear, perhaps, is why
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anyone interested in Knowledge Representation should care about this. How are
we supposed to use this language to represent knowledge? How is a knowledge-
based system supposed to reason about concepts like “ ” or even
“ ” unless it is somehow given the intended interpretation to start with? And how
could we possibly “give” a system an interpretation, which could involve (perhaps
infinite) sets of honest-to-goodness objects like countries or animals?

To answer these questions, we first turn to the notion of logical consequence. Ob-
serve that although the semantic rules of interpretation above depend on the in-
terpretation of the non-logical symbols, there are connections among sentences of
FOL that do not depend on the meaning of those symbols.

For example, let and be any two sentences of FOL, and let be the sentence
( ). Now suppose that is any interpretation where is true. Then, by

using the rules above, we can see that must be also true under this interpretation.
This does not depend on how we understand any of the non-logical symbols in or

. As long as comes out true, will as well. In a sense, the truth of is implicit
in the truth of . We say in this case, that is a logical consequence of .

More precisely, let be a set of sentences, and any sentence. We say that
is a of , or that , which we write =
iff for interpretation , if = then = . In other words, every model
of satisfies . Yet another way of saying this is that there is no interpretation
where = . We say, in this case, that the set is .

As a special case of this definition, we say that a sentence is logically ,
which we write = , when it is a logical consequence of the empty set. In other
words, is valid if and only if, for every interpretation , we have that = or,
in still other words, iff the set is unsatisfiable.

It is not too hard to see that not only is validity a special case of entailment, but
finite entailment is also a special case of validity. That is, if = . . . , then

= iff the sentence [( ) ] is valid.

Now let us re-examine the connection between knowledge-based systems and log-
ical entailment, since this is at the root of Knowledge Representation.

What we are after is a system that can reason. Given something like the fact that
Fido is a dog, it should be able to conclude that Fido is also a mammal, a carnivore,
and so on. In other words, we are imagining a system that can be told or learn a
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sentence like “ ” that is true in some user-intended interpretation, and that
can then come to believe other sentences true in that interpretation.

A knowledge-based system will not and cannot have access to the interpretation
of the non-logical symbols itself. As we noted, this could involve infinite sets of
real objects quite outside the reach of any computer system. So a knowledge-based
system will not be able to decide what to believe by using the rules above to evaluate
the truth or falsity of sentences in this intended interpretation. Nor can it simply
be “given” the set of sentences true in that interpretation as beliefs, since, among
other things, there will be infinitely many such sentences.

However, suppose a set of sentences entails a sentence . Then we do know
that whatever the intended interpretation is, if happens to be true in that inter-
pretation, then so must be . If the user imagines the world satisfying according
to her understanding of the non-logical symbols, then it satisfies as well. Other
non-entailed sentences may or may not be true, but a knowledge-based system can
safely conclude that the entailed ones are. If we tell our system that “ ” is
true in the intended interpretation, it can safely conclude any other sentence that is
logical entailed, such as “ ” and “( ,” without
knowing anything else about that interpretation.

But who cares? These conclusions are logically unassailable of course, but not
the sort of reasoning we would likely be interested in. In a sense, logical entailment
gets us nowhere, since all we are doing is finding sentences that are already implicit
in what we were told.

As we said, what we really want is a system that can go from “ ” to
conclusions like “ ,” and on from there to other interesting animal
properties. This is no longer logical entailment, however: there are interpretations
where “ ” is true and “ ” is false. For example, let =
be an interpretation where for some dog , = , for every predicate other
than “ ”, [ ] = , where [ ] = , and where for every function symbol

, [ ]( . . . ) = This is an interpretation where the one and only dog is not a
mammal. So the connection between the two sentences is not a strictly logical one.

The key idea of knowledge representation is this: to get the desired connection
between dogs and mammals, we need to include within the set of sentences a
statement connecting the non-logical symbols involved. In this case, the sentence

( ) ( )

should be an element of . With this universal and “ ” in , we do get
“ ” as a logical consequence. We will examine claims of logical con-
sequence like this one in more detail later. But for now, note that by including this
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universal as one of the premises in , we rule out interpretations like the one above
where the set of dogs is not a subset of the set of mammals. If we then continue
to add more and more sentences like this to , we will rule out more and more
unintended interpretations, and in the end, logical consequence itself will start to
behave much more like “truth in the intended interpretation.”

This, then, is the fundamental tenet of knowledge representation:

Reasoning based on logical consequence only allows safe, logically
guaranteed conclusions to be drawn. However, by starting with a rich
collection of sentences as given premises, including not only facts
about particulars of the intended application, but also those express-
ing connections among the non-logical symbols involved, the set of
entailed conclusions becomes a much richer set, closer to the set of
sentences true in the intended interpretation. Calculating these entail-
ments thus becomes more like the form of reasoning we would expect
of someone who understood the meaning of the terms involved.

In a sense, this is all there is to knowledge representation and reasoning; the rest is
just details.

The collection of sentences given as premises mentioned above is what we called
a or KB in the previous chapter: in our case, a finite set of sen-
tences in the language of FOL. The role of a knowledge representation system, as
discussed before, is to calculate entailments of this KB. We can think of the KB
itself as the beliefs of the system that are given, and the entailments of
that KB as the beliefs that are only given.

Just because we are imagining a “rich” collection of sentences in the KB, in-
cluding the intended connections among the non-logical symbols, we should not
be misled into thinking that we have done all the work, and that there is no real
reasoning left to do. As we will see in an example below, it is often non-trivial to
move from explicit to implicit beliefs.

Consider the following example, illustrated in Figure 2.1. Suppose we have three
coloured blocks stacked on a table, where the top one is green, the bottom one is not
green, and the colour of the middle block is not known. The question to consider

�
�A

B

C

green

not green

yes

entail


f : g

j

9 9 ^ : ^

= = j

= j :

= j ^ : ^

= j 9 9 ^ : ^
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Figure 2.1: A stack of three blocks

is whether there is a green block directly on top of a non-green one. The thing
to observe about this question is that the answer (which happens to be ) is not
immediately obvious without some thinking.

We can formalize this problem in FOL, using , , and , as the names of the
blocks, and predicate symbols and to stand for “green” and “on”. Then the
facts we have in are

( ) ( ) ( ) ( )

and this is all we need. The claim we make here is that these four facts that
there is indeed a green block on top of a non-green one, that is, that = , where

is
( ) ( ) ( )

To see this, we need to show that any interpretation that satisfies also satisfies
. So let be any interpretation, and assume that = . There are two cases to

consider:

1. Suppose = ( ). Then because ( ) and ( ) are in , we have that

= ( ) ( ) ( )

It follows from this that

= ( ) ( ) ( )
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2. Suppose on the other hand that it is not the case that = ( ). Then we
have that = ( ), and because ( ) and ( ) are in , we have that

= ( ) ( ) ( )

It follows from this that

= ( ) ( ) ( )

So either way, we have that = . Thus, is a logical consequence of .
Even though this is a very simple example, we can see that calculating what is

implicit in a given collection of facts will sometimes involve subtle forms of rea-
soning. Indeed, it is well known that for FOL, the problem of determining whether
one sentence is a logical consequence of others is in general : no auto-
mated procedure can decide validity, and so no automated procedure can tell us in
all cases whether or not a sentence is entailed.

To recap, we imagine that for Knowledge Representation, we will start with a
(large) KB representing what is explicitly known by a knowledge-based system.
This KB could be the result of what the system is told, or perhaps what the system
found out for itself through perception or learning. Our goal is to influence the be-
haviour of the overall system based on what is in this KB, or as close as
possible.

In general, this will require reasoning. By , we mean the
process of calculating the entailments of a KB, that is, given the KB, and any sen-
tence , determining whether or not KB = .

We consider a reasoning process to be if whenever it produces
, then is guaranteed to be a logical consequence. This rules out the possibil-

ity of producing plausible assumptions that may very well be true in the intended
interpretation, but are not strictly entailed.

We consider a reasoning process to be if it is guaranteed to
produce whenever is entailed. This rules out the possibility of missing some
entailments, for example, when their status is too difficult to determine.

As we noted above, no automated reasoning process for FOL can be both sound
and complete in general. However, the relative simplicity of FOL makes it a natural
first step in the study of reasoning. The computational difficulty of FOL is one of
the factors that will lead us to consider various other options in subsequent chapters.

f
e
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1. For each of the following sentences, give a logical interpretation that makes
that sentence false and the other two sentences true:

(a) [( ( ) ( )) ( )];

(b) [( ( ) ( )) ( = )];

(c) [ ( ) ( )]

2. This question involves formalizing the properties of mathematical in
FOL. Recall that a set is considered to be a group relative to a binary function

and an object iff (1) is associative; (2) is an identity element for ,
that is, for any , ( ) = ( ) = ; and (3) every element has an inverse,
that is, for any there is an such that ( ) = ( ) = Formalize these
as sentences of FOLwith two non-logical symbols, a function symbol and a
constant symbol , and prove that the sentences logically entail the following
property of groups:

For every and there is a such that ( ) =

Explain how your proof shows the value of as a function of and

3. This question involves formalizing some simple properties of in FOL.
Consider the following three facts:

(a) Represent the facts as sentences of FOL. As non-logical symbols, use
( ) to mean “ is a subset of ” ( ) to mean “ is an element

of ” and ( ) to mean “the union of and ” Instead of using
a special predicate to assert that something is a set, you may simply
assume that in the domain of discourse (assumed to be non-empty),
everything is a set.

Call the resulting set of sentences .
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Hint:

Anyone who does not shave himself must be shaved
by the barber.

Whomever the barber shaves, must not shave himself.

barber’s paradox
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(b) Show using logical interpretations that entails that is a subset of
the union of and

(c) Show using logical interpretations that does not entail that the union
of and is equal to the union of and

(d) Let be any set. Show using logical interpretations that entails that
there is a set such that the union of and is a subset of

(e) Does entail that there is a set such that for any set the union of
and is a subset of ? Explain.

(f) Write a sentence which asserts the existence of singleton sets, that is,
for any the set whose only element is is with this sentence
added.

(g) Prove that is not finitely satisfiable (again, assuming the domain is
non-empty). in a finite domain, consider , the object interpreted
as the union of all the elements in the domain.

(h) Prove or disprove that entails the existence of an empty set.

4. In a certain town, there are the following regulations concerning the town
barber:

Show that no barber can fulfill these requirements. That is, formulate the
requirements as sentences of FOL, and show that in any interpretation where
the first regulation is true, the second one must be false. (This is called the

and is due to Bertrand Russell.)
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Chapter 3

Expressing Knowledge

3.1 Knowledge engineering

architecture

ontology objects
properties

The stage is now set for a somewhat more detailed exploration of the process of
creating a knowledge base (KB). Recall that knowledge involves taking the world
to satisfy some property, as expressed by a declarative sentence. A KB will thus
comprise a collection of such sentences, and we take the propositions expressed by
these sentences to be beliefs of our putative agent.

Much of this book is an exploration of different languages that can be used to
represent the knowledge of an agent in symbolic form, with different consequences,
especially regarding reasoning. As we suggested in the previous chapter, first-order
logic (FOL), while by no means the only language for representing knowledge, is
a convenient choice for getting started with the KR enterprise.

Having outlined the basic principles of knowledge representation and decided on
an initial representation language, we might be tempted to dive right in and begin
the implementation of a set of programs that could reason over a specific KB of
interest. But before doing so, there are key questions about the knowledge of the
agent that need to be considered in the abstract. In the same way that a programmer
who is thinking ahead would first outline an for her planned system,
it is essential that we consider the overall architecture of the system we are about
to create. We must think ahead to what it is we ultimately want (or want our arti-
ficial agent) to compute. We need to make some commitments to the reasons and
times that inference will be necessary in our system’s behavior. And finally, we
need to stake out what is sometimes called an —the kinds of that
will be important to the agent and the those objects will be thought to
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knowledge engineering

named individuals

etc

etc

types

maryJones johnQSmith

john johnQSmith
johnPJones joannaSmith

faultyInsuranceCompany evil-
villeTownCouncil theRackAndRollRestaurant

tomsHouse theAbandonedRailwayCar norasJacuzzi
earring35 butcherknife1

laurasMortgage

Person
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have—before we can start populating our agent’s KB. This general process, which
addresses the KB at the knowledge level, is often called .

This chapter, then, will be an introductory exercise in knowledge engineering,
intended to be specific enough to make vivid the import of the previous two chap-
ters. There are any number of example domains that we might use to illustrate how
to use a KR language to build a KB. Here we pick a common and commonsen-
sical world to illustrate the process, with people and places and relationships that
are representative of many of the types of domains that AI systems will address.
Given the complexity of human relations and the kind of behaviors that regular
people have, we can think of this example domain as a “soap opera” world. Think
of a small town in the midst of a number of scandals and contorted relationships.
This little world will include people, places, companies, marriages (and divorces),
crimes, death, ‘hanky-panky,’ and of course, money.

Our task is to create a KB that has appropriate entailments, and the first things
we need to consider are what vocabulary to use and what facts to represent.

In creating a KB, it is a good idea to start with the set of domain-dependent predi-
cates and functions that provide the basis for the statement of facts about the KB’s
domain. What sorts of objects will there be in our soap-opera world?

The most obvious place to start is with the that are the actors
in our human drama. In FOL, these would be represented by constant symbols, like

, , . We might need to allow multiple identifiers that could
ultimately be found to refer to the same individual: at some point in the process our
system might know about a “ ,” without knowing whether he is or

, or even the former . Beyond the human players on our
stage, we could of course have animals, robots, ghosts, and other sentient entities.

Another class of named individuals would be the legal entities that have their
own identities, such as corporations ( ), governments (

), and restaurants ( ). Key places need
also be identified: , , , . Fi-
nally, other important objects need to be scoped out: , ,

(note that it is common to use the equivalent of numeric subscripts
to distinguish among individuals that do not have uniquely referring names).

After capturing the set of individuals that will be central to the agent’s world,
it is next essential to circumscribe the basic of objects that those individuals
are. This is usually done with one-place predicates in FOL, such as ( ).
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etc

attributes

relation-
ships

functions

total

FOL does not distinguish because in our semantic account, as presented in the previous chapter,
both sorts of predicates will be interpreted as sets of individuals of which the descriptions hold.

Man Woman Place Company Jewelry Knife Contract

Restaurant Bar House SwimmingPool

Rich Beautiful Unscrupulous Bankrupt
ClosedForRepairs Bloody Foreclosed

Man Knife

MarriedTo DaughterOf LivesAt
HasCEO HairDresserOf
Blackmails HadAnAffairWith

LoveTriangle ConspiresWith OccursInTimeInterval

fatherOf bestFriendOf
ceoOf

BestFriend bestFriendOf

Man(john) Woman(jane) Company(faultyInsuranceCompany)
Knife(butcherknife1)
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Among the types of unary predicates we will want in our current domain we find
, , , , , , , . If we expect to be

reasoning about certain places based on what type of entities they are, such as a
restaurant as a place to eat that is importantly different than someone’s living room
(for example), then object types like , , , and
will be useful.

Another set of one-place predicates that is crucial for our domain representation
is the set of that our objects can have. So we need a vocabulary of prop-
erties that can hold of individuals, such as , , , ,

, , and . The syntax of FOL is limited in that
it does not allow us to distinguish between such properties and the object-types we
suggested a moment ago, such as and . This usually does not present a
problem, although if it were important for the system to distinguish between such
types, the language could be extended to do so.

The next key predicates to consider are -ary predicates that express
(obviously of crucial interest in any soap-opera world). We can start with

obvious ones, like and , and related ones like and
. We can then branch out to more esoteric relationships like ,

, and . And we cannot forget relationships of higher ar-
ity than 2, as in , , and .

Finally, we need to capture the important of the domain. These can
take more than one argument, but are most often unary, as in , ,
and . One thing to note is that all functions are taken to be in FOL. If
we want to allow for the possibility of individuals without friends in our domain,
we can use a binary predicate instead of a unary function.

Now that we have our basic vocabulary in place, it is appropriate to start repre-
senting the simple core facts of our soap-opera world. Such facts are usually rep-
resented by atomic sentences and negations of atomic sentences. For example,
we can use our type predicates, applied to individuals in the domain, to represent
some basic truths: , , ,

. Such type predications would define the basic ontology of

2

2

e.g.
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Rich(john) HappilyMarried(jim) Works-
For(jim,fic) Bloody(butcherknife1) ClosedForRepairs(marTDiner)

john ceoOf(fic)
bestFriendOf(jim) john

fic faultyInsuranceCompany

Rich Man Loves jane

Woman jane Loves john

Note, by the way, that suggestive names are not a form of knowledge representation since they
do not support logical inference. Just using “ ” as a symbol does not give the system
any substantive information about the object. This is done using predicates, not orthography.

c 34

this world.
Once we have set down the types of each of our objects, we can capture some

of the properties of the objects. These properties will be the chief currency in
talking about our domain, since we most often want to see what properties (and
relationships) are implied by a set of facts or conjectures. In our sample domain,
some useful property assertions might be , ,

, , and .
Basic facts like the above yield what amounts to a simple database. These facts

could indeed be stored in relational tables. For example, each type predicate could
be a table with the table’s entries being identifiers for all of the known satisfiers of
that predicate. Of course, the details of such a storage strategy would be a symbol-
level, not a knowledge-level issue.

Another set of simple facts that are useful in domain representation are those
dealing with equality. To express the fact that John is the CEO of Faulty Insurance
Company, we could use an equality and a one-place function: = .
Similarly, = would capture the fact that John is Jim’s best
friend. Another use of equalities would be for naming convenience, as when an
individual has more than one name, , = .

Many of the facts we would like to express about a domain are more complex than
can be captured using atomic sentences. Thus we need to use more complex con-
structions, with quantifiers and other connectives, to express various beliefs about
the domain.

In the soap-opera domain, we might want to express the fact that all the rich men
in our world love Jane. To do so, we would use universal quantification, ranging
over all of the rich individuals in our world, and over all of the men:

[ ( ) ( ) ( )]

Note that “rich man” here is captured by a conjunction of predicates. Similarly, we
might want to express the fact that in this world all the women, with the possible
exception of Jane, love John. To do so, we would use a universal ranging over all
of the women, and negate an equality to exclude Jane:

[ ( ) = ( )]
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Loves Blackmails

Loves jane john Loves jane jim

Adult Blackmails john

Person jane john jim

MarriedTo ethel fred

fic jane jim marTDiner
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Universals are also useful for expressing very general facts, not even involving any
known individuals. For example,

[ ( ) ( )]

expresses the fact that no one who loves someone will blackmail the one he or she
loves.

Note that the universal quantifications above could each be expressed without
quantifiers, if all of the individuals in the soap-opera world were enumerated. It
would be tedious if the world were at all large, so the universally quantified sen-
tences are handy abbreviations. Further, as new individuals are born or otherwise
introduced into our soap-opera world, the universals will cover them as well.

Another type of fact that needs a complex sentence to express it is one that
expresses about our world. For example, if we know that
Jane loves one of John or Jim, but not which, we would need to use a disjunction
to capture that belief:

( ) ( )

Similarly, if we knew that someone (an adult) was blackmailing John, but not who
it was, we would use an existential quantifier to posit that unknown person:

[ ( ) ( )]

This kind of fact would be quite prevalent in a soap-opera world story, although
one would expect many such unknowns to be resolved over time.

In contrast to the prior use of universals, the above cases of incomplete knowl-
edge are not merely abbreviations. We cannot write a more complete version of the
information in another form—it just isn’t known.

Another useful type of complex statement about our soap-opera domain is what
we might call a sentence, used to limit the domain of discourse. So, for
example, we could enumerate if necessary all of the people in our world:

[ ( ) = = = . . .]

In a similar fashion, we could circumscribe the set of all married couples:

[ ( ) ( = = ) . . .]

It will then follow that any pair of individuals known to be different from those
mentioned in the sentence are unmarried. In an even more general way, we can
carve out the full set of individuals in the domain of discourse:

[ = = = = . . .]

x x x

x x x

x x x x
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terminology

Disjointness:

Subtypes:

vice versa

Exhaustiveness:

jane john

john Man
Woman(john)

MarriedTo(jr,sueEllen) MarriedTo(sueEllen,jr)

Man Woman

Surgeon Doctor

Adult Man Woman
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This ensures that a reasoner would not postulate a new, hitherto unknown object in
the course of its reasoning.

Finally, it is useful to distinguish formally between all known individuals, with
a set of sentences like = . This would prevent the accidental postulation
that two people were the same, for example, in trying to solve a crime.

The kinds of facts we have represented so far are sufficient to capture the ba-
sic circumstances in a domain, and give us enough grist for the reasoning mill.
However, when thinking about domains like the soap-opera world, we would typ-
ically also think in terms of relationships among the predicate and function sym-
bols we have exploited above. For example, we would consider it quite “obvious”
in this domain that if it were asserted that were a , then we should an-
swer “no” to the query, . Or we would easily accede to the fact that

was true if it were already stated that
was. But there is nothing in our current KB that would actually sanction such infer-
ences. In order to support such common and useful inferences, we need to provide
a set of facts about the we are using.

Terminological facts come in many varieties. Here we look at a sample:

often two predicates are disjoint, and the assertion of one im-
plies the negation of the other, as in

[ ( ) ( )]

there are many predicates that imply a form of specialization,
wherein one type is subsumed by another. For example, since a surgeon is a
kind of doctor, we would want to capture the subtype relationship:

[ ( ) ( )]

This way, we should be able to infer the reasonable consequence that anything
true of doctors is also true of surgeons (but not ).

this is the converse of the subtype assertion, where two or
more subtypes completely account for a supertype, as in

[ ( ) ( ( ) ( ))]
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Symmetry:

Inverses:

Type restrictions:

Full definitions:

MarriedTo

MarriedTo MarriedTo

ChildOf ParentOf

MarriedTo Person Person OppositeSex

RichMan Rich Man

Company Loves ceoOf jane
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as in the case of the predicate, some relationships are
symmetric:

[ ( ) ( )]

some relationships are the opposite of others:

[ ( ) ( )]

part of the meaning of some predicates is the fact that their
arguments must be of certain types. For example, we might want to capture
the fact that the definition of marriage entails that the partners are persons
and (in most places) of opposite genders:

[ ( ) ( ) ( ) ( )]

in some cases, we want to create compound predicates that
are completely defined by a logical combination of other predicates. We can
use a biconditional to capture such definitions:

[ ( ) ( ) ( )]

As can be seen from these examples, terminological facts are typically captured in
a logical language as universally quantified conditionals or biconditionals.

Now that we have captured the basic structure of our soap-opera domain, it is time
to turn to the reason that we have done this representation in the first place: deriving
implicit conclusions from our explicitly represented KB. Here we briefly explore
this in an intuitive fashion. This will give us a feel for the consequences of a par-
ticular characterization of a domain. In the next chapter, we will consider how
entailments can be computed in a more mechanical way.

Let us consider all of the basic and complex facts proposed so far in this chapter
to be a knowledge base, called KB. Besides asking simple questions of KB like, “is
John married to Jane?”, we will want to explore more complex and important ones,
such as, “is there a company whose CEO loves Jane?” Such a question would look
like this in FOL:

[ ( ) ( ( ) )]?

3

3
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In the next chapter we will propose a general mechanism for extracting answers from existential
questions like the above.

Rich john Man john
Rich Man Loves jane

Loves(john,jane) john ceoOf fic

Loves ceoOf fic jane

Company faultyInsuranceCompany

fic faultyInsuranceCompany

Company fic Loves ceoOf fic jane

Company Loves ceoOf jane

Man Blackmails john
Loves john Blackmails john
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What we want to do is find out if the truth of this sentence is implicit in what we
already know. In other words, we want to see if the sentence is entailed by KB.

To answer the question, we need to determine whether every logical interpreta-
tion that satisfies KB also satisfies the sentence. So let us imagine an interpretation

, and suppose that = KB. It follows then that satisfies ( ), ( ),
and [ ( ) ( ) ( )] since these are all in KB. As a result,

= . Now since ( = ( )) is also in KB, we get that

= ( ( ) )

Finally, since
( )

and
( = )

are both in KB, we have that

= ( ) ( ( ) )

from which it follows that

= [ ( ) ( ( ) )]

Since this argument goes through for any interpretation , we know that the sen-
tence is indeed entailed by KB.

Observe that by looking at the argument we have made, we can determine not
only that there is a company whose CEO loves Jane, but also what that company
is. In many applications, we will be interested in finding out not only whether
something is true or not, but also which individuals satisfy a property of interest.
In other words, we need answers not only to yes-no questions, but to wh-questions
as well (who? what? where? when? how? why?).

Let us consider a second example, which involves a hypothetical. Consider the
question, “If no man is blackmailing John, then is he being blackmailed by someone
he loves?” In logical terms, this question would be formulated this way:

[ ( ) ( )]
[ ( ) ( )]?
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= j

Man Blackmails john

Loves john Blackmails john

Adult Blackmails john

Adult Man Woman

Woman Blackmails john

Loves(john,jane)

Woman jane Loves john

Loves Blackmails

Woman jane Blackmails john

Blackmails jane john
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Again we need to determine whether or not the sentence is entailed by KB. Here
we use the easily verified fact that KB = ( ) KB = . So let us
imagine that we have an interpretation such that = KB, and that

= [ ( ) ( )]

We must show that we then have it that

= [ ( ) ( )]

To get to this conclusion, there are a number of steps. First of all, we know that
someone is blackmailing John,

= [ ( ) ( )]

since this fact is in KB. Also, we have in KB that adults are either men or women,

= [ ( ) ( ( ) ( ))]

and since by hypothesis no man is blackmailing John, we derive the fact that a
woman is blackmailing him:

= [ ( ) ( )]

Next, as seen in the previous example, we have it that

=

So, we have it that some woman is blackmailing John and that John loves Jane.
Could she be the blackmailer? Recall that all the women except possibly Jane love
John,

= [ ( ) = ( )]

and that no one who loves someone will blackmail them,

= [ ( ) ( )]

We can put these two conditionals together and conclude that no woman other than
Jane is blackmailing John:

= [ ( ) = ( )]

Since we know that a woman is in fact blackmailing John, we are forced to conclude
that it is Jane:

= ( )

; ; ;

y ; y y; ;

y ; y y; :

;
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Loves john jane Blackmails jane john

Loves john Blackmails john

Loves john Blackmails john
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Thus, in the end, we have concluded that John loves Jane and she is blackmailing
him,

= [ ( ) ( )]

and so
= [ ( ) ( )]

as desired.
Here we have illustrated in intuitive form how a can be thought of as

a sequence of FOL sentences, starting with those known to be true in the KB (or
surmised as part of the assumptions dictated by the query), that proceeds logically
using other facts in the KB and the rules of logic, until a suitable conclusion is
reached. In the next chapter, we will examine a different style of proof based on
negating the desired conclusion, and showing that this leads to a contradiction.

To conclude this section, let us consider what is involved with an entailment
question when the answer is . In the previous example, we made the assumption
that no man was blackmailing John. Now let us consider if this was necessary: is it
already implicit in what we have in the KB that someone John loves is blackmailing
him? In other words, we wish to determine whether or not KB entails

[ ( ) ( )]

To show that it does , we must show an interpretation that satisfies KB but
falsifies the above sentence. That is, we must produce a specific interpretation

= , and argue that it satisfies every sentence in the KB, as well as the
negation of the above sentence. For the number of sentences we have in KB, this is
a big job since all of them must be verified, but the essence of the argument is that
without contradicting anything already in KB, we can arrange in such a way that
John only loves women, and that there is only one person in who is blackmailing
John, and it is a man. Thus it is not already implicit in KB that someone John loves
is blackmailing him.

The FOL language gives us the basic tools for representing facts in a domain, but
in many cases, there is a great deal of flexibility that can be exercised in mapping
objects in that domain onto predicates and functions. There is also considerable
flexibility in what we consider to be the individuals in the domain. In this section,
we will see that it is sometimes useful to introduce new that
might not have been considered in a first analysis. This idea of making up new
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. . .

( ) ( ) = ( ) =
( ) = ( ) = . . .

( ) ( ) = ( ) =
( ) = . . . ( ) = . . . . . .

Purchases(john,bike)
Purchases(john,sears,bike)
Purchases(john,sears,bike,feb14)
Purchases(john,sears,bike,feb14,$200)

Purchases

p23

Purchase p23 agent p23 john object p23 bike
source p23 sears amount p23 $200

MarriedTo

PreviouslyMarriedTo

ReMarriedTo

Marriage m17 husband m17 wife m17
date m17 witness m17
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individuals is called and is typical, as we shall see in later chapters, of
systems like description logics and frame languages.

To see why reification might be useful, consider how we might say that John
purchased a bike:

The problem here is that it seems that the arity of the predicate depends
on how much detail we will want to express, which we may not be able to predict
in advance.

A better approach is to take the purchase itself to be an abstract individual, call
it . To describe this purchase at any level of detail we find appropriate, we need
only use 1-place predicates and functions:

For less detail, we simply leave out some of the conjuncts; for more, we include
others. The big advantage is that the arity of the predicate and function symbols
involved can be determined in advance.

In a similar way we can capture in a reasonable fashion complex relationships of
the sort that are common in our soap-opera world. For example, we might initially
consider representing marriage relationships this way:

( )

but we might also need to consider

( )

and
( )

Rather than create a potentially endless supply of marriage and remarriage (and
divorce and annulment and . . . ) predicates, we can reify marriages and divorces
as abstract individuals, and determine anyone’s current marital status and complete
marital history directly from them:

4

4
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age(suzy)=teenager
age(suzy)=minor
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For some purposes a more qualitative view of age might be in order, as in ,
or .

PreviouslyMarriedTo

ageInYears suzy

ageInMonths suzy

ageInYears ageInMonths
durationInYears

durationInMonths expectedLifeInYears expectedLifeInMonths

age suzy

years age suzy

months years

centimeters meters

time m17 “Jan 5 1992 4:47:03EST”
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It is now possible to the above predicates ( , .) in
terms of the existence (and chronological order) of appropriate marriage and di-
vorce events.

In representing commonsense information like the above, we also find that we
need individuals for numbers, dates, times, addresses, . Basically, any “object”
about which we can ask a question should have an individual standing for it in
the KB, so it can be returned as the result of a query.

The idea of reifying abstract individuals leads to some interesting choices con-
cerning the representation of . For example, an obvious representation
for ages would be something like this:

( ) = 14

If a finer-grained notion of age is needed in an application, we might prefer to
represent a person’s age in months (this is particularly common when talking about
young children):

( ) = 172

Of course, there is a relationship between and . However,
we have exactly the same relationship between quantities like and

, and between and .
To capture all these regularities, it might be better to introduce an abstract in-

dividual to stand for a time duration, independent of any units. So we might take
( ) to denote an abstract quantity of time, quite apart from Suzy and 14, and

assert that
( ( )) = 14

as a way of saying what this quantity would be if measured in years. Now we can
write very general facts about such quantities such as

( ) = 12 ( )

to relate the two units of measurement. Similarly, we would have

( ) = 100 ( )

We could continue in this vein with locations and times. For example, instead of

( ) =
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etc

statistical and probabilistic facts

default and prototypical facts

c 43

where we are forced to decide on a fixed granularity, we could use

( ) = ( ) = 1992 ( ) = . . .

where we have reified time points. This type of representation of abstract indi-
viduals for quantities, times, locations, ., is a common technique similar to the
reification of events illustrated above.

With the apparatus described so far, we have seen how to represent the basic facts
and individuals of a commonsense domain like our soap-opera world. Before mov-
ing on to a look at the variations in different knowledge representation systems and
their associated inference machinery, it is important to point out that there are a
number of other types of facts about domains that we may want to capture. Each of
these is problematical for a straightforward application of first-order logic, but as
we shall see in the remainder of the book, they may be represented with extensions
of FOL or with other KR languages. The choice of the language to use in a system
or analysis will ultimately depend on what types of facts and conclusions are most
important for the application.

Among the many types of facts in the soap-opera world that we have not cap-
tured are

. These include those that involve portions
of the sets of individuals satisfying a predicate, in some cases exact subsets
and in other cases less exactly quantifiable:

Half of the companies are located on the East Side.

Most of the employees are restless.

Almost none of the employees are completely trustworthy.

. These cite characteristics that are usually true,
or reasonable to assume true unless told otherwise:

Company presidents typically have secretaries intercepting their phone
calls.

Cars have four wheels.

Companies generally do not allow employees that work together to be
married.



�

–

–

–

–

3.9 Bibliographic notes

3.10 Exercises

2003 R. Brachman and H. Levesque July 17, 2003

intentional facts

Tony, Mike, and John belong to the Alpine Club. Every member of
the Alpine Club who is not a skier is a mountain climber. Moun-
tain climbers do not like rain, and anyone who does not like snow
is not a skier. Mike dislikes whatever Tony likes, and likes what-
ever Tony dislikes.

c 44

Birds fly.

. These express people’s mental attitudes and intentions.
That is, they can reflect the reality of people’s beliefs but not necessarily
the “real” world itself:

John believes that Henry is trying to blackmail him.

Jane does not want Jim to know that she loves him.

Tom wants Frank to believe that the shot came from the grassy knoll.

This is not the end of what we would like to be able to express in a KB, of course.
In later chapters, we will want to talk about the effects of actions and will end
up reifying both actions and states of the world. Ultimately, a knowledge-based
system should be able to express and reason with anything that can be expressed
by a sentence of English, indeed anything that we can imagine as being either true
or false. Here we have only looked at simple forms that are easily expressible
in FOL. In subsequent chapters, we will examine other representation languages
with different strengths and weaknesses. First, however, we turn to how me might
compute entailments of a KB in FOL.

1. (Adapted from from [6], and see follow-up Exercise 2 of Chapter 4)
Consider the following piece of knowledge:

(a) Prove that the given sentences logically entail that there is a member of
the Alpine Club who is a mountain climber but not a skier.

(b) Suppose we had been told that Mike likes whatever Tony dislikes (as
above), but we had not been told that Mike dislikes whatever Tony likes.
Prove that the resulting set of sentences no longer logically entail that
there is a member of the Alpine Club who is a mountain climber but
not a skier.
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Joe, Sally, Bill, Ellen, are the only members of the club. Joe is
married to Sally. Bill is Ellen’s brother. The spouse of every mar-
ried person in the club is also in the club.

not

Huey is younger than the boy in the green tee-shirt.

The five year-old wore the tee-shirt with the camel design.

Dewey’s tee-shirt was yellow.

Louie’s tee-shirt bore the giraffe design.

The panda design was not featured on the white tee-shirt.

A traveler in remote Quebec comes to a fork in the road and does
not know which way to go to get to Chicoutimi. Henri and Pierre
are two local inhabitants nearby who do know the way. One of
them always tells the truth, and the other one never does, but the
traveler does not know which is which. Is there a single question

c 45

2. Consider the following facts about the Elm Street Bridge Club:

From these facts, most people would be able to determine that Ellen is not
married.

(a) Represent these facts as sentences in FOL, and show semantically that
by themselves, they do entail that Ellen is not married.

(b) Write in FOL some additional facts that most people would be expected
to know, and show that the augmented set of sentences now entails that
Ellen is not married.

3. Donald and Daisy Duck took their nephews aged 4, 5 and 6 on an outing.
Each boy wore a tee-shirt with a different design on it and of a different
colour. You are also given the following information:

(a) Represent these facts as sentences in FOL.

(b) Using your formalization, is it possible to conclude the age of each boy
together with the colour and design of the tee-shirt they’re wearing?
Show semantically how you determined your answer.

(c) If your answer was ‘no’, indicate what further sentences you would
need to add so that you could conclude the age of each boy together
with the colour and design of the tee-shirt they’re wearing.

4. A Canadian variant of an old puzzle:
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henri pierre

gauche

dit oui

dit non

dit non henri dit oui pierre gauche

Truth teller

Answer yes

True

Go left

gauche

the traveler can ask Henri (in French, of course) that will be sure
to tell him which way to go?

inhabitants
French questions

One of Henri or Pierre is a truth teller, and one is not.

An inhabitant will answer yes to a question iff he is a truth teller
and the correct answer is yes, or he is not a truth teller and the
correct answer is not yes.

The question is correctly answered yes iff the proper direc-
tion is to go is left.

c 46

We will formalize this problem in FOL. Assume there are only two sorts of
objects in our domain, denoted by the constants and ,
and , that Henri and Pierre can answer. These questions are
denoted by the following terms:

, which asks if if the traveler should take the left branch of the
fork to get to Chicoutimi;

( ), which asks if inhabitant would answer yes to the French
question ;

( ), which asks if inhabitant would answer no to the French
question ;

Obviously this is a somewhat impoverished dialect of French, although a
philosophically interesting one. For example, the term

( ( )))

represents a French question that might be translated as “Would Henry an-
swer no if I asked him if Pierre would say yes I should go to the left to get to
Chicoutimi?” The predicate symbols of our language are the following:

( ), which holds when inhabitant is a truth teller;

( ), which holds when inhabitant will answer yes to
French question ;

( ), which holds when the correct answer to the question is yes;

, which holds if the direction to get to Chicoutimi is to go left.

For purposes of this puzzle, these are the only constant, function, and predi-
cate symbols.

(a) Write FOL sentences for each of the following:
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A question is correctly answered yes iff will answer
yes to the question .

A question is correctly answered yes iff will not an-
swer yes to .

c 47

( )

( )

Imagine that these facts make up the entire KB of the traveler.

(b) Show that there is a ground term such that

KB = [ ( ) ]

In other words, there is a question that can be asked to Henri (and
there is an analogous one for Pierre) that will be answered yes iff proper
direction to get to Chicoutimi is to go left.

(c) Show that this KB does not entail which direction to go, that is, show
that there is an interpretation satisfying the KB where is true,
and another one where it is false.
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In the previous chapter, we examined how FOL could be used to represent knowl-
edge about a simple application domain. We also showed how logical reasoning
could be used to discover facts that were only implicit in a given knowledge base.
All of our deductive reasoning, however, was done by hand, and relatively infor-
mally. In this chapter, we will examine in detail how to automate a deductive rea-
soning procedure.

At the knowledge level, the specification for an idealized deductive procedure
is clear: given a knowledge base KB, and a sentence , we would like a procedure
that can determine whether or not KB = ; also, if [ . . . ] is a formula with
free variables among the , we want a procedure that can find terms , if they
exist, such that KB = [ . . . ]. Of course, as we discussed in Chapter 1, this
is idealized; computational procedure can fully satisfy this specification. What
we are really after, in the end, is a procedure that does deductive reasoning in as
sound and complete a manner as possible, and in a language as close as possible to
that of full FOL.

One observation about this specification is that if we take the KB to be a finite
set of sentences . . . , then there are several equivalent ways of formulating
the deductive reasoning task:

KB =
iff = [( ) ]
iff KB is not satisfiable
iff KB = TRUE

where TRUE is any valid sentence, such as ( = ) What this means is that if
we have a procedure for testing the validity of sentences, or for testing the satisfia-
bility of sentences, or for determining whether or not TRUE is entailed, then that

0 0

0

0 0

4.1 The propositional case
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procedure can also be used to find the entailments of a finite KB. This is significant
since the Resolution procedure which we will consider in this chapter is in fact a
procedure for determining whether certain sets of formulas are satisfiable.

In the next section, we begin by looking at a propositional version of Resolu-
tion, the clausal representation it depends on, and how it can be used to compute
entailments. In Section 4.2, we generalize this account to deal with variables and
quantifiers, and show how special answer predicates can be used to find bindings
for variables in queries. Finally, in Section 4.3, we review the computational diffi-
culties inherent in Resolution, and show some of the refinements to Resolution that
are used in practice to deal with them.

The reasoning procedure we will consider in this chapter works on logical formulas
in a special restricted form. It is not hard to see that every formula of proposi-
tional logic can be converted into another formula such that = ( ), and
where is a conjunction of disjunctions of literals, where a is either an
atom or its negation. We say that and are , and that is
in , or CNF. In the propositional case, CNF formulas look
like this:

( ) ( ) ( )

The procedure to convert any propositional formula to CNF is as follows:

1. eliminate and , using the fact that these are abbreviations for formulas
using only , and ;

2. move inwards so that it appears only in front of an atom, using the follow-
ing equivalences:

= ;
= ( ) ( );
= ( ) ( ).

3. distribute over , using the following equivalences:
= ( ( )) (( ) ) (( ) ( )).

4. collect terms, using the following equivalences:
= ( ) ;
= ( ) .
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clausal formula
clause

complement

unit clause

p q r

p q r

p q r p r q r

� � p p p p

p
p; q; r

p q r p; q; r ; q

p q r q p
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An analogous procedure also exists to convert a formula into a disjunction of conjunctions of
literals, which is called , or DNF.

c 51

The end result of this procedure is a logically equivalent CNF formula (which can
be exponentially larger than the original). For example, for (( ) ), by
applying rule (1) above, we get ( ( ) ); applying rule (2), we then get
(( ) ); and with rule (3), we get (( ) ( )), which is in CNF. In
this chapter, we will mainly deal with formulas in CNF.

It is convenient to use a shorthand representation for CNF. A is
a finite set of clauses, where a is a finite set of literals. The interpretation of
clausal formulas is precisely as formulas in CNF: a clausal formula is understood
as the conjunction of its clauses, where each clause is understood as the disjunction
of its literals, and literals are understood normally. In representing clauses here, we
will use the following notation:

if is a literal then is its , defined by = and = , for
any atom ;

to distinguish clauses from clausal formulas, we will use “[” and “]” as de-
limiters for clauses, but “ ” and “ ” for formulas.

For example, [ ] is the clause consisting of three literals, and understood as
the disjunction ( ), while [ ] [ ] is the clausal formula consisting
of two clauses, and understood as (( ) ). A clause like [ ] with a
single literal is called a .

Note that the empty clausal formula is not the same as [] , the formula con-
taining just the empty clause. The empty clause [] is understood as a representation
of TRUE (the disjunction of no possibilities), and so [] also stands for TRUE.
However, the empty clausal formula (the conjunction of no constraints) is a rep-
resentation of TRUE.

For convenience, we will move freely back and forth between ordinary formulas
in CNF and their representation as sets of clauses.

Putting the comments made at the start of the chapter together with what we
have seen about CNF, we get that as far as deductive reasoning is concerned, to
determine whether or not KB = it will be sufficient to do the following:

1. put the sentences in KB and into CNF;

2. determine whether or not the resulting set of clauses is satisfiable.

In other words, any question about entailment can be reduced to a question about
the satisfiability of a set of clauses.

[ f g2
1 2 1 1c c c c �

�

n n i

i i i

i

4.1.1 Resolution derivations
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rules of inference
Resolution

resolvent

Resolution derivation

Either or or both can be empty. In the case that is empty, would be the unit
clause [ ].
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To discuss reasoning at the symbol level, it is common to posit what are called
, which are statements of what formulas can be inferred from other

formulas. Here, we use a single rule of inference called (binary) :

Given a clause of the form containing some literal , and a
clause of the form containing the complement of , infer the
clause consisting of those literals in the first clause other than

and those in the second other than .

We say in this case that is a of the two input clauses with respect to
. For example, from clauses [ ] and [ ], we have the clause [ ]

as a resolvent with respect to . The clauses [ ] and [ ] have two resol-
vents: [ ] with respect to , and [ ] with respect to . Note that [] is not a
resolvent of these two clauses. The only way to get the empty clause is to resolve
two complementary unit clauses like [ ] and [ ].

A of a clause from a set of clauses is a sequence of
clauses . . . , where the last clause, is , and where each is either an
element of or a resolvent of two earlier clauses in the derivation. We write
if there is a derivation of from .

Why do we care about Resolution derivations? The main point is that this
purely symbol-level operation on finite sets of literals has a direct connection to
knowledge-level logical interpretations.

Observe first of all that a resolvent is always entailed by the two input clauses.
Suppose we have two clauses and . We claim that

=

To see why, let be any interpretation, and suppose that = and =
There are two cases: if = , then = , but since = ,

we must have that = , and so = ; similarly, if = , then since
= , we must have that = , and so again = . Either way,

we get that = .
We can extend this argument to prove that any clause derivable by Resolution

from is entailed by , that is, if , then = . We show by induction on
the length of the derivation that for every , = : this is clearly true if ,
and otherwise, is a resolvent of two earlier clauses, and so is entailed by them,
as argued above, and hence by .
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not

when is the empty clause

refutation complete

satisfiable unsatisfiable

unsatisfiable

satisfiable

This theorem will also carry over to quantified clauses later.
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Figure 4.1: A Resolution procedure

a finite set of propositional clauses
or

1. Check if [] ; if so, return .

2. Otherwise, check if there are two clauses in , such that they resolve to pro-
duce another clause not already in ; if not, return .

3. Otherwise, add the new resolvent clause to , and go back to step 1.

The converse, however, does hold: we can have = without having
. For example, let consist of the single clause [ ] and let be [ ].

Then clearly entails even though it has no resolvents. In other words, as a form
of reasoning, finding Resolution derivations is sound but not complete.

Despite this incompleteness, however, Resolution does have a property that
allows it to be used without loss of generality to calculate entailments: Resolution
is both sound and complete . In other words, there is
a theorem that states that [] iff = []. This means that is unsatisfiable
iff []. This provides us with a way of determining the satisfiability of any set
of clauses, since all we need to do is search for a derivation of the empty clause.
Since this works for any set of clauses, we sometimes say that Resolution is

.

We are now ready to consider a symbol-level procedure for determining if KB = .
The idea is to put both KB and into CNF, as discussed before, and then to
check if the resulting set of clauses (for both) is unsatisfiable by searching for a
derivation of the empty clause. As discussed above, is unsatisfiable iff KB
is unsatisfiable iff KB = . This can be done using the nondeterministic procedure
in Figure 4.1. What the procedure does is to repeatedly add resolvents to the input
clauses until either the empty clause is added (in which case there is a derivation
of the empty clause) or no new clauses can be added (in which case there is no such
derivation). Note that this is guaranteed to terminate: each clause that gets added to
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Toddler
Toddler Child
Child Male Boy
Infant Child
Child Female Girl
Female

Girl

Girl

c 54

the set is a resolvent of previous clauses, and so contains only literals mentioned in
the original set . There are only finitely many clauses with just these literals, and
so eventually at Step 2, we will not be able to find a pair of clauses that resolves to
something new.

The procedure can be made deterministic quite simply: we need to settle on
a strategy for choosing which pair of clauses to use when there is more than one
pair that would produce a new resolvent. One possibility is to use the first pair
encountered; another is to use the pair that would produce the shortest resolvent. It
might also be a good idea to keep track of which pairs have already been considered
to avoid redundant checking. If we were interested in returning or printing out a
derivation, we would of course also want to store with each resolvent pointers to
its input clauses.

The procedure does not distinguish between clauses that come from the KB,
and those that come from the negation of , which we will call the . Observe
that if we have a number of queries we want to ask for the same KB, we need only
convert the KB to CNF once and then add clauses for the negation of each query.
Moreover, if we want to add a new fact to the KB, we can do so by adding the
clauses for to those already calculated for KB. Thus, to use this type of entailment
procedure, it makes good sense to keep KB in CNF, adding and removing clauses
as necessary.

Let us now consider some simple examples of this procedure in action. We start
with the following KB:

We can read these sentences as if they were talking about a particular person: the
person is a toddler; if the person is a toddler then the person is a child; if the person is
a child and male, then the person is a boy; if the person is an infant, then the person
is a child; if the person is a child and female, then the person is a girl; the person
is female. In Figure 4.2, we graphically display a Resolution derivation showing
that the person is a girl, by showing that KB = . Observe that in this diagram
we use a dashed line to separate the clauses that come directly from the KB or the
negation of the query from those that result from applying Resolution. There are
six clauses from the KB, one from the negation of the query (i.e., ), and four
new ones generated by Resolution. Each resolvent in the diagram has two solid
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[Girl]

[ Female, Girl]

[Child]
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[Female]

[ Child, Female, Girl]

[ Toddler, Child]

[Toddler]

[ Infant, Child]

[ Child, Male, Boy]

Sun Mail
(Rain Sleet) Mail
Rain Sun

Mail Rain Sleet Mail
Rain

Rain
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Figure 4.2: A first example Resolution derivation

lines pointing up to its input clauses. The resulting graph will never have cycles,
because input clauses must always appear earlier in the derivation. Note that there
are two clauses in the KB that are not used in the derivation and could be left out
of the diagram.

A second example uses the following KB:

These formulas can be understood as talking about the weather and the mail service
on a particular day. In Figure 4.3, we have a Resolution derivation showing that
KB = . Note that the formula (( ) ) results in two clauses on
conversion to CNF. If we wanted to show that KB = , for the same KB, we
could do so by displaying a similar graph that contains the clause [ ] and every
possible resolvent, but does not contain the empty clause.

Having seen how to do Resolution for the propositional case, we now consider
reasoning with variables, terms, and quantifiers. Again, we will want to convert

4

4

y
x
y
x

:

: : :

:

:

2003 R. Brachman and H. Levesque July 17, 2003

We will see how to handle existentials in Section 4.2.3.

x:� x: �

x:� x: �
x �

y:� x:�

y:� x:�
x �

� x:� x:� � x � �

� x:� x:� � x � �

@
@@

� � � � � � � � � �

\
\

\
\

\\

�
�

�
�

� �

L
L

L
L

LL

        
PPPPPPPP

� � � � � � � �
[ Sleet, Mail]

[Rain, Sun] [ Sun, Mail] [Mail, Rain] [ Mail]

[ Sun]

[Rain] [ Rain]

[ ]



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

:
j :8 � 9 :

j :9 � 8 :

j 8 � 8

j 9 � 9

^ _

j ^ 8 � 8 ^ � 8 ^

j _ 8 � 8 _ � 8 _

^ _

c 56

Figure 4.3: A second example Resolution derivation

formulas into an equivalent clausal form. For simplicity, we begin by assuming
that no existential quantifiers remain once negations have been moved inwards.

1. eliminate and , as before;

2. move inwards so that it appears only in front of an atom, using the previous
equivalences and the following two:

= ;
= .

3. standardize variables, that is, ensure that each quantifier is over a distinct
variable by renaming them as necessary. This uses the following equiva-
lences (provided that does not occur free in ):

= ;
= .

4. eliminate all remaining existentials (discussed later);

5. move universals outside the scope of and using the following equiva-
lences (provided that does not occur free in ):

= ( ) ( ) ( );
= ( ) ( ) ( ).

6. distribute over , as before;
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P t ; ; t t

P x ; R a; f b; x ; Q x; y
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�

x =t ; ; x =t x t
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x � t � x=a; y=g x; b; z
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P x; a ; Q x P b; y ; R b; f y
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7. collect terms as before.

The end result of this procedure is a quantified version of CNF, a universally quan-
tified conjunction of disjunctions of literals, that is once again logically equivalent
to the original formula (ignoring existentials).

Again it is convenient to use a of CNF. We simply drop the quan-
tifiers (since they are all universal anyway), and we are left with a set of clauses,
each of which is a set of literals, each of which is either an atom or its negation.
An atom now is of the form ( . . . ), where the terms may contain vari-
ables, constants, and function symbols. Clauses are understood exactly as they
were before, except that variables appearing in them are interpreted universally. So
for example, the clausal formula

[ ( ) ( ( ))] [ ( )]

stands for the CNF formula

[ ( ) ( ( ))] ( )

Before presenting the generalization of Resolution, it is useful to introduce spe-
cial notation and terminology for substitutions. A is a finite set of
pairs . . . where the are distinct variables and the are arbitrary
terms. If is a substitution and is a literal, then is the literal that results from si-
multaneously replacing each in by . For example, if = ( ) ,
and = ( ( )), then = ( ( ( ))). Similarly, if is a
clause, is the clause that results from performing the substitution on each literal.
We say that a term, literal, or clause is if it contains no variables. We say
that a literal is an of a literal if for some , = .

We now consider the Resolution rule as applied to clauses with variables. The main
idea is that since clauses with variables are implicitly universally quantified, we
want to allow Resolution inferences that can be made from any of their .

For example, suppose we have clauses

[ ( ) ( )] and [ ( ) ( ( ))].

Then implicitly at least, we also have clauses

unifies unifier

1 1

1 2 2

2

1 2 1 2

1

2

1 2

6

7
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[ ( ) ( )] and [ ( ) ( ( ))],

which resolve to [ ( ) ( ( ))]. We will define the rule of Resolution so that
this clause is a resolvent of the two original ones.

So the general rule of (binary) Resolution is as follows:

Suppose we are given a clause of the form containing some
literal , and a clause of the form containing the complement
of a literal . Suppose we rename the variables in the two clauses so
that each clause has distinct variables, and that there is a substitution
such that = Then, we can infer the clause ( ) consisting
of those literals in the first clause other than and those in the second
other than , after applying .

We say in this case that and , and that is a of the two literals.
With this new general rule of Resolution, the definition of a derivation stays the

same, and ignoring equality, we get as before that [] iff = [].
We will use the same conventions as before to show Resolution derivations in

diagrams, except that we will now show the unifying substitution as a label near
one of the solid lines.

As an example, consider the following KB:

( ) ( )
( ) ( )

In Figure 4.4, we show that KB = . Note that the conversion of
this KB to CNF did not require either existentials or equality.

A slightly more complex derivation is presented in Figure 4.5. This is a Reso-
lution derivation corresponding to the three-block problem first presented in Chap-
ter 1: if there are three stacked blocks where the top one is green, and the bottom
one is not green, is there a green block directly on top of a non-green block? The
KB here is

( , ), ( , ), ( ), ( )

where the three blocks are , , and . Note that this KB is already in CNF. The
query is

( ) ( ) ( )
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[ Student( ),HardWorker( )]

[ GradStudent( ), Student( )]

[GradStudent(sue)]

[ HardWorker(sue)]

[ Student(sue)]

[ GradStudent(sue)]

[ ]

zero succ

succ(succ(succ(succ(succ(zero)))))

Plus

Plus zero
Plus Plus succ succ

For certain pathological cases, we actually require a slightly more general version of Resolution
to get completeness. See Exercise 4.

Since it is sometimes not obvious which literals in the input clauses are being resolved, for clarity,
we point to them in the input clauses.

c 59

Figure 4.4: An example Resolution derivation with variables

whose negation contains no existentials or equalities.
Using a Resolution derivation, it is possible to get answers to queries that we

might think of as requiring computation. To do arithmetic, for example, we can use
the constant to stand for 0, and to stand for the successor function. Every
natural number can then be written as a ground term using these two symbols. For
instance, the term

stands for 5. We can use the predicate ( ) to stand for the relation + = ,
and start with a KB that formalizes the properties of addition as follows:

( )
( ) ( ( ) ( )).

All the expected relations among triples of numbers are entailed by this KB. For

8

8
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For readability, instead of using terms like succ(succ(zero)), we write the decimal equivalent, 2.

[ On( , ), Green( ), Green( )]
[On(b,c)]

[On(a,b)]

[ Green(b), Green(c)]

[ Green(a), Green(b)][ Green(c)]

[Green(b)]

[Green(a)]

[ Green(b)]

[ ]

Plus

succ succ
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Figure 4.5: The 3 block problem

example, in Figure 4.6, we show that 2 + 3 = 5 follows from this KB. A derivation
for an entailed existential formula like

(2 3 )

is similar, as shown in Figure 4.7. Here, we need to be careful to rename variables
(using and ) to ensure that the variables in the input clauses are distinct. Observe
that by examining the bindings for the variables, we can locate the value of : it
is bound to ( ), where is bound to ( ), and to 3. In other words,
the answer for the addition is correctly determined to be 5. As we will see later in
Chapter 5, this form of computation, including locating the answers in a derivation
of an existential, is what underlies the programming language.

While it is often possible to get answers to questions by looking at the bindings of
variables in a derivation of an existential, in full FOL, the situation is more compli-
cated. Specifically, it can happen that a KB entails some ( ), without entailing

( ) for any specific . For example, in the three-block problem from Figure 4.5,
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[ Plus( , , ), Plus(succ( ), ,succ( )) ]

[Plus(0, , )]

[ Plus(2,3,5)]

[ Plus(1,3,4)]

[ Plus(0,3,3)]

[ ]

Student(john)
Student(jane)
Happy(john)

Student Happy
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Figure 4.6: Arithmetic in FOL

the KB entails that block must be green and on top of a non-green block, but
not which.

One general method that has been proposed for dealing with answers to queries
even in cases like these is the . Here is the idea: we re-
place a query such as ( ) (where is the variable we are interested in) by

( ) ( ) where is a new predicate symbol occurring nowhere else,
called, the . Since appears nowhere else, it will normally not be
possible to derive the empty clause from the modified query. Instead, we terminate
the derivation as soon as we produce a clause containing the answer predicate.

To see this in action, we begin with an example having a definite answer. Sup-
pose the KB is

and we wish to show that some student is happy. The query then is

( ) ( )

an

:

:
:

:

1 3 ( )

0 3 ( )

3 3

x y z x y z

x x

u
v

w
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[ Plus( , , ), Plus(succ( ), ,succ( )) ]

[Plus(0, , )]

[ Plus(2,3, )]

[ Plus(1,3, )]

[ Plus(0,3, )]

[ ]

Student(john)
Student(jane)
Happy(john)
Happy(jane)

jane john

Student(john)
Student(jane)
Happy(john) Happy(jane)
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Figure 4.7: An existential arithmetic query

In Figure 4.8, we show a derivation augmented with an answer predicate to derive
who that happy student is. The final clause can be interpreted as saying that “An
answer is John.” A normal derivation of the empty clause can be easily produced
from this one by eliminating all occurrences of the answer predicate.

Observe that in this example, we say that answer is produced by the process.
There can be many such answers, but each derivation only deals with one. For
example, if the KB had been

then, in one derivation we might extract the answer , and in another, .
Where the answer extraction process especially pays off is in cases involving

indefinite answers. Suppose, for example, our KB had been
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[Student(jane)]

[ Happy( ), Student( ), ( )][Happy(john)]

[Student(john)] [ Student(john), (john)]

[ (john) ]

[ Happy( ), Student( ), ( )]

[Student(jane)] [Student(john)]

[ Happy(john), (john)][ (jane), Happy(jane)]

[Happy(john), Happy(jane)]

[ (jane), Happy(john)]

[ (jane), (john)]
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Figure 4.8: Answer predicate with a definite answer

Figure 4.9: Answer predicate with an indefinite answer

Then we can still see that there is a student who is happy, although we cannot say
who. If we use the same query and answer extraction process, we get the derivation
in Figure 4.9. In this case, the final clause can be interpreted as saying that “An
answer is either Jane or John”, which is as specific as the KB allows.

Finally, it is worth noting that the answer extraction process can result in clauses
containing variables. For example, if our KB had been

0

0

1 2 3

1

2 3

1 2 3 1 2 3

Student
Happy

4.2.3 Skolemization
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Skolem constants Skolem functions

Skolemization

w: f a; w

y z: f y; g z

A f a; g z
f a; g z

x y z:P x; y; z ;

x

a y z

f y x y z:P x; y; z ; y:P a; y; f y ;

a f

a f

x x x y y ;

y x

x x

x x x f x ; x ; x ;

f
� �

� �

x:P x P a
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( ( ))
( ( ( )))

we get a derivation whose final clause is [ ( ( ( )))], which can be interpreted
as saying that “An answer is any instance of the term ( ( )).”

So far, in converting formulas to CNF, we have ignored existentials. For example,
we could not handle facts in a KB like ( ) since we had no way to
put them into CNF.

To handle existentials and represent such facts, we use the following idea:
since some individuals are claimed to exist, we introduce names for them (called

and , for the logician who first introduced them)
and represent facts like the above using those names. If we are careful not to use
the names anywhere else, then what will be entailed will be precisely what was
entailed by the original existential. For the above formula, for example, an is
claimed to exist, so call it ; moreover, for each , a is claimed to exist, call
it ( ). So instead of reasoning with ( ) we use ( ( ))
where and are Skolem symbols appearing nowhere else. Informally, if we think
of the conclusions we can draw from this formula, they will be the same as those
we can draw from the original existential (as long as they do not mention or ).

In general, then, in our conversion to CNF, we eliminate all existentials (at step
4) by what is called : repeatedly replace an existential variable by
a new function symbol with as many arguments as there are universal variables
dominating the existential. In other words, if we start with

(. . . (. . . (. . . [. . . . . .] . . .) . . .) . . .)

where existentially quantified appears in the scope of universally quantified ,
, , and only these, we end up with

(. . . (. . . (. . . [. . . ( ) . . .] . . .) . . .) . . .)

where appears nowhere else.
If is our original formula, and is the result of converting it to CNF including

Skolemization, then we no longer have that = ( ) as we had before. For
example, ( ) is not logically equivalent to ( ), its Skolemized version. What
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x yR x; y y xR x; y

x yR x; y ; y xR x; y

R a; y ; R x; b

a b

x yR x; y ; y xR x; y

R x; g x ; R f y ; y

f g

R x; g x R f y ; y

R a; y x

y x yR x; y

R f y ; y x

y xR x; y

a b; b c; a c :

We do need to be careful, however, with answer extraction, not to confuse real constants (that
have meaning in the application domain) with Skolem constants that are generated only to avoid
existentials.

To see this, note that if is replaced by and by , then would have to be ( ) and
would have to be ( ). So would have to be ( ( )) which is impossible.
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can be shown, however, is that is satisfiable iff is satisfiable, and this is really
all we need for Resolution.

Note that Skolemization depends crucially on the universal variables that dom-
inate the existential. A formula like ( ) entails ( ), but the con-
verse does not hold. To show that the former holds using Resolution, we show
that

( ) ( )

is unsatisfiable. After conversion to CNF, we get the clauses

[ ( )] [ ( )]

where and are Skolem constants, which resolve to the empty clause in one step.
If we were to try the same with the converse, we would need to show that

( ) ( )

was unsatisfiable. After conversion to CNF, we get

[ ( ( ))] [ ( ( ) )]

where and are Skolem functions. In this case, there is no derivation of the empty
clause (nor should there be) because the two literals ( ( )) and ( ( ) ) can-
not be unified. So for logical correctness, it is important to get the dependence
of variables right. In one case, we had ( ) where the value of the existential
did not depend on universal (i.e., in ( )); in the other case, we had the
much weaker ( ( ) ) where the value of the existential could depend on the
universal (i.e., in ( )).

So far, we have ignored formulas containing equality. If we were to simply treat = as
a normal predicate, we would miss many unsatisfiable sets of clauses, for example,

= = = To handle these, it is necessary to augment the set of clauses
to ensure that all the special properties of equality are taken into account. What we
require are the clausal versions of the :

n n n n

n n

n n n n

n n
1 1 1 1

1 1

1 1 1 1

1 1
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4.3 Dealing with computational intractability

Married father mother
father(john)=bill

Married(bill,mother(john))

x: x x

x y: x y y x

x y z: x y y z x z

f n

x y x y : x y x y

f x ; ; x f y ; ; y

P n

x y x y : x y x y

P x ; ; x P y ; ; y

x: x ; x

:

reflexitivity:

symmetry:

transitivity:

substitution for functions:

substitution for predicates:
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= ;

= = ;

= = = ;

for every function symbol of arity , an axiom

= =
( . . . ) = ( . . . );

for every predicate symbol of arity , an axiom

= =
( . . . ) ( . . . ).

It can be shown that with the addition of these axioms, equality can be treated as
a binary predicate, and soundness and completeness of Resolution for the empty
clause will be preserved.

A simple example of the use of the axioms of equality can be found in Fig-
ure 4.10. In this example, the KB is

( ( ) ( ))

and the query to derive is

Note that the derivation uses two of the axioms: reflexitivity, and substitution for
predicates.

Although the axioms of equality are sufficient for Resolution, they do result
in a very large number of resolvents, and their use can easily come to dominate
Resolution derivations. A more efficient treatment of equality is discussed in Sec-
tion 4.3.7.

The success we have had using Resolution derivations should not mislead us into
thinking that Resolution provides a general effective solution to the reasoning prob-
lem.
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[ Married(bill,mother(john))]

[Married( , ), Married( , ), , ]

[father(john)=bill]

[Married(father( ),mother( ))]

[ ][ mother(john), bill, Married( , ))]

[ mother(john), Married(father(john), ))]

[mother(john) mother(john)]

[ ]

LessThan succ LessThan

LessThan(zero,zero)

satisfiable
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Figure 4.10: Using the axioms of equality

Consider, for example, the KB consisting of a single formula (again in the domain
of arithmetic):

( ( ) ) ( )

Suppose our query is . Obviously, this should fail since the
KB does not entail the query (nor its negation). The problem is that if we pose it
to Resolution, we get derivations like the one shown in Figure 4.11. Although we
never generate the empty clause, we might generate an sequence looking
for it. Among other things, this suggests that we cannot simply use a depth-first
procedure to search for the empty clause, since we run the risk of getting stuck on
such an infinite branch.

We might ask if there is any way to detect when we are on such a branch, so that
we can give it up and look elsewhere. The answer unfortunately is . The FOL
language is very powerful and can be used as a full programming language. Just as
there is no way to detect when a program is looping, there is no way to detect if a
branch will continue indefinitely.

This is quite problematic from a KR point of view since it means that there can
be no procedure which, given a set of clauses, returns when the clauses S a
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:
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[LessThan( , ), LessThan(succ( ), )]

[ LessThan(0,0)]

[ LessThan(1,0)]

[ LessThan(2,0)]

unsatisfiable

unsatisfiable

We will see in Chapter 5 that this is also true for the much simpler case of Horn clauses.
In case mentions no constant or function symbols, we use a single constant, say .
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Figure 4.11: An infinite Resolution branch

are satisfiable, and otherwise. However, we do know that Resolution
is refutation complete: if the set of clauses is unsatisfiable, some branch will contain
the empty clause (even if some branches may be infinite). So a breadth-first search
is guaranteed to report when the clauses are unsatisfiable. When the
clauses are satisfiable, the search may or may not terminate.

In this section, we examine what we can do about this issue.

We saw in Section 4.1 that in the propositional case, we can run Resolution to
completion, and so we never have the non-termination problem. An interesting
fact about Resolution in FOL is that it sometimes reduces to this propositional case.
Given a set of clauses, the of (named after the logician who
first introduced it) is the set of all ground terms formed using just the constants and
function symbols in . For example if mentions just constants and and
unary function symbol , then the Herbrand universe is the set

( ) ( ) ( ( )) ( ( )) ( ( ( ))) . . .

The of is the set of all ground clauses where and
assigns the variables in to terms in the Herbrand universe.
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This applies to Horn clauses too, as discussed in Chapter 5.
An example is the so-called Traveling Salesman Problem: given a graph with nodes standing for

cities, and edges with numbers on them standing for direct routes between cities that many kilometers
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Herbrand’s theorem is that a set of clauses is satisfiable iff its Herbrand base
is. The reason this is significant is that the Herbrand base is a set of clauses
without variables, and so is essentially propositional. To reason with the Herbrand
base it is not necessary to use unifiers and so on, and we have a sound and complete
reasoning procedure that is guaranteed to terminate.

The catch in this approach (and there must be a catch since no procedure can de-
cide the satisfiability of arbitrary sets of clauses) is that the Herbrand base will typ-
ically be an set of propositional clauses. It will however, be finite when the
Herbrand universe is finite (no function symbols and only finitely many constants
appear in ). Moreover, sometimes we can keep the universe finite by considering
the “type” of the arguments and values of functions, and include a term like ( )
only if the type of is appropriate for the function . For example, if our function
is (taking a person as argument and producing a date), we may be able to
avoid meaningless term like in the Herbrand universe.

If we can get a finite set of propositional clauses, we know that the Resolution pro-
cedure in Figure 4.1 will terminate. But this does not make it practical. The proce-
dure may terminate, but how long will it take? We might think that this depends on
how good our procedure is at finding derivations. However, in 1985, Armin Haken
proved that there are unsatisfiable propositional clauses . . . such that the

derivation of the empty clause had on the order of 2 steps. This answers
the question definitively: no matter how clever we are at finding derivations, and
even if we avoid all needless searching, any Resolution procedure will still take

time on such clauses since it takes that long to get to the end of the
derivation.

We might then wonder if this is just a problem with Resolution: might there
not be a better way to determine whether a set of propositional clauses is satisfi-
able? As it turns out, this question is one of the deepest ones in all of Computer
Science and still has no definite answer. In 1972, Steven Cook proved that the
satisfiability problem was : roughly, any search problem where what
is being searched for can be verified in polynomial time can be recast as a propo-
sitional satisfiability problem. The importance of this result is that many problems
of practical interest (in areas such as scheduling, routing, and packing) can be for-
mulated as search problems of this form. Thus a good algorithm for satisfiability

k
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mathematical theorem proving

automated theorem-proving

apart, determine if there is a way to visit all the cities in the graph in less than some given number
of kilometers.
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(which Haken proved Resolution is not) would imply a good algorithm for all of
these tasks. Since so many people have been unable to find good algorithms for
any of them, it is strongly believed that propositional satisfiability cannot be solved
at all in polynomial time. Proofs, like Haken’s for Resolution, however, have been
very hard to obtain.

So what are the implications of these negative results? At the very least, they tell
us that Resolution is not a panacea. For KR purposes, we would like to be able to
produce entailments of a KB for immediate action, but determining the satisfiability
of clauses may simply be too difficult computationally for this purpose.

We may need to consider some other options. One is to give more control over
the reasoning process to the user. This is a theme that will show up in the procedural
representations in Chapters 5 and 6 and others. Another option is to consider the
possibility of using representation languages that are less expressive than full FOL
or even full propositional logic. This is a theme that will show up in Chapters 5 and
9, among others. Much of the research in Knowledge Representation and Reason-
ing can be seen as attempts to deal with this issue, and we will return to it in detail
in Chapter 16.

On the other hand, it is worth observing that in some applications of Resolution,
it is reasonable to wait for answers, even for a very long time. Using Resolution to
do , for example to determine whether or not Gold-
bach’s Conjecture or its negation follows from the axioms of number theory, is quite
different from using Resolution to determine whether or not an umbrella is needed
when it looks like rain. In the former case, we might be willing to wait for months or
even years for an answer. There is an area of AI called
whose subject matter is precisely the development of procedures for such mathe-
matical applications.

The best we can hope for in such applications of Resolution is not a guarantee of
efficiency or even of termination, but a way to search for derivations that eliminates
unnecessary steps as much as possible. In the rest of this section, we will consider
strategies that can be used to improve the search in this sense.
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4.3.5 SAT solvers

4.3.6 Most general unifiers
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In the propositional case, various procedures have been proposed for determining
the satisfiability of a set of clauses more efficiently than the Resolution procedure of
Figure 4.1. Examples are the DP, TAB, and LS procedures presented in Exercises 6,
7, and 8, respectively. Instead of searching for a derivation that would show a set
of clauses to be , these procedures search for an interpretation that
would show the clauses to be . For this reason, the procedures are called

, and are often applied to clauses that are known to be satisfiable, but
where the satisfying interpretation is not known.

However, the distance between the two sorts of procedures is not that great.
For one thing, the Resolution procedure of Figure 4.1 can be adapted to finding a
satisfying interpretation (see Exercise 9). Furthermore, as discussed in the exer-
cises, the SAT solvers DP and TAB have the property that when they fail to find a
satisfying interpretation, a Resolution derivation of the empty clause can be lifted
directly from a trace of their execution. This implies that no matter how well DP
or TAB work in practice, they must take exponential time on some inputs.

One interesting case is the procedure called GSAT in Exercise 10. This SAT
solver is not known to be subject to any lower bounds related to the Haken result for
Resolution. However, it does have drawbacks of its own: it is not even guaranteed
to terminate with a correct answer in all cases.

The most important way of avoiding needless search in a first-order derivation is
to keep the search as general as possible. Consider, for example two clauses and

, where contains the literal ( ( ) ( ) ) and contains ( ( ) ).
These two literals are unified by the substitution

= ( )

and also by
= ( ) ( ( )) ( )

We may very well be able to derive the empty clause using ; but if we cannot, we
will need to consider other substitutions like , and so on.

The trouble is that both of these substitutions are overly specific. We can see
that any unifier must give the same value as , and the same as ( ), but we do
not need to commit yet to a value for . The substitution

= ( )
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DS u; g z

v DS t DS v

� � v=t

O n

By we mean the substitution such that for any literal , ( ) = ( ) , that is, we apply
to and then apply to the result.
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unifies the two literals without making an arbitrary choice that might preclude a
path to the empty clause. It is a most general unifier.

More precisely, a (MGU) of literals and is a unifier
that has the property that for any other unifier , there is a further substitution
such that = . So starting with you can always get to any other unifier
by applying additional substitutions. For example, given , we can get to by
further applying , and to by applying ( ). Note that an MGU need not
be unique, in that

= ( )

is also one for and .
The key fact about MGUs is that (with certain restrictions that need not concern

us here) we can limit the Resolution rule to MGUs without loss of completeness.
This helps immensely in the search since it dramatically reduces the number of
resolvents that can be inferred from two input clauses. Moreover, an MGU of a
pair of literals and can be calculated efficiently, by the following procedure:

1. start with = ;

2. exit if = ;

3. otherwise get the disagreement set, , which is the pair of terms at the first
place where the two literals disagree;

, if = ( ( ( ) . . .)) and = ( ( . . .)),
then = ( ) ;

4. find a variable , and a term not containing ; if not, fail;

5. otherwise, set to , and go to step 2.

This procedure runs in ( ) time on the length of the terms, and an even better
but more complex time algorithm exists.

Because MGUs greatly reduce the search and can be calculated efficiently, all
Resolution-based systems implemented to date use them.

A number of other refinements to Resolution have been proposed to help improve
the search.
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Clause elimination

Ordering strategies

Set of support

Special treatment of equality

pure clauses

tautologies

subsumed clauses

unit preference

set of support

Paramodulation
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The idea is to keep the number of clauses generated as small
as possible, without giving up completeness, by using the fact that if there is
a derivation to the empty clause at all, then there is one that does not use the
clause in question. Some examples are:

: these are clauses that contain some literal such that
does not appear anywhere;

: these are clauses that contain both and , and can be
bypassed in any derivation;

: these are clauses for which there already exists an-
other clause with a subset of the literals (perhaps after a substitution).

The idea is prefer to perform Resolution steps in a fixed order,
trying to maximize the chance of deriving the empty clause. The best strategy
found to date (but not the only one) is , that is, to use unit
clauses first. This is because using a unit clause together with a clause of
length always produces a clause of length 1. By going for shorter and
shorter clauses, the hope is to arrive at the empty clause more quickly.

In a KR application, even if the KB and the negation of a query are
unsatisfiable, we still expect the KB by itself to be satisfiable. It therefore
makes sense not to perform Resolution steps involving only clauses from
the KB. The strategy says that we are only allowed to perform
Resolution if at least one of the input clauses has an ancestor in the negation
of the query. Under the right conditions, this can be done without loss of
completeness.

We examined above one way to handle equality us-
ing the axioms of equality explicitly. Because these can generate so many
resolvents, a better way is to introduce a second rule of inference in addition
to Resolution, called :

Suppose we are given a clause = where and are
terms, and a clause [ ] containing some term . Suppose
we rename the variables in the two clauses so that each clause
has distinct variables, and that there is a substitution such that

= Then, we can infer the clause ( [ ] ) which
eliminates the equality atom, replaces by , and then performs
the substitution.



!

:
: :

8 �

x ; x ;

x

P s P t s t

p; q p q

p q

q p

x: x x

2003 R. Brachman and H. Levesque July 17, 2003

Sorted logic

Connection graph

Directional connectives

father john bill Married father mother

[Married(bill,mother(john))]

Male mother
Person Female

Woman Person

BattleShip Gray
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With this rule, it is no longer necessary to include the axioms of equality, and
what would have required many steps of Resolution involving those axioms,
can be done in a single step. Using the previous example above, it is not hard
to see that from

[ ( ) = ] and [ ( ( ) ( ))]

we can derive the clause in a single Paramodula-
tion step.

The idea here is to associate sorts with all terms. For example a
variable might be of sort , and the function might be of sort
[ ]. We might also want to keep a taxonomy of sorts, for
example, that is a subsort of . With this information in place,
we can refuse to unify ( ) with ( ) if the sorts of and are incompatible.
The assumption here is that only meaningful (with respect to sorts) unifica-
tions can ever lead to the empty clause.

In the connection graph method, given a set of clauses, we
precompute a graph with edges between any two unifiable literals of oppo-
site polarity, and labeled with the MGU of the two literals. In other words, we
start by pre-computing all possible unifications. The Resolution procedure,
then, involves selecting a link, computing a resolvent clause, and inheriting
links for the new clause from its input clauses after substitution. No unifi-
cation is done at “run time.” With this, Resolution can be seen as a kind of
state-space search problem — find a sequence of links that ultimately pro-
duces the empty clause — and any technique for improving a state-space
search (such as using a heuristic function) can be applied to Resolution.

A clause like [ ], representing “if then ”, can be
used in a derivation in two ways: in the forward direction, if we derive a
clause containing , we then derive the clause with ; in the backward direc-
tion, if we derive a clause containing , we then derive the clause with .
The idea with directional connectives is to mark clauses to be used in one or
the other direction only. For example, given a fact in a KB like

( ) ( )

we may wish to use this only in the forward direction, since it is probably a
bad idea to work on deriving that something is gray by trying to derive that
it is a battleship. Similarly, a fact like
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( ) ( )

might be used only in the backward direction since it is probably a bad idea
to derive having a spleen for every individual derived to be a person. This
form of control over how facts are used is the basis for the procedural repre-
sentation languages which will be discussed extensively in Chapter 6. From
a logical point of view, however, great care is needed with directional con-
nectives to ensure that completeness is not lost.

1. Determine whether the following sentence is valid using Resolution:

(( ( ) ( )) ( ( ) ( )))

2. (Follow-up to Exercise 1 of Chapter 3)
Use Resolution with answer extraction to find the member of the Alpine Club
who is a mountain climber but not a skier.

3. (Adapted from [3])
Victor has been murdered, and Arthur, Bertram, and Carleton are the only
suspects (meaning exactly one of them is the murderer). Arthur says that
Bertram was the victim’s friend, but that Carleton hated the victim. Bertram
says that he was out of town the day of the murder, and besides he didn’t even
know the guy. Carleton says that he saw Arthur and Bertram with the victim
just before the murder. You may assume that everyone – except possibly for
the murderer – is telling the truth.

(a) Use Resolution to find the murderer. In other words, formalize the facts
as a set of clauses, prove that there is a murderer, and extract his identity
from the derivation.

(b) Suppose we discover that we were wrong: we cannot assume that there
was only a single murderer (there may have been a conspiracy). Show
that in this case, the facts do not support anyone’s guilt. In other words,
for each suspect, present a logical interpretation that supports all the
facts but where that suspect is innocent and the other two are guilty.

sets

factoring

1 2

1 1 2 2

1 2

1 1 2 2

1 2
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4. (See follow-up Question 3 of Chapter 5)
The general form of Resolution with variables presented here is not complete
as it stands, even for deriving the empty clause. In particular, note that the
two clauses

[ ( ) ( )] and [ ( ) ( )]

are together unsatisfiable.

(a) Argue that the empty clause cannot be derived from these two clauses.

A slightly more general rule of Resolution handles cases such as these:

Suppose that and are clauses with disjoint atoms. Suppose that
there are of literals and and a substitution
such that = and = Then, we conclude by Resolution
the clause: ( ) ( )

The form of Resolution considered here simply took and to be single-
ton sets.

(b) Show a refutation of the two clauses with this generalized form of Res-
olution.

(c) Another way to obtain completeness is to leave the Resolution rule un-
changed (that is, dealing with pairs of literals rather than pairs of sets
of literals as above), but to add a second rule of inference, sometimes
called , to make up the difference. Present such a rule of in-
ference and show that it properly handles the above example.

In the remaining questions of this chapter, we consider a number of procedures for
determining whether or not a set of propositional clauses is satisfiable. In most
cases, we also would like to return a satisfying interpretation, if one exists.

5. In defining procedures for testing satisfiability, it is useful to have the follow-
ing notation. When is a set of clauses, and is a literal, define to
be the following set of clauses

= ( )

For example, if = [ ] [ ] [ ] [ ] , then we get that =
[ ] [ ] [ ] and = [ ] [ ]

Prove the following two properties of Resolution derivations:
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The version considered here is actually closer to the variant presented by Davis, Logemann and
Loveland Putnam.
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Figure 4.12: The DP procedure

: a set of clauses
: are the clauses satisfiable, YES or NO?

DP( )
is empty return YES
contains [] return NO

let be some atom mentioned in
DP( ) = YES return YES

otherwise return DP( )

(a) If derives clause in steps, then derives in steps, where
is either itself or the clause [ ].

(b) If derives [] in steps and derives [] in steps, then
derives [] in no more than ( + + 1) steps.

6. A very popular procedure for testing the satisfiability of a set of proposi-
tional clauses is the Davis-Putnam procedure (henceforth DP), shown in Fig-
ure 4.12, and named after the two mathematicians who first presented it.

(a) Sketch how DP could be modified to return a satisfying assignment (as
a set of literals) instead of YES when the clauses are satisfiable.

(b) The main refinements to this procedure that have been proposed in the
literature involve the choice of the atom . As stated, the choice is left
to chance. Argue why it is useful to do at least the following: if
contains a singleton clause [ ] or [ ], then choose as the next atom.

(c) Another refinement is the following: once it is established that is not
empty and does not contain [], check to see if mentions some literal

but not its complement . In this case, we return DP( ) directly
and do not bother with . Explain why this is correct.

(d) Among all known propositional satisfiability procedures, recent exper-
imental results suggest that DP (including the refinements mentioned
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above) is the fastest one in practice. Somewhat surprisingly, it is possi-
ble to prove that DP can take an exponential number of steps on some
inputs. Use the results from Question 5 and Haken’s result mentioned
in Section 4.3.3 to prove an exponential lower bound on the running
time of DP. Prove by induction on that if DP( ) returns NO
after steps, then derives [] by Resolution in no more than steps.

(e) As stated, the choice of the next atom is left to chance. However,
a number of selection strategies have been proposed in the literature,
such as, choosing an atom where

appears in the most clauses in , or
appears in the fewest clauses in , or
is the most balanced atom in (the number of positive occur-

rences in is closest to the number of negative occurrences), or
is the least balanced atom in , or
appears in the shortest clause(s) in .

Choose any of the above selection strategies, implement two ver-
sions of DP, and compare how well they run (in terms of the number
of recursive calls) on some hard test cases. To generate some sets of
clauses that are known to be hard for DP (see [5] for details), randomly
generate about 4 2 clauses of length 3, where is the number of atoms.
(Each clause can be generated by choosing three atoms at random and
flipping the polarity of each with a probability of .5.)

7. Up until recently, a very popular way of testing the satisfiability of a set of
propositional clauses was the method. Rather than computing resol-
vents, the procedure TAB in Figure 4.13 tries to construct an interpretation

that satisfies a set of clauses by picking literals from each clause.

In this question, we begin by showing that the TAB procedure, like the DP
procedure of Question 6, must have exponential running time on some inputs.
First we use the notation to mean that clause (or a subset of it) can be
derived by Resolution from the set of clauses in steps (or less). Observe
that if and , then , just by stacking the
two derivations together.

(a) Prove that if [], then ( ) .

(b) Prove using part (a) and the observation above that if . . . are
literals, and for each , [ ] [], then

[ . . . ] []
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Figure 4.13: The TAB procedure

: a set of clauses
: are the clauses satisfiable, YES or NO?

TAB( ) = TAB1( , )

TAB1( , )
is empty return YES
contains some and return NO

otherwise, let be any clause in

TAB1( , )=YES
return YES

return NO

(c) Prove by induction on and using part (b) that if TAB1( , . . . )
returns NO after a total of procedure calls, then there is a Resolution
refutation of ( [ ] . . . [ ] ) that takes at most steps.

(d) As in Question 6, use Haken’s result from Section 4.3.3 and part (c)
to prove that there is a set of clauses for which TAB( ) makes an
exponential number of recursive procedure calls.

Finally, we consider an experimental question:

(e) As mentioned in Question 6, it was shown in [5] that the DP procedure
often runs for a very long time with about 4 2 randomly generated
clauses of length 3 (where is the number of atoms in the clauses). With
fewer than 4 2 clauses, DP usually terminates quickly; with more,
again DP usually terminates quickly.

Confirm (or refute) experimentally that the tableau method TAB also
exhibits the same easy-hard-easy pattern around 4 2 on sets of clauses
randomly generated as in Question 6.

Note
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Figure 4.14: The LS procedure

: a set of clauses , over atoms
: are the clauses satisfiable, YES or NO?

LS( ) = LS1( , , 2) LS1( , , 2)

LS1( , , )
= , for every , return YES

0 return NO
[] return NO

otherwise, let be any clause in such that =

LS1( , , 1) = YES
return YES

return NO

8. Another method was proposed in [2] for testing the satisfiability of a set of
propositional clauses. The procedure LS (for local search) tries to find an
interpretation that satisfies a set of clauses by searching to within a certain
distance from a given set of start points. In the simplest version, we consider
two start points: the interpretation which assigns all atoms false; and the
interpretation which assigns all atoms true. It is not hard to see that ev-
ery interpretation lies within a distance of 2 from one of these two start
points, where is the number of atoms, and where the distance between two
interpretations is the number of atoms where they differ (the Hamming dis-
tance). The procedure is shown in Figure 4.14 using the notation from
Question 5.

: The correctness of the procedure depends on the following fact (dis-
cussed in [2]): in the final step, suppose is a clause not satisfied by .
Then there is an interpretation within distance of that satisfies iff for
some literal , there is an interpretation within distance 1 of that
satisfies .
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Figure 4.15: The RES-SAT procedure

: a set of clauses over atoms
: an interpretation satisfying

RES-SAT( )
:=

:= 1
there is a clause such that

:=
:=

Confirm (or refute) experimentally that the LS method also exhibits the same
easy-hard-easy pattern noted in Question 7.

9. In some applications we are given a set of clauses that is known to be satisfi-
able, and our task is to find an interpretation that satisfies the clauses. We can
use variants of the procedures presented in Questions 6, 7, or 8 to do this. But
we can also use Resolution itself. First we generate = ( ) the set of
all resolvents derivable from Then, we run the procedure RES-SAT shown
in Figure 4.15.

Note that refers to the set of literals that are the complements of those in
Also, we are treating an interpretation as a set of literals containing exactly
one of or for each atom

(a) Show an example where this procedure would not correctly locate a
satisfying interpretation if the original set were used instead of in
the body.

(b) Given that the procedure works correctly for some set prove that it
would also work correctly on just the minimal elements of that is,
on those clauses in for which no proper subset is a clause in

(c) Prove that the procedure correctly finds a satisfying interpretation when
= ( ). : Begin by showing that

1 2 1
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Figure 4.16: The GSAT procedure

: a set of clauses , and two parameters, and
: an interpretation satisfying , or failure

GSAT( , , )
:= 1

:= a randomly generated truth assignment
:= 1

=
:= an atomic symbol such that a change in its truth

assignment gives the largest increase in the total
number of clauses in that are satisfied by

:= with the truth assignment of reversed

“no satisfying interpretation found”

For any , if for no clause do we have that then
there cannot be clauses and in such that
and

Then use induction to do the rest.

10. In [7], a procedure called GSAT is presented for finding interpretations for
satisfiable sets of clauses. This procedure, shown in Figure 4.16, seems to
have some serious drawbacks: it does not work at all on unsatisfiable sets
of clauses, and even with satisfiable ones, it is not guaranteed to eventually
return an answer. Nonetheless, it appears to work quite well in practice.

The procedure uses two parameters: determines how many times the
atoms in should be flipped before starting over with a new random inter-
pretation; determines how many times this process should be repeated
before giving up and declaring failure. Both parameters need to be set by
trial and error.

Implement GSAT and compare its performance to one of the other satisfiabil-
ity procedures presented in these exercises on some satisfiable sets of clauses
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of your own choosing. Note that one of the properties of GSAT is that be-
cause it counts the number of clauses not yet satisfied by an interpretation,
it is very sensitive to how a problem is encoded as a set of clauses (that is,
logically equivalent formulations could have very different properties).
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Chapter 5

conditional

5.1 Horn clauses

Reasoning with Horn Clauses

Rain Sleet Snow

Child Male Boy

In the previous chapter, we saw how a Resolution procedure could in principle
be used to calculate entailments of any first-order logical KB. But we also saw
that in its most general form, Resolution ran into serious computational difficulties.
Although refinements to Resolution can help, the problem can never be completely
eliminated. This is a consequence of the fundamental computational intractability
of first-order entailment.

In this chapter, we will explore the idea of limiting ourselves to only a certain in-
teresting subset of first-order logic, where the Resolution procedure becomes much
more manageable. We will also see that from a representation standpoint, the subset
in question is still sufficiently expressive for many purposes.

In a Resolution-based system, clauses end up being used for two different purposes.
First, they are used to express ordinary disjunctions like

[ ]

This is the sort of clause we might use to express incomplete knowledge: there is
rain or sleet or snow outside, but we don’t know which. But consider a clause like

[ ]

While this can certainly be read as a disjunction, namely, “either someone is not
a child, or is not male, or is a boy,” it is much more naturally understood as a

: “if someone is a child and is male then that someone is a boy.” It is
this second reading of clauses that will be our focus in this chapter.

n n

n

1 1

1
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5.1.1 Resolution derivations with Horn clauses

c 86

We call a clause like the above—containing at most one positive literal—a
. When there is exactly one positive literalin the clause, it is called

a (or ) Horn clause. When there are no positive literals, the clause
is called a Horn clause. In either case, there can be zero negative literals,
and so the empty clause is a negative Horn clause. Observe that a positive Horn
clause [ . . . ] can be read as “if and . . . and then .” We will
sometimes write a clause like this as

. . .

to emphasize this conditional, “if-then” reading.
Our focus in this chapter will be on using Resolution to reason with if-then

statements (which are sometimes called “rules”). Full first-order logic is concerned
with disjunction and incomplete knowledge in a more general form which we are
putting aside for the purposes of this chapter.

Given a Resolution derivation over Horn clauses, observe that two negative clauses
can never be resolved together, since all of their literals are of the same polarity. If
we are able to resolve a negative and a positive clause together, we are guaranteed
to produce a negative clause: the two clauses must be resolved with respect to the
one positive literal in the positive clause, and so it will not appear in the resolvent.
Similarly, if we resolve two positive clauses together, we are guaranteed to produce
a positive clause: the two clauses must be resolved with respect to one (and only
one) of the positive literals, so the other positive literal will appear in the resolvent.
In other words, Resolution over Horn clauses must always involve a positive clause,
and if the second clause is negative, the resolvent is negative; if the second clause
is positive, the resolvent is positive.

Less obvious, perhaps, is the following fact: suppose is a set of Horn clauses
and , where is a negative clause. Then there is guaranteed to be a derivation
of where all the new clauses in the derivation (i.e., clauses not in ) are negative.
The proof is detailed and laborious, but the main idea is this: suppose we have a
derivation with some new positive clauses. Take the last one of these, and call it

. Since is the last positive clause in the derivation, all of the Resolution steps
after produce negative clauses. We now change the derivation so that instead
of generating negative clauses using , we generate these negative clauses using
the positive parents of (which is where all of the literals in come from—
must have only positive parents, since it is a positive clause). We know we can
do this because in order to get to the negative successor(s) of , we must have a
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clause somewhere that can resolve with it to eliminate the one positive literal in
(call that clause and the literal ). That must be present in one of the (positive)
parents of ; so we just use clause to resolve against the parent of , thereby
eliminating earlier in the derivation, and producing the negative clauses without
producing . The derivation still generates , but this time without needing . If
we repeat this for every new positive clause introduced, we eliminate all of them.

We can go further: suppose is a set of Horn clauses and , where is
again a negative clause. Then there is guaranteed to be a derivation of where each
new clause derived is not only negative, but is a resolvent of the previous one in the
derivation and an original clause in . The reason is this: by the above argument,
we can assume that each new clause in the derivation is negative. This means that
it has one positive and one negative parent. Clearly, the positive parent must be
from the original set (since all the new ones are negative). Each new clause then
has exactly one negative parent. So starting with , we can work our way back
through its negative ancestors, and end up with a negative clause that is in . Then
by discarding all the clauses that are not on this chain from to , we end up with
a derivation of the required form.

These observations lead us to the following conclusion:

There is a derivation of a negative clause (including the empty clause)
from a set of Horn clauses iff there is one where each new clause
in the derivation is a negative resolvent of the previous clause in the
derivation and some element of .

We will look at derivations of this form in more detail in the next section.

The observations of the previous section lead us to consider a very restricted form
of Resolution that is sufficient for Horn clauses. This is a form of Resolution where
each new clause introduced is a resolvent of the previous clause and a clause from
the original set. This pattern showed up repeatedly in the examples of the previous
chapter, and is illustrated schematically in Figure 5.1.

Let us be a little more formal about this. For any set of clauses (Horn or
not), an of a clause from is a sequence of clauses , , . . . ,

, such that = , , and is a resolvent of and some clause of . We
write if there is an SLD derivation of from . Notationally, because of its
structure, an SLD derivation is simply a type of Resolution derivation where we do
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Figure 5.1: The SLD Resolution pattern

not explicitly mention the elements of except for . We know that at each step
of the way, the obvious positive parent from can be identified, so we can leave it
out of our description of the derivation, and just show the chain of negative clauses
from to .

In the general case, it should be clear that if [] then []. The converse,
however, is not true in general. For example, let be the set of clauses [ ],
[ ], [ ], and [ ]. A quick glance at these clauses should convince us
that is unsatisfiable (whatever values we pick for and , we cannot make all
four clauses true at the same time). Therefore, []. However, to generate [] by
Resolution, the last step must involve two complementary unit clauses [ ] and [ ],
for some atom . Since contains no unit clauses, it will not be possible to use an
element of for this last step. Consequently there is no SLD derivation of [] from

, even though [].
In the previous section we argued that for Horn clauses, we could get by with

Resolution derivations of a certain shape, wherein each new clause in the derivation
was a negative resolvent of the previous clause in the derivation and some element
of ; we have now called such derivations SLD derivations. So while not the case
for Resolution in general, it is the case that if is a set of Horn clauses, then []
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iff []. So if is Horn, then it is unsatisfiable iff []. Moreover, we
know that each of the new clauses , . . . , can be assumed to be negative. So
has a negative and a positive parent, and thus can be taken to be negative as
well. Thus in the Horn case, SLD derivations of the empty clause must begin with
a negative clause in the original set.

To see an example of an SLD derivation, consider the first example of the pre-
vious chapter. We start with a KB containing the following positive Horn clauses:

and wish to show that KB = , that is, that there is an SLD derivation of [] from
KB together with the negative Horn clause [ ]. Since this is the only negative
clause, it must be the in the derivation. By resolving it with the fifth clause in the
KB, we get [ ] as . Resolving this with the sixth clause, we get
[ ] as . Resolving this with the second clause, we get [ ] as . And
finally, resolving this with the first clause, we get [] as the final clause. Observe that
all the clauses in the derivation are negative. To display this derivation, we could
continue to use Resolution diagrams from the previous chapter. However, for SLD
derivations, it is convenient to use a special-purpose terminology and format.

All the literals in all the clauses in a Horn SLD derivation of the empty clause are
negative. We are looking for positive clauses in the KB to “eliminate” these nega-
tive literals to produce the empty clause. Sometimes, there is a unit clause in the KB
that eliminates the literal directly. For example, if a clause like [ ] appears
in the derivation, then the derivation is finished, since there is a positive clause in
the KB that resolves with it to produce the empty clause. We say in this case that the

is . Sometimes there is a positive clause that eliminates the lit-
eral but introduces other negative literals. For example, with a clause like [ ]
in the derivation, we continue with the clause [ ], having resolved it against
the second clause in our knowledge base ([ ]). We say in this case
that the goal the subgoal . Similarly, the goal reduces
to two subgoals: and , since two negative literals are introduced when
it is resolved against the fifth clause in the KB.
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Figure 5.2: An example goal tree

So a restatement of the SLD derivation is as follows: we start with the goal .
This reduces to two subgoals, and . The goal is solved, and

reduces to . Finally, is solved.
We can display this derivation using what is called a . We draw the

original goal (or goals) at the top, and point from there to the subgoals. For a
complete SLD derivation, the leaves of the tree (at the bottom) will be the goals that
are solved (see Figure 5.2). This allows us to easily see the form of the argument:
we want to show that is entailed by the KB. Reading from the bottom up, we
know that is entailed since it appears in the KB. This means that is
entailed. Furthermore, is also entailed (since it appears in the KB), so we
conclude that is entailed.

This way of looking at Horn clauses and SLD derivations, when generalized
to deal with variables in the obvious way, forms the basis of the programming lan-
guage . We already saw an example of a style-definition of ad-
dition in the previous chapter. Let us consider another example involving lists. For
our purposes, list terms will either be variables, the constant , or a term of the
form ( ) where is any term and is a list term. We will write clauses
defining the ( ) relation, intended to hold when list is the result of
appending list to list :

( )
( ) ( ( ) ( ))

If we wish to show that this entails
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It is not hard to generalize the procedures presented here to deal with more than one negative
clause. See Exercise 4. Similarly, the procedures can be generalized to answer entailment questions
where the query is an arbitrary (non-Horn) formula in CNF.

Append(nil, cons(c,nil), cons(c,nil))

Append(cons(b,nil), cons(c,nil), cons(b,cons(c,nil)))

Append(cons(a,cons(b,nil)), cons(c,nil), cons(a,cons(b,cons(c,nil))))

Append(cons(a,cons(b,nil)), cons(c,nil), )
cons(a,cons(b,cons(c,nil)))
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Figure 5.3: A goal tree for append

we get the goal tree in Figure 5.3. We can also use a variable in the goal and
show that the definition entails The
answer = can be extracted from the derivation di-
rectly. Unlike ordinary Resolution, it is not necessary to use answer predicates
with SLD derivations. This is because if is a set of Horn clauses, then =
iff for some term , =

We now turn our attention to procedures for reasoning with Horn clauses. The idea
is that we are given a KB containing a set of positive Horn clauses representing
if-then sentences, and we wish to know whether or not some atom (or set of atoms)
is entailed. Equivalently, we wish to know whether or not the KB together with the
clause consisting of one or more negative literals is unsatisfiable. Thus the typical
case, and the one we will consider here, involves determining the satisfiability of a
set of Horn clauses containing exactly one negative clause.

A procedure for determining the satisfiability of a set of Horn clauses with exactly
one negative clause is presented in Figure 5.4. This procedure starts with a set
of goals as input (corresponding to the atoms in the single negative clause) and
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Figure 5.4: A recursive back-chaining SLD procedure

a finite list of atomic sentences, . . .
or according to whether a given KB entails all of the

SOLVE[ . . . ] =
If = 0 then return
For each clause KB, do

If = [ . . . ]
and SOLVE[ . . . . . . ]

then return
end for
Return

attempts to solve them. If there are no goals, then it is done. Otherwise, it takes
the first goal and looks for a clause in KB whose positive literal is . Using the
negative literals in that clause as subgoals, it then calls itself recursively with these
subgoals together with the rest of the original goals. If this is successful, it is done;
otherwise it must consider other clauses in the KB whose positive literal is . If
none can be found, the procedure returns , meaning the atoms are not entailed.

This procedure is called since it works backwards from goals to
facts in the KB. It is also called since it attempts to solve the new goals
before tackling the old goals . Finally, it is called since it attempts the
goals in order 1 2 3 . This depth-first left-to-right back-chaining procedure
is the one normally used by implementations to solve goals, although the
first-order case obviously requires unification, substitution of variables and so on.

This back-chaining procedure also has a number of drawbacks. First, observe
that even in the propositional case it can go into an infinite loop. Suppose we have
the tautologous [ ] in the KB. In this case, a goal of can reduce to a subgoal
of , and so on, indefinitely.

Even if it does terminate, the back-chaining algorithm can be quite inefficient,
and do a considerable amount of redundant searching. For example, imagine that
we have 2 atoms , . . . and , . . . , , and the following 4 4 clauses:
for 0 ,
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The claim is clearly true for = 0. For the goal , where 0, we need to try to solve both
and . By induction, each of these take at least 2 steps, for a total of 2 steps. The case

for is identical.

c 93

Figure 5.5: A forward-chaining SLD procedure

a finite list of atomic sentences, . . .
or according to whether a given KB entails all of the

1. if all of the goals are marked as solved, then return

2. check if there is a clause [ . . . ] in KB, such that all of its negative
atoms , . . . , are marked as solved, and such that the positive atom is
not marked as solved

3. if there is such a clause, mark as solved and go to step 1

4. otherwise, return

For any , both SOLVE[ ] and SOLVE[ ] will eventually fail, but only after at
least 2 steps. The proof is a simple induction argument. This means that even
for a reasonably sized KB (say 396 clauses when = 100), an impossibly large
amount of work may be required (over 2 steps).

Given this exponential behaviour, we might wonder if this is a problem with
the back-chaining procedure, or another instance of what we saw in the last chapter
where the entailment problem itself was simply too hard in its most general form.
As it turns out, this time it is the procedure that is to blame.

In the propositional case, there is a much more efficient procedure to determine if
a Horn KB entails a set of atoms, given in Figure 5.5. This is a
procedure since it works from the facts in the KB towards the goals. The idea is
to mark atoms as “solved” as soon as we have determined that they are entailed by
the KB.

;
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Suppose, for example, we start with the example of above. At the outset
is not marked as solved, so we go to step 2. At this point, we look for a clause

satisfying the given criteria. The clause [ ] is one such since all of its negative
literals (of which there are none) are marked as solved. So we mark as
solved, and try again. This time we might find the clause [ ], and
so we can mark as solved, and try again. Continuing in this way, we mark

and finally as solved and we are done.
While this procedure appears to take about the same effort as the back-chaining

one, it has much better overall behaviour. Note, in particular, that each time through
the iteration we need to find a clause in the KB with an atom that has not been
marked. Thus, we will iterate at most as many times as there are clauses in the KB.
Each such iteration step may require us to scan the entire KB, but the overall result
will never be exponential. In fact, with a bit of care in the use of data structures,
a forward-chaining procedure like this can be made to run in time that is in
the size of the KB, as shown in Exercise 1.

Thus, in the propositional case at least, we can determine if a Horn KB entails an
atom in a linear number of steps. But what about the first-order case? Unfortu-
nately, even with Horn clauses, we still have the possibility of a procedure that runs
forever. The example in Figure 4.11 of the previous chapter where an infinite branch
of resolvents was generated only required Horn clauses. While it might seem that a
forward-chaining procedure could deal with first-order examples like these, avoid-
ing the infinite loops, this cannot be: the problem of determining whether a set of
first-order Horn clauses entails an atom remains . So no procedure can
be guaranteed to always work, despite the fact that the propositional case is so easy.
This is not too surprising since is a full programming language, and being
able to decide if an atom is entailed would imply being able to decide if a
program would halt.

As with non-Horn clauses, the best that can be expected in the first-ordedr case
is to give control of the reasoning to the user to help avoid redundancies and infinite
branches. Unlike the non-Horn case however, Horn clauses are much easier to
structure and control in this way. In the next chapter, we will see some examples
of how this can be done.
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1. Write, test, and document a program that determines the satisfiability of a
set of propositional Horn clauses by forward-chaining and that runs in linear
time, relative to the size of the input. Use the following data structures:

(a) a global variable STACK containing a list of letters known to be true,
but waiting to be propagated forward.

(b) for each clause, a letter CONCLUSION which is the positive literal
appearing in the clause (or NIL if the clause contains only negative
literals), and a number REMAINING which is the number of letters
appearing negatively in the clause that are not yet known to be true.

(c) for each letter, a flag VISITED indicating whether or not the letter has
been propagated forward, and a list ON-CLAUSES of all the clauses
where the letter appears negatively.

You may assume the input is in suitable form. Include in the documentation
an argument as to why your program runs in linear time. (If you choose to
use Lisp property lists for your data structures, you may assume that it takes
constant time to go from an atom to any of its properties.)

2. As noted in Chapter 4, Herbrand’s theorem allows us to convert a first-order
satisfiability problem into a propositional (variable-free) one, although the
size of the Herbrand base, in general, is infinite. One way to deal with an
infinite set of clauses, is to look at progressively larger subsets of it to see
if any of them are unsatisfiable, in which case must be as well. In fact,
the converse is true: if is unsatisfiable, then some finite subset of is
unsatisfiable too. This is called the property of FOL.

One way to generate progressively larger subsets of is as follows:

For any term let be defined as 0 for variables and
constants, and 1 + for terms ( . . . )

Now for any set of formulas, define to be those
elements of such that every term of has

(a) Write and test a program which when given a finite set of first-order
clauses and a positive number returns as value where is the
Herbrand base of

6
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S

S

S
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(b) When the original set is Horn, then for any your program returns
a finite set of propositional Horn clauses. These can be checked for
satisfiability using a propositional program like the one in Question 1.
Briefly compare this way of testing the satisfiability of to the more
standard way using SLD Resolution, as in Prolog.

3. Consider the more general version of Resolution discussed in Question 4 of
Chapter 4. Is that generalization required for SLD-resolution? Explain.

4. In this question, we will explore the semantic properties of propositional
Horn clauses. For any set of clauses , define to be the interpretation
that satisfies an atom iff = .

(a) Show that if is a set of positive Horn clauses, then = .

(b) Give an example of a set of clauses where = .

(c) Suppose that is a set of positive Horn clauses and that is a negative
Horn clause. Show that if = then is unsatisfiable.

(d) Suppose that is a set of positive Horn clauses and that is a set of
negative ones. Using part (c) above, show that if is satisfiable
for every , then is satisfiable also.

(e) In the propositional case, the normal Prolog interpreter can be thought
as taking a set of positive Horn clauses (the program) and a single
negative clause (the query) and determining whether or not
is satisfiable. Use part (d) above to conclude that Prolog can be used to
test the satisfiability of an arbitrary set of Horn clauses.

5. In this question, we will formalize a fragment of high school geometry. We
will use a single binary predicate symbol, which we write here as =. The
objects in this domain are points, lines, angles, and triangles. We will use
constants only to name the points we need, and for the other individuals,
we will use function symbols that take points as arguments: first, a function
which given two points, is used to name the line between them, which we
write here as where and are points; next, a function which given
three points, names the angle between them, which we write here as ;
and finally, a function which given three points, names the triangle between
them, which we write here as

Here are the axioms of interest:

=
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If then the corresponding lines and
angles are congruent ( etc.).

If and
then

XY Y X:

XY Z ZY X:

XY Z UVW;
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XY UV ; XY Z UVW; Y Z VW;

XY Z UVW:

AB AC ABC ACB:
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=

=

=
= =

= = =
=

(a) Show that these axioms imply that the base angles of an isosceles tri-
angle must be equal, that is, that

Axioms = = =

Since the axioms can be formulated as Horn clauses, and the other two
sentences are atomic, it is sufficient to present an SLD-derivation.

(b) The geometry theorem can also be proven by constructing the midpoint
of the side (call it ), and showing that = (by
using , the fact that two triangles are congruent if the corresponding
sides are all congruent). What difficulties do you foresee in automated
reasoning with constructed points like this?
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Battleship Gray

Procedural Control of Reasoning

how

guidance

control the reasoning process

Theorem-proving methods, like Resolution, are general, domain-independent ways
of reasoning. A user can express facts in full FOL without having to know this
knowledge will ultimately be used for inference by an automated theorem-proving
(ATP) procedure. The ATP mechanism will try all logically permissible uses of
everything in the knowledge base in looking for an answer to a query.

This is a double-edged sword, however. Sometimes, it is not computationally
feasible to try all logically possible ways of using what is known. Furthermore,
we often do have an idea about how knowledge should be used or how to go about
searching for a derivation. When we understand the structure of a domain or a prob-
lem, we may want to avoid using facts in every possible way or in every possible
order. In cases like these, we would like to communicate to an automatic
theorem-proving procedure based on properties of the domain. This may be in the
form of specific methods to use, or perhaps merely what to avoid in trying to answer
a query.

For example, consider a variant on a logical language where some of the con-
nectives are to be used only in one direction, as suggested at the end of Chapter 4.
Instead of a simple implication symbol, for example, we might have a forward im-
plication symbol that suggests only going from antecedent to consequent, but not
the reverse. If we used the symbol, “ ,” to represent this one-way implication,
then the sentence, ( ( ) ( )) would allow a system to conclude
in the forward direction for any specific battleship that it was gray, but would pre-
vent it from trying to show that something was gray by trying to show that it was a
battleship (an unlikely prospect for most gray things).

More generally, there are many cases in knowledge representation where we as
users will want to in various domain-specific ways.
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Mother jane billy
Father john billy
Father sam john

Parent Mother
Parent Father
Child Parent

Father john billy
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As noted in Chapter 4, this is often the best we can do to deal with an otherwise
computationally intractable reasoning task. In this chapter, we will examine how
knowledge can be expressed to provide control for the simple case of the back-
chaining reasoning procedure we examined in Chapter 5.

In a clausal representation scheme like those we considered in the chapter on Horn
logic, we can often separate the clauses in a KB into two components: a database
of , and a collection of . The facts are used to cover the basic truths of
the domain, and are usually ground atoms; the rules are used to extend the vocab-
ulary, expressing new relations in terms of basic facts, and are usually universally
quantified conditionals. Both the basic facts and the (conclusions of) rules can be
retrieved by the sort of unification matching we have studied.

For example, we might have the following simple knowledge base fragment:

( )
( )
( )

. . .
( ) ( )
( ) ( )

( ) ( )
. . .

We can read the latter sentence, for example, as “ is a child of if is a parent
of .” In this case, if we ask the knowledge base if John is the father of Billy, we
would find the answer by matching the base fact, ( ), directly. If we
ask if John is a parent of Billy, then we would need to chain backward and ask the
KB if John was either the mother of Billy or the father of Billy (the latter would of
course succeed). If we were to ask whether Billy is a child of John, then we would
have to check whether John was a parent of Billy, and then proceed to the mother
and father checks.

Because rules involve chaining, and the possible invocation of other rules which
can in turn cause more chaining, the key control issue we need to think about is how
to make the most effective use of the rules in a knowledge base.



www.manaraa.com



(
( ^

(
( ^

(
( ^

6.2 Rule formation and search strategy

2003 R. Brachman and H. Levesque July 17, 2003

x; y x; y
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Ancestor Parent

Ancestor Parent
Ancestor Parent Ancestor

Ancestor Parent
Ancestor Parent Ancestor

Ancestor Parent
Ancestor Ancestor Ancestor

Ancestor
Ancestor(sam,sue) Parent

Ancestor

Ancestor sam sue
Parent sam

Ancestor sue

Parent sue
Ancestor sam
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Let’s consider defining the notion of in terms of the predicate .
Here are three logically equivalent ways to express the relationship between the
two predicates:

1. ( ) ( )
( ) ( ) ( )

2. ( ) ( )
( ) ( ) ( )

3. ( ) ( )
( ) ( ) ( )

In the first case, we see that someone is an ancestor of someone else if is a
parent of , or if there is a third person who is a child of and an ancestor of

. So, for example, if Sam is the father of Bill, and Bill is the great-grandfather
(an ancestor) of Sue, then Sam is an ancestor of Sue. The second case looks at the
situation where Sam might be the great-grandfather of Fred, who is a parent of Sue,
and therefore Sam is an ancestor of Sue. In the third case, we observe that if Sam
is the great-grandfather of George who is in turn a grandfather of Sue, then again
Sam is an ancestor of Sue. While their forms are different, a close look reveals that
all three of these yield the same results on all questions.

If we are trying to determine whether or not someone is an ancestor of some-
one else, in all three cases we would use back-chaining from an initial
goal, such as , which would ultimately reduce to a set of
goals. But depending on which version we use, the rules could lead to substantially
different amounts of computation. Consider the three cases:

1. the first version of above suggests that we start from Sam and look
“downward” in the family tree; in other words (assuming that Sam is not
Sue’s parent), to find out whether or not ( ) is true, we first
look for a that is Sam’s child: ( ). We then check to see if that

is an ancestor of Sue: ( ).

2. the second option (again, assuming that Sam is not Sue’s parent) suggests that
we start searching “upward” in the family tree from Sue, looking for some
that is Sue’s parent: ( ). Once we find one, we then check to see
if Sam is an ancestor of that parent: ( ).

d
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3. the third option suggests a search in both directions, looking at individual
relationships both up and down at the same time.

The three search strategies implied by these (logically equivalent) representations
are not equivalent in terms of the computational resources needed to answer the
query. For example, suppose that people have on average 1 child, but 2 parents.
With the first option, as we fan out from Sam, we search a tree downward that has
about nodes where is the depth of the search; with the second option, as we fan
out from Sue, we search a tree upward that has 2 nodes where is the depth. So as

gets larger, we can see that the first option would require much less searching. If,
on the other hand, people had more than 2 children on average, the second option
would be better. Thus we can see how the structure of a particular domain, or
even a particular problem, can make logically equivalent characterizations of the
rules quite different in their computational impact for a back-chaining derivation
procedure.

The same kind of thinking about the structure of rules plays a significant role in
a wide variety of problems. For example, familiar numerical relations can be ex-
pressed in forms that are logically equivalent, but with substantially different com-
putational properties.

Consider the Fibonacci integer series, wherein each Fibonacci number is the
sum of the previous two numbers in the series. Assuming that the first two Fi-
bonacci numbers are 1 and 1, the series looks like this:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

One direct and obvious way to characterize this series is with the following two base
facts and a rule, using a two-place predicate, ( ), intended to hold when is
the Fibonacci number:

(0 1)
(1 1)
( ( ( )) ) ( ) ( ( ) ) ( )

This says explicitly that the zeroth and first Fibonacci numbers are both 1, and by
the rule, that the ( + 2) Fibonacci number is the sum of the ( + 1) Fibonacci
number and the Fibonacci number . Note that we use a three-place relation
for addition: ( ) means = + .
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To prove that F( 1 0 ) holds when is the Fibonacci number, we show by induction on
that F( ) holds iff is the sum of times the Fibonacci number and times the ( 1)
Fibonacci number.
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This simple and direct characterization has significant computational draw-
backs if used by an unguided back-chaining theorem prover. In particular, it gen-
erates an number of subgoals. This is because each application of
the rule calls twice, once each on the previous two numbers in the series. Most
of this effort is redundant since the call on the previous number makes a further call
on the number before that—which has already been pursued in a different part of
the proof tree by the former step. That is, (12 ) invokes (11 ) and

(10 ); the call to (11 ) then calls (10 ) again. The resulting ex-
ponential behaviour makes it virtually impossible to calculate the 100 Fibonacci
number using these clauses.

An alternative (but still recursive) view of the Fibonacci series uses a four-place
intermediate predicate, . The definition is this:

( ) ( 1 0 )
(0 )
( ( ) ) ( ) ( )

Here, ( ) will count down from using to keep track of the current Fi-
bonacci number, and to keep track of the previous one before that. Each time we
reduce by 1, we get a new current number (the sum of the current and previous Fi-
bonacci numbers), and we get a new previous number (which was the current one).
At the end, when is 0, the final result is the current Fibonacci number . The
important point about this equivalent characterization is that it avoids the redun-
dancy of the previous version and requires only a number of subgoals.
Calculating the 100 Fibonacci number in this case is quite straightforward.

So in a sense, looking for computationally feasible ways of expressing defini-
tions of predicates using rules is not so different from looking for efficient algo-
rithms for computational tasks.

When using rules to do backchaining, we can try to solve subgoals in any order;
all orderings of subgoals are logically permissible. But as we saw in the previous
sections, the computational consequences of logically equivalent representations
can be significant.

Consider this simple example:

n
n

1 2

1 2
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G :- G , G , , G .

americanCousin(X,Y) :- cousin(X,Y), american(X).

AmericanCousin American Cousin

AmericanCousin fred sally
American fred

Cousin fred sally
AmericanCousin sally

AmericanCousin sally American
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( ) ( ) ( )

If we are trying to ascertain the truth of ( ), there is not
much difference between choosing to solve the first subgoal ( ( )) or
the second subgoal ( ( )) first. However, there is a difference if
we are looking for an American cousin of Sally: ( ). Our
two options are then,

1. find an American and then check to see if she is a cousin of Sally; or

2. find a cousin of Sally and then check to see if she is an American.

Unless Sally has a of cousins (more than several hundred million), the second
method will be much better than the first.

This illustrates the potential importance of ordering goals. We might think of
the two parts of the definition above as suggesting that when we want to gener-
ate Sally’s American cousins, what we want to do is to Sally’s cousins
one at a time, and to see if each is an American. Languages like ,
which are used for programming and not just general theorem-proving, take order-
ing constraints seriously, both of clauses and of the literals within them. In
notation,

. . .

stands for

. . .

but goals are attempted exactly in the presented order.

An appropriate rendition of our American cousin case would take care of
the inefficiency problem we pointed out above:

In a construct like this, we need to allow for goal backtracking, since for a goal of,
say, ( ), we may need to try ( ) for various values
of . In other words, we may need to generate many cousin candidates before we
find one that is American.

But sometimes, given a clause of the form
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goal is needed only as a for the applicability of subgoal , and not as a
generator of possibilities for subgoal to test further. In other words, if succeeds,
then we want to to as the appropriate way of achieving goal . So, if
were then to fail, we would consider goal as having failed. A consequence of
this is that we would not look for other ways of solving , nor would we look for
other clauses with as the head.

In , this type of test/fail control is specified with the , ‘ ’.
Notationally, we would have a clause that looks like this:

. . . . . .

which would tell the interpreter to try each of the goals in this order, but if all the
succeed, to commit to the as the only way of solving .
A clear application of this construct is in the if-then-else construct of traditional

programming languages. Consider, for example, defining a predicate ( )
intended to hold when = . The obvious way of calculating (or reasoning
about goals) requires 1 multiplications. However, there is a much more
efficient recursive method that only requires about log ( ) multiplications: if is
even, we continue recursively with and 2 replacing and , respectively;
otherwise, if is odd, we continue recursively with and ( 1) 2 and then
multiply the result by . In other words, we are imagining a recursive procedure
with an if-then-else of the form

is even
do one thing
do another

The details need not concern us, except to note the form of the clauses we would
use to define the predicate:

( 0 1)
( ) 0 ( ) ( 2 )
( ) 0 ( )

( ( 1) 2 ) =

The point of this example is that we need to use slightly different methods based
on whether is even or odd. However, we would much prefer to test whether is
even only once: we should attempt the goal ( ) and if it succeeds do one thing,
and if it fails do another. The goal ( ) should in reality never be considered.
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expt(A,0,V) :- !, V=1.
expt(A,N,V) :- even(N), !, .
expt(A,N,V) :- .

expt(A,N,V) :- N=0, !, V=1.

expt(A,0,1) :- !.

G :- P, !, R.
G :- S.

numberOfParents(adam,V) :- !, V=0.
numberOfParents(eve,V) :- !, V=0.
numberOfParents(P,2).
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A related but less serious consideration is the test for = 0: if = 0 we should
commit to the first clause; we should not have to confirm that 0 in the other
two clauses.

In both of these concerns can be handled with the cut operator. We
would end up with a definition like this:

. . . what to do when is even
. . . what to do when is odd

Note that we to the first clause when = 0 regardless of the value of or
, but we only when = 1. Thus, while

is correct and equivalent to the first clause,

would be incorrect. In general, we can see that something like

is logically equivalent to “if holds then implies , and if holds then
implies ,” but that it only considers the once.

A less algorithmic example of the use of the cut operator might be to define a
predicate: for Adam and Eve, the number of parents is 0, but for

everyone else, it is 2:

In this case, we do not need to confirm in the third clause that the person in question
is not Adam or Eve.

Another application of the cut operator involves control of backtracking
on failure. At certain points in a proof, we can have an idea of which steps might
be fruitful and which steps will come to nothing and waste resources in the process.
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A more careful but time-consuming version of backtracking (called back-
tracking) avoids the redundant steps here automatically.

Cousin Sibling
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Member FirstElement
Member RemainingElements Member

FirstElement RemainingElements

Member

Member
Member
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Imagine for example, that we are trying to show that Jane is an American cousin
of Billy. Two individuals can be considered to be (first) cousins if they share a
grandparent but are not siblings:

( ) ( = ) ( )
( ) ( )

Suppose that in trying to show that Jane is an American cousin of Billy, we find
that Henry is a grandparent of both of them, but that Jane is not American. The
question is what happens now. If it turns out that Elizabeth is also a grandparent of
both Jane and Billy, we will find this second on backtracking, and end up testing
whether Jane is American a second time. This will of course fail once more since
nothing has changed.

What this example shows is that on failure, we need to avoid trying to redo a
goal that was not part of the reason we are failing. It was not the choice of grand-
parent that caused the trouble here, so there is no point in reconsidering it. Yet this
is precisely what backtracking would do. To get the effect we want in

, we would need to represent our goal as

In other words, once we have found a way to show that Jane is a cousin of Billy (no
matter how), we should commit to whatever result comes out of checking that she
is American.

As a second example of controlling backtracking, consider the following defi-
nition of membership in a list:

( ) ( )
( ) ( ) ( )

with the auxiliary predicates and defined in the
obvious way. Now imagine that we are trying to establish that some object is an
element of some (large) list and has property . That is, we have the goal

( ) ( )

If the ( ) subgoal were to succeed but ( ) fail, it would be silly to
reconsider ( ) to see if also occurs later in the list. In , we can
control this by using the goal
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member(a,C), !, q(a).

member(X,L) :- firstElement(X,L), !.
member(X,L) :- remainingElements(L,L1),

member(X,L1).

member(george,Friends), rich(george)

member
rich

(G) :- G, !, fail.
(G).

c 108

More generally, if we know that the predicate will only be used to test for
membership in a list (and not to generate elements of a list), we can use a
definition like this:

This guarantees that once a membership goal succeeds (in the first clause) by finding
a sublist whose first element is the item in question, the second clause, which looks
farther down the list, will never be reconsidered on failure of a later goal. For
example, if we had a list of our friends and some goal needed to check that someone
(e.g., George) was both a friend and rich, we could simply write

without having to worry about including a cut. The definition of assures
us that once an element is found in the list, if a subsequent test like fails, we
won’t go back to see if that element occurs somewhere later in the list and try that
failed test again.

Perhaps the most interesting idea to come out of the study of the procedural control
of reasoning is the concept of . Procedurally, we can distinguish
between two types of “negative” situations with respect to a goal :

being able to solve the goal ; or

being unable to solve the goal .

In the latter case, we may not be able to find a fact or rule in the KB asserting that
is false, but perhaps we have run out of options in trying to show that is true.

In general, we would like to be able to tell a reasoner what it should do after failing
to prove a goal.

We begin by introducing a new type of goal ( ), which is understood to
succeed when the goal fails, and to fail when the goal succeeds (quite apart
from the status of ). In , behaves as if it were defined like this:

% fail if succeeds
% otherwise succeed
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Composite

NoChildren

Parent sue jim
Parent sue george

noChildren(X) :- (parent(X,Y)).

composite(N) :- N > 1, (primeNumber(N)).
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This type of negation as failure is only useful when failure is . If attempting to
prove results in an infinite branch with an infinite set of resolvents to try, then we
cannot expect a goal of ( ) to terminate either. However, if there are no more
resolvents to try in a proof, then ( ) will succeed.

Negation as failure is especially useful in situations where the collection of facts
and the rules express complete knowledge about some predicate. If, for example,
we have an family represented in a KB, we could define in

We know that someone has no children if we cannot find any in the database. With
incomplete knowledge, on the other hand, we could fail to find any children in the
database simply because we have not yet been told of any.

Another situation where negation as failure is useful is when we have a com-
plete method for computing the complement of a predicate we care about. For
example, if we have a rule for determining if a number is prime, we would not need
to construct another one to show that a number is not prime; instead we can use
negation as failure:

In this case, failure to prove that a number greater than 1 is prime is sufficient to
conclude that the number is composite.

Declaratively, has the same reading as conventional negation, except when
new variables appear in the goal. For example, the clause for
above can be read as saying that

for every number , if 1 and is not a prime number,
then is composite.

However, the clause for before that should be read as saying that

for every and , if is not a parent of , then has no children.

For example, suppose that the goal ( ) succeeds, but that the goal
( ) fails. Although we do want to conclude that Sue is not a parent

of George, we do not want to conclude that she has no children. Logically, the rule
needs to be read as

for every , if for every , is not a parent of , then has no children.

Note that the quantifier for the new variable in the goal has moved inside the
scope of the “if.”
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Parent Mother

Parent
Mother

Mother
Parent

Parent
Mother

database

if-needed

if-added

if-removed
if-

added only

dependencies
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In this chapter we have considered a KB consisting of a collection of ground atomic
facts about the world and universally quantified rules defining new predicates. Be-
cause our most basic knowledge is expressed by the elementary facts, we can think
of them as a representing a snapshot of the world. It is natural, then, as
properties of the world change over time, to think of reflecting these changes with
additions and deletions in the database. The removed facts are a reflection of things
that are no longer true, and the added facts are a reflection of things that have newly
become true.

With this more dynamic view of the database, it is useful to consider three dif-
ferent procedural interpretations for a basic rule like ( ) ( ):

1. : whenever we have a goal matching ( ), we can solve it
by solving ( ). This is ordinary back chaining. Procedurally, we
wait to make the connection between mothers and parents until we need to
prove something about parents.

2. : whenever a fact matching ( ) is added to the database,
we also add ( ) to the database. This is forward chaining. In this
case, the connection between mothers and parents is made as soon as we learn
about a new mother relationship. A proof of a parent relationship would then
be more immediate, but at the cost of the space needed to store facts that may
never be used.

3. : whenever something matching ( ) is removed from the
database, we should also remove ( ). This is the dual of the

case. But there is a more subtle issue here. If the reason we have
a parent relationship in the database is because of the mother relationship,
then if we remove that mother relationship, we should remove the parent one
as well. To do this properly, we would need to keep track of in
the database.

Interpretation (1) above is of course the mainstay of ; interpretations (2)
and (3) above suggest the use of “demons,” which are procedures that actively mon-
itor the database and trigger—or “fire”—when certain conditions are met. There
can be more than one such demon matching a given change to the database, and
each demon may end up further changing the database, causing still more demons
to fire, in a pattern of spreading activation. This type of processing underlies the
production systems of Chapter 7.
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6.8.1 The PLANNER approach

if-needed if-added
if-removed pattern

body
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We are simplifying the original syntax somewhat.

prolog
lisp

planner prolog

planner
planner

prolog

lisp

planner

Mother susan john Person john

Mother

clearTable
on table

on table putaway

on

– goal assert erase

– and

– not

– for

– finalize

–

proc if-needed
for

and erase goal

proc if-removed print
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The practical implications of giving the user more direct control over the reasoning
process have led over the years to the development of a set of programming lan-
guages based on ideas like the ones we have covered above. The language
is of course well known, but only covers some of these possibilities. A -based
language called was invented at about the same time as , and
was designed specifically to give the user fine-grained control of a theorem-proving
process.

The main ideas in relevant to our discussion here are these:

The knowledge base of a application is a database of simple facts,
using a notation like ( ) and ( ).

The rules of the system are formulated as a collection of , ,
and procedures, each consisting of a for invocation (e.g.,
( )) and a , which is a program statement to execute once the
invocation pattern is matched.

Each program statement can succeed or fail:

( ), ( ), and ( ) specify, respectively, that a goal
should be established (proven or made true), that a new fact should
be added to the database, and that an old fact should be removed from
the database;

( . . . ), where the are program statements, is considered to
succeed if all the succeed, allowing for backtracking among them;

( ) is negation as failure;

( ), perform program statement for every way goal succeeds;

( ), similar to the cut operator;

a lot more, including all of .

Here is a simple example:

( ( )
( ( )

( ( ( )) ( ( )))))

( ( ) ( “is no longer on” )) 4

5

not
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making conditions hold

plans

nega-
tion as failure

We will reconsider the issue of planning from a logical perspective in Chapter 15.
Users of the language eventually wanted even more control, and gravitated towards using its

implementation language and some of its data structures.
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The first procedure is invoked whenever the goal needs to be true, that is,
in the blocks world of this example, the table needs to be free of objects. To solve
this goal, for each item found on the table, we remove the statement in the database
that reflects its being on the table, and solve the goal of putting that item away
somewhere. We do not here show how those goals are solved, but presumably they
could trigger an action by a robot arm to put the item somewhere not on the table,
and subsequently to assert the new location in the database. The second procedure
just alerts the user to a change in the database, printing that the item is no longer on
the surface it was removed from.

The type of program considered in suggests an interesting shift in
perspective on knowledge representation and reasoning. Instead of thinking of
solving a goal as proving that a condition is logically entailed by a collection of
facts and rules, we think of it as , using some combina-
tion of forward and backward chaining. This is the first harbinger of the use of
a representation scheme to support the execution of ; hence the name of the
language. We also see a shift away from rules with a clear logical interpretation
(as universally quantified conditionals) towards arbitrary procedures, and specifi-
cally, arbitrary operations over a database of facts. These operations can correspond
to deductive reasoning, but they need not. Although itself is no longer
used, we will see that this dynamic view of rules persists in the representation for
production systems of the next chapter.

The exercises here all concern generalizing Horn derivations to incorporate
. For these questions, assume that a KB consists of a list of rules of

the form ( . . . ) where 0 is an atom, and each is either of the
form or ( ) where is an atom. The in this case is called the conclusion of
the rule, and the make up the antecedent of the rule.

1. The forward-chaining procedure presented in Chapter 5 for Horn clause sat-
isfiability can be extended to handle negation as failure, by marking atoms
incrementally with either a (when they are known to be solved), or with an

(when they are known to be unsolvable), using the following procedure:
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q
q a ; ; a
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For any unmarked letter ,

if there is a rule ( . . . ) KB, where all
the positive are marked and all the negative
are marked , then mark with ;

if for every rule ( . . . ) KB, some pos-
itive is marked or some negative is marked

, then mark with .

(a) Show how the procedure would label the atoms in the following KB:

(b) Give an example of a KB where the above procedure fails to label an
atom as either or , but where the atom is intuitively , according to
negation as failure.

(c) A KB is defined to be iff there is a function from
atoms to numbers such that for every rule ( . . . ) KB, and
for every 1 , we have that ( ) ( ), where ( ( )) =

( ). (In other words, the conclusion of a rule is always assigned a
higher number than any atom used positively or negatively in the an-
tecedent of the rule.) Is the example KB of part (a) strongly stratified?

(d) Prove by induction that the above procedure will label every atom of a
strongly stratified KB.

(e) A KB is defined to be iff there is a function from
atoms to numbers such that for every rule ( . . . ) KB, and
for every 1 , ( ) ( ), where in this case, ( ( )) =
1 + ( ). (In other words, the conclusion of a rule is always assigned a
number no lower than than any atom used positively in the antecedent
of the rule, and higher than any atom used negatively in the antecedent
of the rule.) Is the example KB of part (a) weakly stratified?

(f) Give an example of a weakly stratified KB where the procedure above
fails to label an atom.

Y N
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(g) Assume you are given a KB that is weakly stratified and you are also
given the function in question. Sketch a forward-chaining procedure
that uses the to label every atom in the KB either or .

2. Write, test, and document a program that performs the forward-chaining of
the previous question and that runs in linear time, relative to the size of the
input. You should use data structures inspired by those of Question 1 of
Chapter 5. Include in the documentation an argument as to why your program
runs in linear time. Show that your program works properly on at least the
KB of the previous question.

3. There are many ways of making negation as failure precise, but one way is
as follows: we try to find a set of “negative assumptions” we can make,

( ) . . . ( ) such that if we were to add these to the KB and
use ordinary logical reasoning (now treating a ( ) as if it were a new
atom unrelated to ), the set of atoms we could derive would be exactly

. . . .

More precisely, we define a sequence of sets as follows

=
= ( ) KB =

The reasoning procedure then is this: we calculate the , and if the sequence
converges, that is, if = for some , then we consider any atom
such that ( ) to be derivable by negation as failure.

(a) Show how this procedure works on the KB of Question 1, by giving the
values of .

(b) Give an example of a KB where the procedure does not terminate.

(c) Explain why the procedure does the right thing for KBs that are pure
Horn, that is, do not contain the operator.

(d) Suppose a KB is weakly stratified wrt , as defined in Question 1. For
any pair of natural numbers and , define ( ) by

( ) = ( ) ( )

It can be shown that for any and any atom where ( ) =

KB = iff KB ( ) =
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In other words, for a weakly stratified KB, when trying to prove , we
need only consider negative assumptions whose value is lower than

. Use this fact to prove that for any and where , ( +1 ) =
( + 2 ) prove this by induction on . In the induction step,

this will require assuming the claim for (which is that for any ,
( + 1 ) = ( + 2 )) and then proving the claim for + 1 (which

is that for any + 1, ( + 2 ) = ( + 3 ).)

(e) Use part (d) to conclude that the negation as failure reasoning procedure
above always terminates for a KB that is weakly stratified.
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Rules in Production Systems

rule

data-directed reasoning

goal-directed reasoning

We have seen from our work on Horn clauses and procedural systems in previous
chapters that the concept of an if-then conditional or — if is true then is
true — is central to knowledge representation. While the semantics of the logical
formula ( ) is simple and clear, it suggests that a rule of this sort is no more
than a form of disjunction: either is false or is true. However, as we saw in
the previous chapter, from a reasoning point of view, we can look at these rules in
different ways. In particular, a rule can be understood procedurally as either

moving from assertions of to assertions of , or

moving from goals of to goals of .

We can think of these two cases this way:

( ) ( )

( ) ( )

While both of these arise from the same connection between and , they empha-
size the difference between focusing on assertion of facts and seeking the satisfac-
tion of goals. We usually call the two types of reasoning that they suggest,

, i.e., reasoning from to , and

, i.e., reasoning from to .

Data-directed reasoning might be most appropriate in a database-like setting, when
assertions are made and it is important to follow the implications of those assertions.
Goal-directed reasoning might be most appropriate in a problem-solving situation, 1

1
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7.1 Production Systems — Basic Operation

proc if-added assert

proc if-needed goal
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myGoal myGoal

myAssert myAssert

myGoal

myAssert

Many variants have been proposed; the version we present here is representative.

production systems

rule-based systems

production system
production rules productions

working memory

c 118

where a desired result is clear, and the means to achieve that result—the logical
foundations for a conclusion—are sought.

Quite separately, we can also distinguish the mechanical direction of the com-
putation. Forward-chaining computations follow the “ ” in the forward direction,
independent of the emphasis on assertion or goal. Backward-chaining reasoning
goes in the other direction. While the latter is almost always oriented toward goal-
directed reasoning and the former toward data-directed reasoning, these associa-
tions are not exclusive. For example, using the notation of the previous chapter, we
might imagine procedures of the following sort:

( ( ) . . . ( ( )) . . . )

( ( ) . . . ( ( )) . . . )

In the former case, we use forward chaining to do a form of goal-directed reason-
ing: ( ) is a formula to be read as saying that is a goal; if this is ever
asserted (that is, if we ever find out that is indeed a goal), we might then assert
that is also a goal. In a complementary way, the latter case illustrates a way to
use backward chaining to do a form of data-directed reasoning: ( ) is a
formula to be read as saying that is an assertion in the database; if this is ever a
goal (that is, if we ever want to assert in the database), we might then also have
the goal of asserting in the database. This latter example suggests how it is pos-
sible, for example, to do data-directed reasoning in , a backward-chaining
system.

In the rest of this chapter, we examine a new formalism, ,
used extensively in practical applications, and which emphasizes forward chaining
over rules as a way of reasoning. We will see examples, however, where the reason-
ing is data-directed, and others where it is goal-directed. Applications built using
production systems are often called as a way of highlighting
this emphasis on rules in the underlying knowledge representation.

A is a forward-chaining reasoning system that uses rules of a
certain form called (or simply, ) as its representation of
general knowledge. A production system keeps an ongoing memory of assertions
in what is called its (or WM). The WM is like a database, but
more volatile; it is constantly changing during the operation of the system.
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person age: 27 home: toronto

goal task: putDown importance: 5 urgency: 1

student name: john department: computerScience

production rule antecedent con-
ditions consequent actions

conditions actions

cycle

recognize i.e.

resolve conflict conflict set
i.e.

act

working memory elements

type attribute value attribute value

type attribute value

type attribute value attribute value
attribute value

c 119

A is a two-part structure comprising an set of
which, if true, causes a set of to be taken. We usually

write a rule in this form:

The antecedent conditions are tests to be applied to the current state of the WM.
The consequent actions are a set of actions that modify the WM.

The basic operation of a production system is a of three steps that repeats
until no more rules are applicable to the WM, at which point the system halts. The
three parts of the cycle are as follows:

1. : find which rules are applicable, those rules whose antecedent
conditions are satisfied by the current working memory;

2. : among the rules found in the first step (called a ),
choose which of the rules should “fire,” get a chance to execute;

3. : change the working memory by performing the consequent actions of
all the rules selected in the second step.

As stated, this cycle repeats until no more rules can fire.

Working memory is composed of a set of (WMEs). Each
WME is a tuple of the form,

( : . . . : )

where , , and are all atoms. Here are some examples of WMEs:

( )

( )

( )

Declaratively, we understand each WME as an existential sentence:

[ ( ) ( ) = ( ) = . . .
( ) = ]

2 n

k k

2

1 1 ;

n x
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cond

type attribute specification attribute specification

person identifier: 777-55-1234 name: janeDoe

(basicFact relation: olderThan firstArg: john secondArg: mary)

person age: occupation:

The technique of encoding -ary relationships using reified objects and a collection of unary
functions was discussed in Section 3.7 of Chapter 3.
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Note that the individual about whom the assertion is made is not explicitly identified
in a WME. If we choose to do so, we can identify individuals by using an attribute
that is expected to be unique for the individual. For example, we might use a WME
of the form ( . . . ). Note also that the
order of attributes in a WME is not significant.

The example WMEs above represent objects in an obvious way. Relationships
among objects can be handled by reification. For example, something like

might be used to say that John is older than Mary.

As we mentioned, the antecedent of a production rule is a set of conditions. If there
is more than one condition, they are understood conjunctively, that is, they all have
to be true for the rule to be applicable. Each condition can be positive or negative
(negative conditions will be expressed as ), and the body of each is a tuple
of this form:

( : . . . : )

where each specification is one of the following:

an atom

a variable

an evaluable expression, within “[ ]”

a test, within “ ”

the conjunction ( ), disjunction ( ), or negation ( ) of a specification.

Here are two examples of rule conditions:

( [ + 4] )
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person
age

occupation
occupation

person age:

person age
no

pattern pattern

attribute specification

attribute specification
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This condition is satisfied if there is a WME whose type is and
whose attribute is exactly + 4 (where is specified elsewhere).
The result binds the value to , if is not already bound;
if is already bound, then the value in the WME needs to
be the same as the value of .

( 23 6 )

This condition is satisfied if there is WME in the WM whose type
is and whose value is between 6 and 23.

Now, to be more precise about the applicability of rules, a rule is considered
applicable if there are values for all the variables in the rule such that all the an-
tecedent conditions are satisfied by the current WM. A positive condition is sat-
isfied if there is a matching WME in the WM; a negative condition is satisfied if
there is no matching WME. A WME matches a condition if the types are identi-
cal and for each attribute/specification pair mentioned in the condition, there is a
corresponding attribute/value pair in the WME, where the value matches the spec-
ification (under the given assignment of variables) in the obvious way. Of course,
the matching WME may have attributes that are not mentioned in the condition.

Note that for a negated condition, there must be no element in the entire WM
that matches it. This interpretation is negation as failure, as in -type sys-
tems (see Chapter 5). We do not need to prove that such a WME could never exist
in WM—it just has to be the case that no matching WME can be found at the time
the rule is checked for applicability.

The consequent sides of production rules are treated a little differently. They
have a strictly procedural interpretation, and each action in the action set is to be
executed in sequence, and can be one of the following:

: this means that a new WME specified by is added
directly to the WM.

: is an integer, and this means to remove (completely) from WM
the WME that matched the -th condition in the antecedent of the rule. This
construct is not applicable if that condition was negative.

( ): this means to modify the WME that
matched the -th condition in the antecedent, by replacing its current value
for by . is also not applicable to negative con-
ditions.
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ADD MODIFY

IF THEN ADD

IF
THEN MODIFY 1

IF
THEN MODIFY 1

REMOVE 2

REMOVE

IF
THEN REMOVE

ADD

IF
THEN MODIFY 1

student name: person name:

student
person

Student Person

assertion predicate: student
predicate person

student
person

birthday

person age: name: birthday who:
age

birthday

control

starting

control phase: 1

control phase:
phase
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Note that in the and actions, any variables that appear refer to the val-
ues obtained when matching the antecedent of the rule. For example, the following
rule might be used in an ordinary logical reasoning situation:

( ) ( )

In other words, if there is a WME of type , with any name (and bind that
name to ), then add to WM an element of type , with the same name. This
is a production rule version of the conditional ( ( ) ( )), here
used in a data-directed way. This conditional could also be handled in a very dif-
ferent way with a rule like this:

( )
( )

In this case, we lose the original fact stated in terms of , and replace it with
one using the predicate .

The following example implements a simple database update. It assumes that
some rule has added a WME of type to the WM at the right time:

( ) ( )
( [ + 1])

Note that when the WME with the person’s age is changed, the WME is
removed, so that the rule will not fire a second time.

The action is also used on occasion to deal with control information.
We might use a WME of type to indicate what phase of a computation we
are in. This can be initialized in the following way:

( )
1

( )

We could subsequently change phases of control with something like this:

( ) . . . . . .
( [ + 1])
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7.4 A First Example

IF

THEN MODIFY 1

IF

THEN MODIFY 1
MODIFY 2
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counter value: 1
brick name: A size: 10 position: heap
brick name: B size: 30 position: heap
brick name: C size: 20 position: heap

B C
A

brick position: heap name: size:
brick position: heap size:
brick position: hand

position hand

brick position: hand
counter value:

position
value

c 123

In order to illustrate a production system in action, consider the following task. We
have three bricks, each of different size, sitting in a heap. We have three identifiable
positions in which we want to place the bricks with a robotic “hand”; call these
positions 1, 2, and 3. Our goal is to place the bricks in those positions in order of
their size, with the largest in position 1 and the smallest in position 3.

Assume that when we begin, working memory has the following elements:

( )
( )
( )
( )

In this case, the desired outcome is brick in position 1, brick in position 2, and
brick in position 3.

We can achieve our goal with two production rules that work with any number
of bricks. The first one will place the largest currently available brick in the hand,
and the other one will place the brick currently in the hand into the next position,
going through the positions sequentially:

1. ( )
( )
( )

( )

In other words, if there is a brick in the heap, and there is no bigger brick in
the heap, and there is nothing currently in the hand, put the brick in the hand.

2. ( )
( )

( )
( [ + 1])

When there is a brick in the hand, this rule places it in the next position in
sequence given by the counter, and increments the counter.

In this example, no conflict resolution is necessary, since only one rule can fire at
a time: the second rule requires there to be a brick in the hand, and the first rule
requires there to be none.

It is fairly simple to trace the series of rule firings and actions in this example.
Recall that when we start, all bricks are in the heap, and none are in the hand. The
counter is initially set to 1.

i



n s

2003 R. Brachman and H. Levesque July 17, 2003

brick
B

B
brick B

brick name: B size: 30 position: hand

brick B position

brick name: B size: 30 position: 1
counter value: 2

B
C

brick name: C size: 20 position: hand

C

brick name: C size: 20 position: 2
counter value: 3

A

brick name: A size: 10 position: hand

A

brick name: A size: 10 position: 3
counter value: 4

counter value: 4
brick name: A size: 10 position: 3
brick name: B size: 30 position: 1
brick name: C size: 20 position: 2
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1. Rule 2 is not applicable, since no brick is in the hand. Rule 1 attempts to
match each of the three WMEs of type in WM, but only succeeds for
brick , since it is the only one for which no larger brick exists in the heap.
When Rule 1 matches, is bound to and to 30. The result of this rule’s
firing, then, is the modification of the WME to be:

( )

2. Now that there is a brick in the hand, Rule 1 cannot fire. Rule 2 is applicable,
with being set to 1. Rule 2’s firing results in two modifications, one to the

WME ( now becomes 1) and one to the counter WME:

( )
( )

3. Brick no longer has its position as the heap, so now Rule 1 matches on
brick , whose position is modified as a result:

( )

4. In a step similar to step 2 above, Rule 2 causes brick to now be in position
2 and the counter to be reset to 3:

( )
( )

5. Now is the only brick left in the heap, so Rule 1 matches its WME, and
moves it to the hand:

( )

6. Rule 2 fires again, this time moving brick to position 3:

( )
( )

7. Now that there are no bricks in either the heap or the hand, neither Rule 1 nor
Rule 2 is applicable. The system halts, with the final configuration of WM
as follows:

( )
( )
( )
( )
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7.5 A Second Example
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IF
THEN REMOVE 1

ADD

IF
THEN REMOVE 1

ADD

IF
THEN REMOVE 1

ADD

IF
THEN REMOVE 1

ADD

IF
THEN REMOVE 1

ADD

wantDays year:

hasDays days:
year

wantDays year:

year mod4: mod100: mod400:

year mod400: 0

hasDays days: 366

year mod100: 0 mod400:

hasDays days: 365

year mod4: 0 mod100:

hasDays days: 366

year mod4:

hasDays days: 365

wantDays

year

wantDays year: 2000
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Next we look at an example of a slightly more complex computation that is easy
to do with production systems; we present a set of rules that computes how many
days there are in any given year. In this example, working memory will have two
simple control elements in it: ( ) will be our starting point and
express the fact that our goal is to calculate the number of days in the year . The
WME ( ) will express the result when the computation is finished.
Finally, we will use a WME of type to break the year down into its value
4, 100, and 400. Here are the five rules that capture the problem:

1. ( )

( [ %4] [ %100] [ %400])

2. ( )

( )

3. ( = 0 )

( )

4. ( = 0 )

( )

5. ( = 0 )

( )

This rule set is structured in a typical way for goal-directed reasoning. The first
rule initializes WM with the key values for a year that will lead to the calculation
of the length of the year in days. Once it fires, it removes the WME and
is never applicable again. Each of the other four rules check for their applicable
conditions, and once one of them fires, it removes the WME, so that the entire
system halts. Each antecedent expresses a condition that only it can match, so again
no conflict resolution is needed (and the order is also irrelevant).

It is easy to see how this rule set works. If the input is 2000, then we start with
( ) in WM. The first rule fires, which then adds to WM the

>

prolog
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7.6 Conflict Resolution

IF THEN ADD
IF THEN ADD
IF THEN ADD
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all

conflict resolution strategies

order

specificity

and

recency

year mod4: 0 mod100: 0 mod400: 0
hasDays days: 366
year mod4: 0 mod100: 0 mod400: 300

year mod4: 0 mod100: 96 mod400: 396

bird canFly
bird weight: cannotFly
bird penguin cannotFly
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WME ( ). This matches only Rule 2, yielding
( ) at the end. If the input is 1900, the first rule adds the WME
( ), which then matches only Rule 3, for a
value of 365. If the input is 1996, we get ( ),
which matches only Rule 4, for a value of 366.

Depending on whether we are doing data-directed reasoning or goal-directed rea-
soning, we may want to fire different numbers of rules, in case more than one rule
is applicable. In a data-directed context, we may want to fire rules that are
applicable, to get all consequences of a sentence added to working memory; in a
goal-directed context, we may prefer to pursue only a single method at a time, and
thus wish to fire only one rule.

In cases where we do want to eliminate some applicable rules, there are many
for arriving at the most appropriate rule(s) to fire. The

most obvious one is to choose an applicable rule at random. Here are some other
common approaches:

: pick the first applicable rule in order of presentation. This is the type
of strategy that uses and is one of the most common ones. Produc-
tion system programmers would take this strategy into account when formu-
lating rule sets.

: select the applicable rule whose conditions are most specific.
One set of conditions is said to be more specific than another if the set of
WMs that satisfy it is a subset of those that satisfy the other. For example,
consider the three rules

( ) ( )
( 100 ) ( )
( ) ( ) ( )

Here the second and third rules are both more specific than the first. If we
have a bird that is heavy or that is a penguin, then the first rule applies, but
the others should take precedence. (Note that if the bird is a penguin
heavy, another conflict resolution criteria might still have to come into play
to help decide between the second and third rules.)

: select an applicable rule based on how recently it has been used.
There are different versions of this strategy, ranging from firing the rule that
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7.7 Making Production Systems More Efficient

c 127

matches on the most recently created (or modified) WME to firing the rule
that has been least recently used. The former could be used to make sure a
problem solver stays focussed on what it was just doing (typical of depth-first
search); the latter would ensure that every rule gets a fair chance to influence
the outcome (typical of breadth-first search).

: do not select a rule that has just been applied with the same
values of its variables. This prevents the looping behaviour that results from
firing a rule repeatedly because of the same WME. A variant forbids re-using
a given rule-WME pair. Either the refractoriness can disappear automatically
after a few cycles, or an explicit “refresh” mechanism can be used.

As implied in our example above, non-trivial rule systems often need to
use more than one conflict resolution criterion. For example, the production
rule system uses the following criteria for selecting the rule to fire amongst those
that are found to be applicable:

1. discard any rule that has just been used for that value of variables;

2. order the remaining instances in terms of recency of WME matching the first
condition, and then the second condition, and so on;

3. order the remaining rules by number of conditions;

4. if there is still a conflict, select arbitrarily among the remaining candidates.

One interesting approach to conflict resolution is provided by the system.
This system is a general problem solver that attempts to find a path from a start
state to a goal state by applying productions. It treats selecting which rule to fire as
deciding what the system should do next. Thus, if unable to decide on which rule
to fire at some point, sets up a new -goal to solve, namely the goal of
selecting which rule to use, and the process iterates. When this meta-goal is solved
(which could in principle involve meta-meta-goals ), the system has made a
decision about which base goal to pursue, and therefore the conflict is resolved.

Early production systems, implemented in a straightforward way, ended up spend-
ing inordinate amounts of time (as much as 90%) in rule matching. Surprisingly,
this remained true even when the matching was implemented using sophisticated
indexing and hashing.
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: occupation = doctor: age 14

: type = person

person name:
person name:
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Figure 7.1: A sample network

But two key observations led to an implementation breakthrough: first, that
the WM was modified only very slightly on each rule-firing cycle, and second,
that many rules shared conditions. The idea behind what came to be called the

was to create a network from the rule antecedents. Since the rules
in a production system don’t change during its operation, this network could be
computed in advance. During operation of the production system, “tokens” repre-
senting new or changed WMEs are passed incrementally through the network of
tests. Tokens that make it all the way through the network on any given cycle are
considered to satisfy all of the conditions of a rule. At each cycle, a new conflict set
can then be calculated from the previous one and any incremental changes made to
WM. This way, only a very small part of the WM is re-matched against any rule
conditions, drastically reducing the time needed to calculate the conflict set.

A simple example will serve to illustrate. Consider a rule like the following:

( age: 14 father: )
( occupation: doctor)

. . .

This rule would cause the network of figure 7.1 to be created. The network
has two types of nodes: nodes, which represent simple, self-contained
tests, and nodes, which take into account the fact that variables create con-
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person

person
age occupation doctor

father
name

goal is: getUnitDigit
minuend unit:
subtrahend unit:

goal is: borrowFromTens
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straints between different parts of an antecedent. Tokens for all new WMEs whose
type was would enter the network at the topmost (alpha) node. If the age
of the person was not known to be less than 14, or the person was not known to
be a doctor, there the token would sit until one of the relevant attributes was mod-
ified by a rule. A WME whose age was known to be less than 14 would
pass down to the alpha node; one whose was would pass
to the other alpha node in the figure. In the case where a pair of WMEs residing
at those alpha nodes also shared a common value between their respective
and attributes, a token would pass through the lower beta node expressing
the constraint, indicating that this rule was now applicable. For tokens left sitting
in the network at the end of a cycle, any modifications to the corresponding WMEs
would cause a reassessment, to see if they could pass further down the network, or
combine with other WMEs at a beta node. Thus the work at each step is quite small
and incremental.

Production systems are a general computational framework, but one based origi-
nally on the observation that human experts appear to reason from “rules of thumb”
in carrying out tasks. The production system architecture was the first reasoning
system to attempt to model explicitly not only the knowledge that people have, but
also the people use when performing mental tasks. Here, for ex-
ample, is a production rule that suggests one step in the procedure a person might
use in carrying out a subtraction:

( )
( )
( )

( )

What was especially interesting to researchers in this area of psychology was the
possibility of modeling the errors or misconceptions people might have in symbolic
procedures of this sort.

Subsequently, what was originally a descriptive framework for psychological
modeling was taken up in a more prescriptive fashion in what became known as

. Expert systems, now a core technology in the field, use rules as a
representation of knowledge for problems that ordinarily take human expertise to
solve. But because human experts seem to reason from symptoms to causes (and
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7.9 Some Significant Production Rule Systems

modularity:

fine-grained control:

transparency:
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similarly in other diagnosis and reasoning problems) in a heuristic fashion, pro-
duction rules seem to be able to handle significant problems of great consequence,
ranging from medical diagnosis, to checking for credit-worthiness, to configuration
of complex products. We will look briefly at some of these rule-based systems in
the next section below.

There are many advantages claimed for production systems when applied to
practical complex problems. Among the key advantages, these are usually cited:

in a production rule framework, each rule works independently
of the others. This allows new rules to be added or old rules to be removed
incrementally in a relatively easy fashion. This is especially useful for knowl-
edge acquisition and for debugging.

production systems have a very simple control struc-
ture. There are no complex goal or control stacks hidden in the implementa-
tion, among other things.

because rules are usually derived from expert knowledge or
observation of expert behaviour, they tend to use terminology that humans
can resonate with. In contrast to formalisms like neural networks, the reason-
ing behavior of the system can be traced and explained in natural language.

In reality—especially when the systems get large and are used to solve complex
problems—these advantages tend to wither. With hundreds or even thousands of
rules, it is deceptive to think that rules can be added or removed with impunity.
Often, more complex control structures than one might suppose are embedded in
the elements of WM (remember attributes like and from above) and
in very complex rule antecedents. But production rules have been used successfully
on a very wide variety of practical problems, and are an essential element of every
AI researcher’s toolkit.

Given the many years that they have been used and the many problems to which
they have been applied, there are many variants on the production system theme.
While it is impossible to survey here even all of the important developments in
the area, one or two significant contributions are worth mentioning. Among other
systems, work on and has influenced virtually all subsequent work
in the area.
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We address uncertainty and its relationship to other numerical means of combining evidence in
Chapter 12.
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was developed at Stanford in the 1970’s to aid physicians in the di-
agnosis of bacterial infections. After working with infectious disease specialists,
the team built a system with approximately 500 production rules for recog-
nizing roughly 100 causes of infection. While the system operated in the typical
forward-chaining manner of production systems (using the recognize/resolve/act
cycle we studied above), it performed its reasoning in a goal-directed fashion. Rules
looked for symptoms in WM and used those symptoms to build evidence for certain
hypotheses.

Here is a simplified version of a typical rule:

the type of is primary bacteremia
the suspected entry point of is the gastrointestinal tract
the site of the culture of is one of the sterile sites

there is evidence (0.8) that is bacteroides

also introduced the use of other static data structures (not in WM) to
augment the reasoning mechanism; these included things like lists of organisms and
clinical parameters. But perhaps the most significant development was the intro-
duction of a level of in the accumulation of evidence and confidence in hy-
potheses. Since in medical diagnosis not all conclusions are obvious, and many dis-
eases can produce the same symptoms, worked by accumulating evidence
and trying to ascertain what was the most likely hypothesis, given that evidence.
The technical means for doing this was what were called , which
were numbers from 0 to 1 attached to the conclusions of rules; these allowed the
rank ordering of alternative hypotheses. Since rules could introduce these numeric
measures into working memory, and newly considered evidence could change the
confidence in various outcomes, had to specify a set of combination rules
for certainty factors. For example, the conjunction of two conclusions might take
the minimum of the two certainty factors involved, and their disjunction might im-
ply the maximum of the two.

In a very different line of thinking, researchers at Carnegie-Mellon produced an
important rule-based system called (originally called ). The system was in
use for many years at what was the Digital Equipment Corporation for configuring
computers, starting with its line of products. The most recent versions of the
system had over 10,000 rules, covering hundreds of types of components. This
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system was the main stimulus for widespread commercial interest in rule-based
expert systems. Substantial commercial development, including the formation of
several new companies, has subsequently gone into the business of configuring
complex systems, using the kind of technology pioneered by .

Here is a simplified version of a typical rule:

the context is doing layout and assigning a power supply
an sbi module of any type has been put in a cabinet
there is space available for the power supply
there is no available power supply
the voltage and frequency of the components are known

add an appropriate power supply

was the first rule-based system to segment a complex task into sections,
or “contexts,” to allow subsets of the very large rule base to work completely in-
dependently of one another. It broke the configuration task down into a number of
major phases, each of which could proceed sequentially. Each rule would typically
include a condition like ( ) to ensure that it was applicable to just
one phase of the task. Then special , like the kind we saw at
the end of Section 7.3, would be used to move from one phase of the computation
to another. This type of framework allowed for more explicit emulation of standard
control structures, although again, one should note that this type of architecture is
not ideal for complex control scenarios.

While grouping rules into contexts is a useful way of managing the complexity
of large knowledge bases, we now turn our attention to an even more powerful
organizational principle, object orientation.

1. Consider the following strategy for playing tic-tac-toe:

Put your mark in an available square that satisfies the first of these
conditions:

(i) a square that gives you three in a row

(ii) a square that would give your opponent three in a row
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(line sq1 sq2 sq3 )

(occupied square player ) X O
(want-move player )

(move player square ).
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(iii) a square that is a double row for you
(iv) a square that would be a double row for your opponent
(v) a center square

(vi) a corner square
(vii) any square

In the above, a square for a player is an available square that gives
the player two in a row on two distinct lines (where the third square of each
line is still available, obviously).

(a) Encode this strategy as a set of production rules, and state what conflict
resolution is assumed.
Assumptions: To simplify matters, you may assume that there are el-
ements in WM of the form , for any three
squares , , that form a straight line in any order. You may also as-
sume that for each occupied square, there is an element in WM of the
form where is either or . Finally,
assume an element of the form , that should be
replaced once a move has been determined by something of the form

(b) It is impossible to guarantee a win at tic-tac-toe, but it is possible to
guarantee a draw. Describe a situation where your ruleset fails to chose
the right move to secure a draw.

(c) Suggest a small addition to your ruleset that is sufficient to guarantee a
draw.

2. In the famous Towers of Hanoi problem, you are given 3 pegs A, B, and C,
and disks of different sizes with holes in them. Initially all the disks are
located on peg A arranged in order, with the smallest one at the top. The
problem is to get them all to peg C, but where only the top disk on a peg can
be moved, a disk can only be moved from one peg to another, and at no time
can a disk be placed on top of a smaller disk.

While this problem has an elegant recursive solution, it also has a less well
known iterative solution as follows. First, we arrange the pegs in a circle, so
that clockwise we have A, B, C, and then A again. Following this, assuming
we never move the same disk twice in a row, there will always only be one
disk that can be legally moved, and we transfer it to the first peg it can occupy,
moving in a clockwise direction, if is even, and counter-clockwise, if is
odd.

not
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(DIGIT-MINUS top bot ans borrow )

(DIGIT-MINUS top 7 bot 3 ans 4 borrow 0)
(DIGIT-MINUS top 3 bot 7 ans 6 borrow 1)

(TOP-NUM pos digit left ) (BOT-NUM pos digit left )

(TOP-NUM pos 0 digit 5 left 1)
(TOP-NUM pos 1 digit 6 left 2)
(TOP-NUM pos 2 digit 4 left 3)

(START)
(START)
(ANS-NUM pos digit left )
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Write a collection of production rules that implement this procedure. Ini-
tially, the working memory will have elements ( ) for each
disk and an element ( ) When your rules stop firing, you should have
( ) for each disk and ( ) in working memory.

3. This question concerns performing subtraction using a production system.
Assume that WM initially contains information to deal with individual digits
in the following form:

, where and are
any digits, and if , then is and is 0 else is
10 + and is 1

For example, would be in WM,
as would . The working memory
also specifies the first and second arguments of a subtraction problem (the
subtrahend and minuend):

and ,
where is a digit, and and are indices indicating the current
position of the digit and its neighbour to the left, respectively.

For example, if the subtrahend were 465, the WM would contain

Finally, the WM contains the goal . Your job is to write a collection
of production rules which removes and eventually stops with addi-
tional elements in WM of the form , indicating
digit by digit what the answer of the subtraction is. Be sure to specify which
conflict resolution strategy you are using; you may use any strategy described
in the text. You may use any arithmetic operators in your rules.
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8.1 Objects and frames

flat

objects

about

parts

Object-Oriented Representation

One property shared by all of the representation methods we have considered so
far is that they are : each piece of representation is self-contained and can be
understood independently of any other. Recall that when we discussed logical rep-
resentations in Chapter 3, we observed that information about a given object we
might care about could be scattered amongst any number of seemingly unrelated
sentences. With production system rules and the procedures in procedural systems,
we have the corresponding problem: knowledge about a given object or type of
object could be scattered around the knowledge base.

As the number of sentences or procedures in a KB grows, it becomes critical
to organize them in some way. As we have seen, in a production system, rule sets
can be organized by their context of application. But this is primarily a control
structure convenience for grouping items by when they might execute. A more
representationally motivated approach would be to group facts or rules in terms of
the kinds of they pertain to. Indeed it is very natural to think of knowledge
itself not as a mere collection of sentences, but rather as structured and organized
in terms of what the knowledge is , the objects of knowledge. In this chapter,
we will examine a procedural knowledge representation formalism that is object-
oriented in this way.

The objects that we care about range far and wide, from physical objects like houses
and people, to more conceptual objects like courses and trips, and even to reified
abstractions like events and relations. Each of these types of object has its own

, some physical (roof, doors, rooms, fixtures, etc.; arms, torso, head, etc.),
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and some more abstract (course title, teacher, students, meeting time, etc.; destina-
tion, conveyance, departure date, etc.). The parts are constrained in various ways:
the roof has to be connected to the walls in a certain way, the departure date and
the first leg of a trip have to be related, and so on. The constraints between the
parts might be expressed procedurally, such as by the registration procedure that
connects a student to a course, or the procedure for reserving an airline seat that
connects the second leg of a trip to the first. And some types of objects might have
procedures of other sorts that are crucial to our understanding of them: procedures
for recognizing bathrooms in houses, for reserving hotel rooms on trips, and so on.
In general, in a procedural object-oriented representation system, we consider the
kinds of reasoning operations that are relevant for the various types of objects in
our application, and we design procedures to deal with them.

In one of the more seminal papers in the history of Knowledge Representation,
Marvin Minsky in 1975 suggested the idea of using object-oriented groups of pro-
cedures to recognize and deal with new situations. Minsky used the term for
the data structure used to represent these situations. While the original intended
application of frames as a knowledge representation was for recognition, the idea
of grouping related procedures in this way for reasoning has much wider applica-
bility. Among its more natural applications we might find the kind of relationship
recognition common in story understanding, data monitoring in which we look for
key situations to arise, and propagation and enforcement of constraints in planning
tasks.

To examine the way frames can be used for reasoning, it will help us to have a formal
representation language to express their structure. For the sake of discussion, we
will keep the language simple, although extremely elaborate frame languages have
been developed.

For our purposes, there are two type of frames: used to repre-
sent single objects, and , used to represent categories or classes of
objects. An individual frame is a named list of “buckets” into which values can be
dropped. The buckets are called , and the items that go into them are called

. Individual frames are similar to the working memory elements of produc-
tion systems seen in the previous chapter. Schematically, an individual frame looks
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:INSTANCE-OF

:INSTANCE-OF

:INSTANCE-OF

:IS-A

:INSTANCE-OF
:IS-A

IF-ADDED IF-NEEDED

Frame-name
slot-name1 filler1
slot-name2 filler2

instance

specialization

attached procedures

tripLeg123
TripLeg

:Destination toronto

toronto
CanadianCity

:Province ontario
:Population 4.5M

toronto CanadianCity

CanadianCity
City

:Province CanadianProvince
:Country canada

Canadian-
Province canada

CanadianCity City
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like this:

(

. . . )

The frame and slot names are atomic symbols; the fillers are either atomic values
(like numbers or strings) or the names of other individual frames.

Notationally, the names of generic frames appear here capitalized, while indi-
vidual frames will be in lower case. Slot names will be capitalized and prefixed
with a “:”. For example, we might have the following frames:

(

. . . )

(

. . . )

Individual frames also have a special distinguished slot called
whose filler is the name of a generic frame indicating the category of the object
being represented. We say that the individual frame is an of the generic
one, so, in the above, is an instance of .

Generic frames, in their simplest form, have a syntax that is similar to individual
frames:

(

)

In this case, slot fillers are the names of either generic frames (like
) or individual ones (like ). Instead of an slot,

generic frames can have a distinguished slot called , whose filler is the name
of a more general generic frame. We say that the generic frame is a
of the more general one, e.g., is a specialization of .

Slots of generic frames can also have associated with them.
In the simple case we consider here, there are two types of attached procedures,

and , which are object-oriented versions of the if-added and
if-needed procedures from Chapter 6. The syntax is illustrated in these examples:
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IF-NEEDED

IF-ADDED

:INSTANCE-OF :IS-A

:INSTANCE-OF

:INSTANCE-OF :IS-A

IF-NEEDED

Table
:Clearance ComputeClearanceFromLegs

Lecture
:DayOfWeek WeekDay
:Date ComputeDayOfWeek

:Country toronto
canada

CanadianCity

toronto :Country Canadi-
anCity :Province toronto

CanadianProvince

:Population

City
:Population NonNegativeNumber

toronto Cana-
dianCity
NonNegativeNumber

Table :Clearance

MahoganyCoffeeTable
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(
[ ] . . . )

(

[ ] . . . )

Note that a slot can have both a filler and an attached procedure in the same frame.

As we will see below, much of the reasoning that is done with a frame system
involves creating individual instances of generic frames, filling some of the slots
with values, and inferring some other values. The and slots
have a special role to play in this process. In particular, the generic frames can be
used to fill in values that are not mentioned explicitly in the creation of the instance,
and they can also trigger additional actions when slot fillers are provided.

For example, if we ask for the of the frame above, we can
determine that it is by using the slot, which points to

, where that value is given. The process of passing information from
generic frames down through their specializations and eventually to their instances
is called (the “child” frames inherit properties from their
“parents”), and we say that inherits the property from

. If we had not provided a filler for the of , we would still
know by inheritance that we were looking for an instance of
(which could be useful in a recognition task). Similarly, if we had not provided a
filler for , but we also had the following frame,

(
. . . )

then by using both the slot of and the slot of
, we would know by inheritance that we were looking for an instance of

.
The inheritance of attached procedures works analogously. If we create an in-

stance of above, and we need to find the filler of the slot for that
instance, we can use the attached procedure to compute the clearance
of that table from the height of its legs. This procedure would also be used through
inheritance if we created an instance of the frame , where we
had the following:
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:IS-A

:IS-A

IF-ADDED

:IS-A

:INSTANCE-OF

:IS-A

:INSTANCE-OF

CoffeeTable
Table

MahoganyCoffeeTable
CoffeeTable

Lecture

:DayOfWeek
:Date :DayOfWeek

Elephant
Mammal

:EarSize large
:Color gray

Elephant :EarSize :Color

raja
Elephant

:EarSize small

RoyalElephant
Elephant

:Color white

clyde
RoyalElephant

raja clyde
Elephant RoyalElephant

RoyalElephant Elephant
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(
. . . )

(
. . . )

Similarly, if we create an instance of the frame from above with a lecture
date specified explicitly, the attached procedure would fire immediately
to calculate the day of the week for the lecture, filling the slot . If we
later changed the slot, the slot would again be changed by the
same procedure.

One of the distinguishing features of the inheritance of properties in frame sys-
tems is that it is . By this we mean that we use an inherited value only if
we cannot find a filler otherwise. So a slot filler in a generic frame can be overrid-
den explicitly in its instances and in its specializations. For example, if we have a
generic frame like

(

. . . )

we are saying that instances of have a certain and property
by . We might have the following other frames:

(

. . . )

(

. . . )

(
. . . )

In this case, inherits the gray color of elephants, but has small ears; in-
herits the large ears from via , but inherits the white color
from , overriding the default from .

Normally in frame systems, all values are understood as default values, and
nothing is done automatically to check the validity of an explicitly provided filler.
So, for example, nothing stops us from creating an individual frame like
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:INSTANCE-OF

:IS-A
:IS-A

IF-ADDED
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city135
CanadianCity

:Country holland

AfricanElephant
Elephant
AfricanAnimal

Elephant
AfricanAnimal
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(

)

It is also worth mentioning that in many frame systems, individual frames are al-
lowed to be instances of (and generic frames are allowed to be specializations of)
more than one generic frame. For example, we might want to say that

(

. . . )

with properties inherited from both generic frames. This of course complicates
inheritance considerably since the values from may conflict with those
from . We will further examine this more general form of inheritance
in Chapter 10.

The procedures attached to frames give us a flexible, organized framework for com-
putation. Reasoning within a frame system usually starts with the system’s “recog-
nizing” an object as an instance of a generic frame, and then applying procedures
triggered by that recognition. Such procedure invocations can then produce more
data or changes in the knowledge base that can cascade to other procedure calls.
When no more procedures are applicable, the system halts.

More specifically, the basic reasoning loop in a frame system has these three
steps:

1. a user or external system using the frame system as its knowledge represen-
tation declares that an object or situation exists, thereby instantiating some
generic frame;

2. any slot fillers that are not provided explicitly but can be inherited by the new
frame instance are inherited;

3. for each slot with a filler, any procedure that can be inherited is
run, possibly causing new slots to be filled, or new frames to be instantiated,
and the cycle repeats.

If the user, the external system, or an attached procedure requires the filler of a slot,
then we get the following behavior:
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IF-NEEDED

IF-NEEDED

IF-ADDED IF-NEEDED
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1. if there is a filler stored in the slot, then that value is returned;

2. otherwise, any procedure that can be inherited is run, calculating
the filler for the slot, but potentially also causing other slots to be filled, or
new frames to be instantiated, as above.

If neither of these produce a result, then the value of the slot is considered to be
unknown. Note that in this account, the inheritance of property values is done at the
time the individual frame is created, but procedures, which calculate
property values, are only invoked as required. Other schemes are possible.

The above comprises the local reasoning involving a single frame. When con-
structing a frame knowledge base, one would also think about the global struc-
ture of the KB and how computation should produce the desired overall reasoning.
Typically, generic frames are created for any major object-type or situation-type
required in the problem-solving. Any constraints between slots are expressed by
the attached and procedures. As in the procedural systems
of Chapter 6, it is up to the designer to decide whether reasoning should be done in
a data-directed or goal-directed fashion.

In the above account, default values are filled in whenever they are available
on slots. It is worth noting that in the original, psychological view that first gave
rise to frames, defaults were considered to play a major role in scene, situation, and
object recognition; it was felt that people were prone to generalize from situations
they had seen before, and that they would assume that objects and situations were
“typical”—had key aspects taking on their normal default values—unless specific
features in the individual case were noticed to be exceptional.

Overall, given the constraints between slots that are enforced by attached pro-
cedures, we can think of a frame knowledge base as a symbolic “spreadsheet,” with
constraints between the objects we care about being propagated by attached proce-
dures. But the procedures in a frame KB can do a lot more, including invoking
complex actions by the system.

We now turn our attention to developing an example frame system, to see how these
representations work in practice. This is a form of knowledge engineering that is
quite different from the logical approach considered in Chapter 3. The example will
be part of a scheme for planning trips. We will see how the “symbolic spreadsheet”
style of reasoning in frame systems is used. This might be particularly useful in
supporting the documentation one often uses in a company for reporting expenses.
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trip17

travelStep17a travelStep17b travelStep17c

lodgingStay17a lodgingStay17b

Trip TravelStep Trip TravelStep
TravelStep LodgingStay

LodgingStay
TravelStep TravelStep TravelStep
LodgingStay

TravelStep
Trip

Trip
:FirstStep TravelStep
:Traveler Person
:BeginDate Date
:EndDate Date
:TotalCost Price
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Figure 8.1: Sketch of structure of a trip

The basic structure of our representation involves two main types of frames:
and . A will have a sequence of s, linked together

by appropriate slots. A will usually terminate in a , except
when there are two travel legs in a single day, and for the last leg of a trip.

In order to make the correspondences work out correctly (and be able to keep
track of what is related to what), a will use slots to point to its arriving

and its departing . Similarly, s will indicate the
s at their origin and destination. Graphically, for a trip with three legs

(instances of ), we might sketch the relationships as in Figure 8.1.
Using the obvious slot names, a in general will look like this:

(

. . . )
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A specific , say, , might look like this:

(

. . . )

In general, instances of and will share some properties
(e.g., each has a beginning date, an end date, a cost, and a payment method), so for
representational conciseness, we might posit a more general category, , of
which the two other frames would be specializations:

(

. . . )

(

. . . )

(

. . . )

Trip trip17

trip17
:FirstStep travelStep17a
:Traveler ronB
:BeginDate 11/13/98
:EndDate 11/18/98
:TotalCost $1752.45

TravelStep LodgingStay

TripPart

TripPart
:BeginDate Date
:EndDate Date
:Cost Price
:PaymentMethod FormOfPayment

LodgingStay
TripPart

:Place City
:LodgingPlace LodgingPlace
:ArrivingTravelStep TravelStep
:DepartingTravelStep TravelStep

TravelStep
TripPart

:Origin City
:Destination City
:OriginLodgingStay LodgingStay
:DestinationLodgingStay LodgingStay
:Means FormOfTransportation
:DepartTime Time
:ArrivalTime Time
:NextStep TravelStep
:PreviousStep TravelStep

1

1

x y y
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Note that we do not write : since we are assuming that the slot already begins with a “:”.

:Means TravelStep airplane

TravelStep
:Means airplane

TripPart
:PaymentMethod visaCard

TravelStep
:PaymentMethod americanExpressCard

TravelStep
:Origin

:PreviousStep
newark

:PreviousStep:Destination

c 144

This gives us our basic overall structure for a trip. Next we embellish the frame
structure with various defaults, and procedures that will help us enforce constraints.
For example, our trips might most often be made by air, in which case the default
filler for the slot of a should be :

(
. . . )

We might also make a habit of paying for parts of trips with a Visa credit card:

(
. . . )

However, perhaps because of the insurance provided by a certain credit card, we
may prefer American Express for travel steps, overriding this default:

(
. . . )

As indicated earlier, not all inherited fillers of slots will necessarily be specified as
fixed values; it may be more appropriate to compute them from the current circum-
stances. For example, it would be appropriate to automatically set up the origin of a
travel step as our home airport, say Newark, as long as there was no previous travel
step—in other words, Newark is the default airport for the beginning of a trip. To
do this we introduce two pieces of notation:

if refers to an individual frame and to a slot, then refers to the filler of
the slot for the frame;

will be a way to refer to the frame currently being processed.

Thus, our travel step description would look like this:

(

[

] . . . )
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IF-NEEDED

IF-NEEDED

IF-ADDED

IF-ADDED

result

result result

result result

result

SELF

SELF SELF

SELF

SELF

SELF

SELF

SELF

SELF
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let
let
repeat

if exists
then

if exists then

else return

if
then

create new
with
and with
and with
and with

TravelStep
TravelStep newark

Trip
:TotalCost

0
:FirstStep

:NextStep

:Cost
:DestinationLodgingStay

:DestinationLodgingStay:Cost
:NextStep

:Cost

:FirstStep
:Cost

:DestinationLodgingStay:Cost

TravelStep
:NextStep

:EndDate :NextStep:BeginDate

:DestinationLodgingStay
:NextStep:OriginLodgingStay

LodgingStay
:BeginDate :EndDate

:EndDate :NextStep:BeginDate
:ArrivingTravelStep
:DepartingTravelStep :NextStep

c 145

This attached procedure says that for any , if we want its origin city, use
the destination of the previous , or if there is none.

Another useful thing to do with a travel planning symbolic spreadsheet would
be to compute the total cost of a trip from the costs of each of its parts:

(

[
;

;

+

+ ;

+ ] . . . )

This procedure (written in a suggestive pseudo-code) iterates through
the travel steps, starting at the trip’s . At each step, it adds the cost of the
step itself ( ) to the previous result, and if there is a subsequent step, the cost of
the lodging stay between those two steps, if any ( ).

Another useful thing to expect an automatic travel documentation system to do
would be to create a skeletal lodging stay instance each time a new travel leg was
added. The following procedure does a basic form of this:

(

[
=

=
=

=
=

. . . ] . . . )
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IF-NEEDED

:INSTANCE-OF

:INSTANCE-OF

:INSTANCE-OF

:Place LodgingStay

LodgingStay
:Place

:ArrivingTravelStep:Destination

trip18

trip18
Trip

:FirstStep travelStep18a

travelStep18a
TravelStep

:Destination toronto
:BeginDate 12/21/06
:EndDate 12/21/06

travelStep18b
TravelStep

:Origin toronto
:BeginDate 12/22/06
:PreviousStep travelStep18a

c 146

Note that the first thing done is to confirm that the next travel leg begins on a dif-
ferent day than the one we are starting with ends; presumably no lodging stay is
needed if the two travel legs join on the same day.

Note also that the default of a (and other fillers) could also
be calculated as another piece of automatic processing:

(
[

] . . . )

This might be a fairly weak default, however, and its utility would depend on the
particular application. It is quite possible that a traveller’s preferred default city
for lodging is different than the destination city for the arriving leg of the trip (e.g.,
flights may arrive in San Francisco, but I may prefer as a default to stay in Palo
Alto).

We now consider how the various frame fragments we have created might work
together in specifying a trip. Imagine that we propose a trip to Toronto on December
21, 2006, returning home the following day. First, we create an individual frame
for the overall trip (call it ), and one for the first leg of the trip:

(

)

(

)

Since we know we are to return home the next day, we create the second leg of the
trip:

(

)
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travelStep18a :NextStep
travelStep18b

TravelStep
travelStep18b :NextStep travelStep18a

LodgingStay
:NextStep

lodgingStay18a
LodgingStay

:BeginDate 12/21/06
:EndDate 12/22/06
:ArrivingTravelStep travelStep18a
:DepartingTravelStep travelStep18b

:Place LodgingStay
toronto lodgingStay18a

:Means
:Origin

:Cost TripPart :TotalCost

totalCost

0 travelStep18a
:NextStep travelStep18b

:DestinationLodgingStay
lodgingStay18a travelStep18b

travelStep18b

:TotalCost trip18
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To complete the initial setup, will need its slot filled with
.

As a consequence of the initial setup of the two instances of —in
particular, the assignment of as the of —a
default is automatically created to represent the overnight stay be-
tween those two legs of the trip (using the procedure on the
slot):

(

)

Note that the procedure for the slot of would infer
a default filler of for , if required. Once we have established
the initial structure, we can see how the slot of either step would be filled
by default, and a query about the slot of the first step would produce an
appropriate default value, as in Figure 8.2.

As a final illustration, imagine that we have over the course of our trip filled
in the slots for each of the instances of . If we ask for the
of the entire trip, the procedure defined above will come into play
(assuming the slot has not already been filled manually). Given the final
state of the trip as expressed in Figure 8.2, the calculation proceeds as follows:

is initialized to , and is initialized to , which makes
be ;

the first time through the loop, is set to the sum of (0),
the cost of ($321.00), and the cost of the of the
current step ( ) ($124.75); is then set to ;

the next time through, since ( ) has no following step, the
loop is broken and the sum of ($445.75) and the cost of ($321.00) is
returned.

So a grand total of $766.75 is taken to be the of .
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Figure 8.2: The travel example with lodging stay

The trip planning example considered above is typical of how frame systems have
been used: start with a sketchy description of some circumstance and embellish it
with defaults and implied values. The procedures can make updates
easier and help to maintain consistency; the procedures allow values
to be computed only when they are needed. There is a tradeoff here, of course, and
which type of procedure to use in an application will depend on the potential value
to the user of seeing implied values computed up front, versus the value of waiting

:FirstStep

trip18

:BeginDate 12/21/06
:EndDate 12/21/06
:Means airplane
:Origin newark
:Destination toronto
:NextStep
:PreviousStep
:DepartureTime 7:05am
:ArrivalTime
:Cost $321.00
:DestinationLodgingStay

travelStep18a

:BeginDate 12/22/06
:EndDate 12/22/06
:Means airplane
:Origin toronto
:Destination newark
:NextStep

:PreviousStep
:DepartureTime
:ArrivalTime
:Cost $321.00
:OriginLodgingStay

travelStep18b

:ArrivingTravelStep
:DepartingTravelStep
:BeginDate 12/21/06
:EndDate 12/22/06
:City toronto
:Cost $124.74
:LodgingPlace deltaChelsea

lodgingStay18a
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8.4.1 Other uses of frames

8.4.2 Extensions to the frame formalism
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to do computation only as required.

There are other types of applications for frame systems. One would be to use a
frame system to provide a structured, knowledge-based monitoring function over
a database. By hooking the frames to items in a database, changes in values and
newly-added values could be detected by the frame system, and new frame in-
stances or implied slot values could be computed and added to the database, without
having to modify the DBMS itself to handle rules. In some ways, this combination
would act like an expert system. But database monitors are probably more natu-
rally thought of as object-centered (generic frames could line up with relations in
the schema, for example), in which case a frame representation is a better fit than a
flat production system.

Other uses of frame systems come closer to the original thinking about psycho-
logically-oriented recognition processes espoused by Minsky in 1975. These in-
clude, for example, structuring views of typical activities of characters in stories.
The frame structures for such activities have been called , and have been
used to recognize the motivations of characters in the stories, and to set up expec-
tations for their later behavior. More general commonsense reasoning of the sort
that Minsky envisioned would use local cues from a situation to suggest potentially
relevant frames, which in turn would set up further expectations that could drive
investigation procedures.

Consider for example, a situation where many people in a room were holding
what appeared to be wrapped packages, and balloons and cake were in evidence.
This would suggest a birthday party, and prompt us to look for the focal person at
the party (a key slot of the birthday party frame), and to interpret the meaning of
lit candles in a certain way. Expectations set up by the suggested frames could be
used to confirm the current hypothesis (that this is a birthday party). If they were
subsequently violated, then an appropriately represented “differential diagnosis”
attached to the frame could lead the system to suggest other candidate frames, taking
the reasoning in a different direction. For example, no candles on the cake could
suggest a retirement or anniversary party.

As with other knowledge representation formalisms, frame systems have been sub-
ject to many extensions to handle ever more complex applications. Here we briefly
review some of these extensions.
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Other procedures:

Multiple slot fillers:

Other slot facets:

Meta-frames:
Canadi-

anCity NewJerseyCity

GeographicalCityType

GeographicalCityType
CityType

:DefiningRegion GeographicalRegion
:AveragePopulation NonNegativeNumber
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An obvious way to increase the expressiveness and utility
of the frame mechanism is to include other types of procedures. The whole point
of object-oriented reasoning is to determine the sort of questions appropriate for a
type of object, and to design procedures to answer them. For trips, for example,
we have only considered two forms of questions, exemplified by “What is the total
cost of a trip?” (handled by an procedure) and “What should I do if
I find out about a new leg of a trip?” (handled by an procedure). But
other questions that do not fit these two patterns are certainly possible, such as
“What should I do if I cancel a leg of a trip?” (requiring some sort of “if-removed”
procedure), or “How do I recognize an overly expensive trip?” (along the lines of
the birthday party recognition example above), or “What do I need to look out for
in an overseas trip?” and so on.

In addition to extending the repertoire of procedures at-
tached to a frame knowledge base, we can also expand the types of slots used to
express parts and features of objects. One obvious extension is to allow of
frames to fill slots. Procedures attached to the slot could then operate on the entire
set of fillers, and constraints on the cardinality of these sets could be used in rea-
soning, as we will see in the description logics of Chapter 9. One complication this
raises concerns inheritance: with multiple slot fillers, we need to know whether the
fillers of a slot given explicitly should or should not be augmented by other fillers
through inheritance.

So far, we have seen that both default fillers and procedures
can be associated with a slot. We can imagine dealing with other aspects of the
relationship between a slot and a frame. For example, we might want to be able to

that instances of a generic frame provide a filler of a certain type (or perhaps
check the validity of the provided filler with a procedure), rather than being merely
a default. Another possibility is to state we might have regarding the
filler of a slot. Preferences could be used to help select a filler among a number of
competing inherited values.

Generic frames can sometimes usefully be considered to be in-
stances of higher-level meta-frames. For example, generic frames like

and represent a type of city defined by a geographic region.
So we might think of them as being instances (not specializations) of a meta-frame
like . We might have something like

(

. . . )
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8.4.3 Object-driven programming with frames

CanadianCity
:DefiningRegion canada :AveragePopulation

CanadianCity

toronto CanadianCity

:Country CanadianCity
AveragePopulation

CanadianCity
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An instance of this frame, like , would have a particular value for the
slot, namely . The filler for the slot

for could be calculated by an procedure, by iterating
through all the Canadian cities. Observe that individual cities themselves do not
have a defining region or an average population. So we need to ensure that frames
like do not inherit these slots from . The usual way this is done
is to distinguish the “member” slots of a generic frame, which apply to instances
(members) of the frame (like the of a ), from the “own”
slots of the frame, which apply to the frame itself (like the of

).

Frame-structured knowledge bases are the first instance we have seen of an object-
oriented representation. Careful attention to the mapping of generic frames to cat-
egories of objects in a domain of interest can yield a simple declarative knowledge
base, emphasizing taxonomies of objects and their structural relationships. How-
ever, as we have seen, attached procedures can be a useful adjunct to a pure object-
oriented representation structure, and in practice, we are encouraged to take advan-
tage of their power to build a complex, highly procedural knowledge base. In this
case, what is known about the connections among the various symbols used is ex-
pressed through the attached procedures, just as it was in the procedural and produc-
tion systems of previous chapters. While there is nothing intrinsically wrong with
this, it does mean moving away from the original declarative view of knowledge—
taking the world to be one way and not another—presented in the first chapter.

The shift to a more procedural view of frames moves us close to conventional
object-oriented programming (OOP). Indeed frame-based representation languages
and OOP systems were developed concurrently, and share many of the same in-
tuitions and techniques. A procedural frame system shares the advantages of a
conventional OOP system: definition is done primarily by specialization of more
general classes, control is localized, methods can be inherited, encapsulation of ab-
stract procedures is possible, etc. The main difference is that frame systems tend
to have a centralized, conventional control regime, whereas OOP systems have
objects acting as small, independent agents sending each other messages. Frame
systems tend to work in a cycle: instantiate a frame and declare some slot fillers,
inherit values from more general frames, trigger appropriate forward-chaining pro-
cedures, and then, when quiescent, stop and wait for the next input; OOP systems
tend to be more decentralized and less patterned. As a result, there can be some
applications for which a frame-based system can provide some advantages over a
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more generic OOP system, for example, in the style of applications that we touched
on above. But if the primary use of a frame system is as an organizing method for
procedures, this contrast should be examined carefully to be sure that the system is
best suited to the task.

In Chapter 9 we will continue our investigation of object-oriented knowledge
representation, but now without procedures, in a more logical and declarative form.

1. Imagine a frame-based travel-planning assistant, as discussed in the text. Let
us focus on two frames, (which represents a hotel stay in a city
while on a trip) and (which represents any travel from one city to
another). A has a , in which the lodging is located,
an , and a , both of which are

s. A has an and a , each of which is a city,
a possible , and a possible , each of which
is a . For simplicity, assume that there is always a
between any two s.

Write in English some combination of and/or proce-
dures that could be attached to the city slots of the various and

frames to keep them consistent. Statements like “set the
of my to be the same as this one” in a procedure are

fine. Make sure that a change to one of these city slots does not cause an
infinite loop.

In the the remaining exercises, we consider two possible frame-based applications:

Imagine we want to build a program that helps schedule
rooms for classes of various size at a university, using the sort of frame tech-
nology (frames, slots, and attached procedures) discussed in the text. Slots of
frames might be used to record when and where a class is to be held, the ca-
pacity of a room, etc., and and other procedures might be used to
encode constraints as well as to fill in implied values when the KB is updated.

In this problem, we want to consider updating the KB in several ways: (1)
asserting that a class of a given size is to be held in a given room at a given
time; the system would either go ahead and add this to its schedule, or alert
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the user that it was not possible to do so; (2) asserting that a class of a given
size is to be held at a given time, with the system providing a suitable room
(if one is available) when queried; (3) asserting that a class of a given size is
desired, with the system providing a time and place when queried.

Imagine we want to help the International Olympic Committee
in the smooth running of the next Olympic games. In particular, we want to
select an event and write a program to deal with that event including facilities
for handling the preliminary rounds/heats and finals. Slots of frames might be
used to record athletes in a heat/final, the location and time of that heat/final,
etc. and / and other procedures might be used to
encode constraints as well as fill in implied values when the knowledge base
is updated.

We particularly wish to consider several ways of updating the knowledge
base: (1) asserting that a heat will take place with certain athletes. The sys-
tem should add this and determine what time and the location of the venue
the athletes need to be at for their heat, etc; (2) asserting that a particular
semi-final/final should take place, the system should determine the partici-
pating athletes; and, (3) asserting that the medal ceremony should take place
at a particular time and location, the system should add this and provide the
medallists plus appropriate national anthem when queried. To simplify mat-
ters, we assume that an athlete takes part in only the event we have chosen.

2. For either application, the questions are the same:

(a) Design a set of frames and slots to represent the schedule and any an-
cillary information needed by the assistant.

(b) For all slots of all frames, write in English pseudocode the
or procedures that would appear there. Annotate these
procedures with comments explaining why they are there ( what
constraints they are enforcing).

(c) Briefly explain how your system would work (what procedures would
fire and what they would do) on concrete examples of your choosing
illustrating each of the three situations (1, 2, and 3) mentioned in the
application.
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objects
procedures

Structured Descriptions

In Chapter 8, we looked at knowledge organization inspired by our natural tendency
to think in terms of categories of . However, the frame representation seen
there focused more on the organization and invocation of than on in-
ferences about the objects and categories themselves. Reasoning about objects in
everyday thinking goes well beyond the simple cascaded computations seen in that
chapter, and is based on considerations like the following:

objects naturally fall into classes (e.g., my pet is a dog; my wife is a physi-
cian), but are very often thought of as being members of multiple classes (I
am an author, an employee and a father);

classes can be more general or more specific than others (e.g., Collie and
Schnauzer are types of dogs; a rheumatologist is a type of physician; a father
is a type of parent);

in addition to generalization being common for classes with simple atomic
names, it is also natural for those with more complex descriptions (e.g., a
part-time employee is an employee; a family with at least 1 child is a family;
a family with 3 children is a family that is not childless);

objects have parts, sometimes in multiples (e.g., books have (single) titles,
tables have at least 3 legs, automobiles have 4 wheels);

the configuration of an object’s parts is essential to its being considered a
member of a class (e.g., a stack of bricks is not the same as a pile of the very
same bricks).

1

1
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We are using the “&” and complex predicate names suggestively here; we will introduce formal
machinery shortly.

Company Knife Contract

Hunter&Gatherer
Hunter&Gatherer

Hunter Gatherer

Child FatherOfOnlyDoctors

Teenager
PersonWithAgeBetween13and19
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In this chapter we will delve into representation techniques that look more directly
at these aspects of objects and classes than frames did. In focusing on the more
declarative aspects of an object-oriented representation, our analysis will take us
back to concepts like predicates and entailment from FOL. But as we shall see,
what matters about these predicates and the kind of entailments we will consider
here will be quite different.

Before we look at the details of a formal knowledge representation language in
the next section, one useful way to get our bearings is to think in terms of the
expressions of a natural language like English. In our discussion of knowledge in
Chapter 1, and in our presentation of FOL, we focussed mainly on , since
it is sentences, after all, that express what is known. Here, we want to talk about

. Like sentences, noun phrases can be simple or complex, and they
give us a nice window onto our thinking about objects.

Recall that in our introduction to expressing knowledge in FOL-like languages
(Chapter 3), we represented categories of objects with one-place predicates using
common nouns like ( ), ( ), ( ). But there is more to noun
phrases than just nouns. To capture more interesting types of nominal construc-
tions, such as “a hunter-gatherer” or “a father whose children are all doctors,” we
would need predicates with internal structure.

For example, if we had a truly compound predicate like ( ),
then we would expect that for any for which ( ) was true, both

( ) and ( ) would also be true. Most importantly, this connection
among the three predicates would hold not by virtue of some fact about the world,
but by of what we meant by the compound predicate.

Similarly, we would expect that if ( , ) and ( ) were
both true, would have to be a doctor, again (somehow), by definition. Note that
this would be so even if we had a simple name that served as an abbreviation for a
concept like this, which is very often the case in natural language (e.g.,
is synonymous with ).
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descriptions description logic

concept role

constants

Hunter Teenager Doctor
Child Age

Hunter&Gatherer Hunter

johnSmith

Other names used in the literature include “terminological logics,” “term subsumption systems,”
“taxonomic logics,” or even “KL-One-like systems,” because of their origin in early work on a system
called KL-One.

Many nouns can be used both ways. For example, “child” can mean a relation (the inverse of
parent) or a category (a person of a young age).
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Traditional first-order logic does not provide any tools for dealing with com-
pound predicates of this sort. In a sense, the only noun phrases in FOL are the nouns.
But given the prominence and naturalness of such constructs in natural language, it
is worthwhile considering KR machinery that does provide such tools. Since a logic
that would allow us to manipulate complex predicates would be working mainly
with , we call a logical system based on these ideas a
or DL.

Looking at the examples above, we can already see that two sorts of nouns are
involved: there are category nouns like , , and describing
basic classes of objects, and there are relational nouns like and that de-
scribe objects that are parts or attributes or properties of other objects. We saw a
similar distinction in Chapter 8 between a frame and a slot. In a description logic,
we refer to the first type of description as a and the second type as a .

As with frames, we will think of concepts as being organized into a generaliza-
tion hierarchy where, for example, is a specialization of .
However, we will see that much of the generalization hierarchy in a description
logic follows logically from the meaning of the compound concepts involved, quite
unlike the case with frames where hierarchies were stipulated by the user. And, as
we will see, much of the reasoning performed by a description logic system centers
around automatically computing this generalization relation.

For simplicity, we will not consider roles to be organized hierarchically in this
way except briefly in Section 9.6. In contrast to the slots in frame systems, however,
roles will be allowed to have multiple fillers. This way we can naturally describe a
person with several children, a function with multiple arguments, or a wine made
from more than one type of grape.

Finally, although much of the reasoning we perform in a description logic con-
cerns generic categories, we will want to know how these descriptions apply to
individuals as well. Consequently, we will also include like in
our description logic language below.

n n1 1

1 2 1 2

1 2 1 2

9.2 A description language
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Person WhiteWine
FatherOfOnlyDaughters Thing

: :Child :Height
:Employer :Arm

table13 maryAnnJones

punctuation

positive integers etc.

concept-forming operators

connectives

atomic concepts

roles

constants

constants roles
concepts sentences
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We begin here with the syntax of a very simple but illustrative description logic lan-
guage that we call . Like FOL, has two types of symbols: logical symbols,
which have a fixed meaning or use, and non-logical symbols, which are application-
dependent. There are four sorts of logical symbols in :

1. : “[”, “]”, “(”, “)”;

2. : 1,2, 3, ;

3. : “ ”, “ ”, “ ”, “ ”;

4. : “ ”, “=”, “ ”.

We distinguish three sorts of non-logical symbols in :

1. , written in capitalized mixed case, e.g., , ,
; also has a special atomic concept, ;

2. , written like atomic concepts, but preceded by “ ”, e.g., , ,
, ;

3. , written in uncapitalized mixed case, e.g., , .

There are four types of legal syntactic expressions in : , (both
seen above), and . We use and to range over constants and
roles respectively, and to range over concepts, and to range over atomic con-
cepts. The set of concepts of is the least set satisfying the following:

every atomic concept is a concept;

if is a role and is a concept, then [ ] is a concept;

if is a role and is a positive integer, then [ ] is a concept;

if is a role and is a constant, then [ ] is a concept;

if . . . are concepts, then [ . . . ] is a concept.

Finally, there are three types of sentences in :

if and are concepts then ( ) is a sentence;

if and are concepts, then ( = ) is a sentence;

if is a constant and is a concept, then ( ) is a sentence.
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A KB in a description logic like is considered to be any collection of sentences
of this form.

What are these syntactic expressions supposed to mean? Constants are intended
to stand for individuals in some application domain as they did in FOL; atomic
concepts (and indeed all concepts in general) are intended to stand for categories
or classes of individuals; and roles are intended to stand for binary relations over
those individuals.

As for the complex concepts, their meanings are derived from the meanings of
their parts the way the meanings of noun phrases are. Imagine that we have a role

standing for some binary relation. Then the concept [ ] stands for the
class of individuals in the domain that are related by relation to at least other
individuals. So the concept [ ] could represent someone who was
not childless. Next, imagine that constant stands for some individual; then the
concept [ ] stands for those individuals that are -related to that individ-
ual. So [ ] would represent someone, one of whose cousins was
Vinny. Next, imagine that concept stands for some class of individuals; then the
concept [ ] stands for those individuals who are -related only to elements
of that class. So [ ] describes something whose em-
ployees, if any, are all union members. Finally, the concept [ . . . ] stands
for anything that is described by and . . . .

Turning now to sentences, these expressions are intended to be true or false
in the domain, as they would be in FOL. Imagine that we have two concepts
and , standing for two classes of individuals, and a constant , standing for some
individual. Then ( ) says that concept is by concept , i.e.,
all individuals that satisfy also satisfy . For example, ( )
says that any surgeon is also a doctor (among other things). Similarly, ( = )
will mean that the two concepts are , i.e., the individuals that satisfy
are precisely those that satisfy . This is just a convenient way of saying that both
( ) and ( ) are true. Finally, ( ) says that the individual denoted
by satisfies the description expressed by concept .

While the sentences of are all atomic, it is easy to create complex concepts.
For example,

[
[ ]
[ ]]

would represent the category of a blended red wine (literally, a wine one of whose
colors is red and which has at least two types of grape in it).

:

:

;
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defined

primitive concept

interpretation

domain
interpretation mapping

ProgressiveCompany Company
:Director

:Manager Woman
:Degree phD

:MinSalary $24.00/hour

Progressive-
Company

ProgressiveCompany
ProgressiveCompany

ProgressiveCompany

ProgressiveCompany

ProgressiveCompany
ProgressiveCompany
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A typical sentence in a description logic KB is one that assigns a name to a
complex concept:

( = [
[ 7 ]
[ [

[ ]]]
[ ]])

The concept on the right-hand side represents the notion of a company with at least
seven directors, and all of whose managers are women with a Ph.D., and whose
minimum salary is $24.00/hour. The sentence as a whole says that

, as a concept, is equivalent to the one on the right. If this sentence is in
a KB, we consider to be fully in the KB, that is, we
have a set of necessary and sufficient conditions for being a ,
exactly expressed by the right-hand side. If we used the connective instead, the
sentence would say only that as a concept was subsumed
by the one on the right. Without a = sentence in the KB defining it, we consider

to be a in that we only have necessary con-
ditions it must satisfy. As a result, while we could draw conclusions about an in-
dividual once we were told it was one, we would not have a
way to recognize an individual as a .

As we saw in the previous section, there are four different sorts of syntactic ex-
pressions in a description logic—constants, roles, concepts, and sentences—with
different intended uses. In this section, we will explain precisely what these expres-
sions are supposed to mean, and under what circumstances a collection of sentences
in this logic entails another. As in ordinary FOL, it is this entailment relation that a
description logic reasoner will be required to calculate.

The starting point for the semantics of description logics is the , just
as it was for FOL. An interpretation for is a pair as before, where

is any set of objects called the of the interpretation, and is a mapping
called the from the non-logical symbols of to elements
and relations over , where
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1. for every constant symbol , [ ] ;

2. for every atomic concept , [ ] ;

3. for every role symbol , [ ] .

Comparing this to FOL, we can see that constants have the same meaning as they
would as terms in FOL, that atomic concepts are understood as unary predicates,
and that roles are understood as binary predicates. The set [ ] associated with a
concept in an interpretation is called its .

As we have emphasized, a distinguishing feature of description logics is the
existence of non-atomic concepts whose meanings are completely determined by
the meanings of their parts. For example, the extension of [ ] is
required to be the intersection of the extension of and that of . More
generally, we can extend the definition of to all concepts as follows:

for the distinguished concept , [ ] = ;

[[ ]] = for any , if [ ] then [ ] ;

[[ ]] =
there are at least distinct such that [ ] ;

[[ ]] = [ ] [ ] ;

[[ . . . ]] = [ ] . . . [ ].

So if we are given an interpretation , with an interpretation mapping for constants,
atomic concepts, and roles, these rules tell us how to find the extension of any
concept.

Given an interpretation, we can now specify which sentences of are true and
which are false according to that interpretation. A sentence ( ) will be true
when the object denoted by is in the extension of ; a sentence ( ) will be
true when the extension of is a subset of the extension of ; a sentence ( = )
will be true when the extension of is the same as that of . More formally, given
an interpretation = , we say that is in , written = , according
to these rules:

Assume that and are concepts, and that is a constant.

1. = ( ) iff [ ] [ ]; 4

4

AND

AND

0 0

0 0

0

0

entails

valid

9.3.3 Entailment
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Doctor
Female

Doctor

john Thing

john
Thing

We will see in Section 9.6 that other useful varieties of reasoning reduce to these two.
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2. = ( ) iff [ ] [ ];

3. = ( = ) iff [ ] = [ ].

As in FOL, we will also use the notation = , where is a set of sentences, to
mean that all the sentences in are true in .

The definition of entailment in is exactly like it is in FOL. Let be a set of
sentences, and any individual sentence. We say that logically , which
we write = , if and only if for every interpretation , if = then = . As
a special case of this definition, we say that a sentence is logically , which
we write = , when it is logically entailed by the empty set.

There are two basic sorts of reasoning we will be concerned with in description
logics: determining whether or not some constant satisfies a certain concept

, and determining whether or not a concept is subsumed by another concept
. Both of these involve calculating entailments of a KB: in the first case, we

need to determine if the KB entails ( ), and in the second case, if the KB
entails ( ). So, as in FOL, reasoning in a description logic means calculating
entailments.

Note that in some cases, the entailment relationship will hold because the sen-
tences themselves are valid. For example, consider the sentence

([ ] ])

This sentence is valid according to the definition above: the sentence must be true
in every interpretation because no matter what extension it assigns to and

, the extension of the concept (which is the intersection of the two sets)
will always be a subset of the extension of . Consequently, for any KB, the
first concept is subsumed by the second—in other words, a female doctor is always
a doctor. Similarly, the sentence

( )

is valid: the sentence must be true in every interpretation because no matter what
extension it assigns to , it must be an element of , which is the extension
of . Consequently, for any KB, the constant satisfies that concept—in other
words, the individual John is always something.
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As we have mentioned, KB = ( = ) iff KB = ( ) and KB = ( ).

Surgeon Doctor

Surgeon Female Doctor

Surgeon Doctor
Surgeon

Female Doctor

Surgeon Doctor

Surgeon Doctor :Specialty surgery

Surgeon Doctor

Doctor Surgeon
Female
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In more typical cases, the entailment relationship will depend on the sentences
in the KB. For example, if a knowledge base, KB, contains the sentence

( )

then we get the following entailment:

KB = ([ ] )

To see why, consider any interpretation , and suppose that = KB. Then for
this interpretation, the extension of is a subset of that of , and so the
extension of the concept (that is, the intersection of the extensions of
and ) must also be a subset of that of . So for this KB, the first concept
is subsumed by the second—if a surgeon is a doctor (among other things), then a
female surgeon is also a doctor. This conclusion would also follow if instead of
( ), the KB were to contain

( = [ [ ]])

In this case we are defining a surgeon to be a certain kind of doctor, which again
requires the extension of to be a subset of that of . With the empty
KB on the other hand, there would be no subsumption relation since we can find
an where the extension of the first concept is not a subset of the second: let be
the set of all integers, and let assign to the empty set, and both
and to the set of all integers.

As stated above, there are two major types of reasoning that we care about with a
description logic: given a knowledge base, KB, we want to be able to determine if
KB = , for sentences of the form,

( ), where is a constant and is a concept; and

( ), where and are both concepts.

In fact, the first of these is easy to handle once we deal with the second, and so we
begin by considering how to compute subsumption. As with Resolution for FOL,
the key fact about this symbol-level computation we are about to present is that it
is correct relative to the knowledge-level definition of entailment given above.
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9.4.1 Simplifying the knowledge base

9.4.2 Normalization

This would not hold if the sentences involving constants could be inconsistent.
There are other ways of computing subsumption; this is probably the most common and direct

way that takes concept structure into account.

c 164

Observe first of all that subsumption entailments are unaffected by the presence of
sentences of the form ( ) in the KB. In other words, if KB is just like KB
except that all the ( ) sentences have been removed, then it can be shown
that KB = ( ) if and only if KB = ( ). So we can assume that for
subsumption questions, the KB in question contains no ( ) sentences.

For pragmatic purposes, it is useful to make a further restriction: we insist that
the left-hand sides of the and = sentences in the KB be atomic concepts other
than and that each atom appears on the left-hand side of a sentence exactly
once in the KB. We can think of such sentences as providing either a definition of
the atomic concept (in the case of =) or its necessary conditions (in the case of ).
We will, however, still be able to compute KB = for sentences of the more
general form above (e.g., subsumption between two complex concepts).

Finally, we assume that the and = sentences in the KB are . Informally
we want to rule out a KB like

( = [ . . .]) ( [ ]) ( )

which has a cycle ( ). While this type of cycle is meaningful in our
semantics, it complicates the calculation of subsumption.

With these restrictions in place, to determine whether or not KB = ( ) it
will be sufficient to do the following:

1. using the definitional declarations (=) in KB, put and into a special nor-
malized form;

2. using the subsumption declarations ( ) in KB, determine whether each part
of the normalized is implied by some part of the normalized .

So subsumption in a description logic KB reduces to a question about a structural
relationship between two normalized concepts.

Normalization in description logics is similar in spirit to the derivation of normal
forms like CNF in FOL. During this phase, we draw some inferences, but only
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small, obvious ones. This pre-processing then makes the subsequent structure-
matching step to follow straightforward.

Normalization applies to one concept at a time, and involves a small number
of steps. Here we outline the steps and then review the whole process on a larger
expression.

1. Any atomic concept that appears as the left-hand side
of a = sentence in the KB is replaced by its definition. For example, if we
have the following sentence in KB,

( = [ [ ]])

then the concept [ . . . . . . ] expands to

[ . . . [ [ ]] . . . ].

2. Any subconcept of the form

[ . . . [ . . . ]. . . ]

can be simplified to [ . . . . . . . . . ].

3. Any subconcept of the form

[ . . . [ ]. . . [ ]. . . ],

can be simplified to [ . . . [ [ ]] . . . ].

4. Any subconcept of the form

[ . . . [ ]. . . [ ]. . . ]

can be simplified to the concept [ . . . [ ] . . . ], where is the
maximum of and .

5. Certain concepts are vacuous and should be removed as
an argument to : , [ ], and with no arguments.
In the end, the concept should only appear if this is what the entire
expression simplifies to.

6. Eliminate any expression that is an exact
duplicate of another within the same expression.

c
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To normalize a concept, these operations can be applied repeatedly in any order, and
at any level of embedding within and operators. However, the process
only terminates when no further steps are applicable.

In the end, the result of a normalization is either or a concept of the
following form:

[ . . .
[ ] . . . [ ]
[ ] . . . [ ]
[ ] . . . [ ] ]

where the are primitive atomic concepts other than , the , and are
roles, the are constants, the are positive integers, and the are themselves
normalized concepts. In fact, we can think of itself as the same as [ ]. We
call the arguments to in a normalized concept the omponents of the concept.

To illustrate the normalization process, we consider an example. Assume that
KB has the following definitions:

=
[ [ [

[ ]]]]
=

[ [ ] [ ]]

= [ ]

These definitions amount to a being a company whose managers
are business school graduates who each have at least one technical degree, a

being a company listed on the NASDAQ whose managers are all Techies,
and a being someone with at least two technical degrees.

Given these definitions, let us examine how we would normalize the expression

[ ].

First, we would expand the definitions of and , and
then, , yielding this:

[ [
[ [

[ ]]]]
[

[ ]
[ [ ]]]]
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AND
ALL AND EXISTS
FILLS

FILLS
EXISTS

EXISTS
ALL ALL

AND ALL
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Company
:Manager B-SchoolGrad
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Next, we flatten the operators at the top level and then combine the
operators over :

[
[ [

[ ]
[ ]]]

[ ]]

Finally, we remove the redundant concept and combine the op-
erators over , yielding the following:

[
[ [ [ ]]]
[ ]]

This is the concept of a company listed on the NASDAQ exchange whose managers
are business school graduates with at least two technical degrees.

In order to compute whether KB = ( ), we need to compare the normalized
versions of and . The idea behind structure-matching is that for to be subsumed
by , the normalized must account for each component of the normalized in
some way. For example, if has the component [ ], then must
contain this component too. If has the component [ 3 ], then must
have a component [ ], and we must have 3. If contains the
component [ ], then must contain some [ ], where is subsumed
by . Finally, if contains some atomic concept , there are two cases: either

contains itself, or contains some such that ( ) is derivable using
the sentences in the KB. The full procedure for structure matching is shown in
Figure 9.1.

To illustrate briefly the structure-matching algorithm, consider the concept, ,

[ [ ]].

Assume that the declaration, ( ), exists in KB. In this case,
can be seen to subsume the one that resulted from the normalization procedure

above (call it ) by looking at each of ’s two components, and seeing that there
exists in a matching component:

01 1

matches

0

0 0

0 0

0

0 0 0

0

0

Input:

Output:
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Figure 9.1: A procedure for structure matching

Two normalized concepts and where
is [ . . . ] and is [ . . . ]

or , according to whether KB = ( )

Return iff for each component , for 1 , there exists a component
where 1 , such that , as follows:

1. if is an atomic concept, then either is identical to , or there is a sentence
of the form ( ) in the KB, where recursively some component of
matches ;

2. if is of the form [ ], then must be identical to it;

3. if is of the form [ ], then the corresponding must be of the
form [ ], for some ; in the case where = 1, the matching

can be of the form [ ], for any constant ;

4. if is of the form [ ], then the corresponding must be of the form
[ ], where recursively is subsumed by .

is an atomic concept; there is a component in ( ),
where there is an appropriate sentence in the KB that satisfies the require-
ment in Step 1 of the algorithm (namely, ( )).

For the component of , whose restriction is , there is
an component of such that the restriction on that component is
subsumed by (namely the conjunction, [
[ ]]).

Computing whether an individual denoted by a constant satisfies a concept is very
similar to computing subsumption between two concepts. The main difference is
that we need to take the sentences in the KB into account. More precisely, it
can be shown that KB = ( ) if and only if KB = ( ), where is the

of every concept such that ( ) is in the KB. What this means is that
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9.4.5 The correctness of the subsumption computation
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concept satisfaction can be computed directly using the procedure presented above
for concept subsumption, once we gather together all the relevant sentences in
the KB.

We conclude this section by claiming correctness for the procedure presented here:
KB = ( ) (according to the definition in terms of interpretations) if and only if

normalizes to some , normalizes to some , and for every component of ,
there is a corresponding matching component of as above. We will not present a
full proof since it is quite involved, but merely sketch the argument.

The first observation is that given a KB in the simplified form discussed in
Section 9.4.1, every concept can be put into normal form, and moreover, each step
of the normalization preserves concept equivalence. It follows that KB = ( )
if and only if KB = ( ).

The next part of the proof is to show that if the procedure returns given
and , then KB = ( ). So suppose that each component of has a

corresponding component in . To show subsumption, imagine that we have some
interpretation = and some such that [ ]. To prove that

[ ] (and consequently that is subsumed by ), we look at the various
components of case by case, and show that [ ] because there is a
matching in and [ ].

The final part of the proof is the trickiest. We must show that if the procedure
returns , then it is not the case that KB = ( ). To do so, we need to construct
an interpretation where for some , [ ] but [ ].

Here is how to do so in the simplest case where there are no sentences in the
KB, and no concepts involved. Let the domain be the set of all constants
together with the set of defined to be all sequences of roles (including
the empty sequence). Then for every constant , let [ ] be ; for every atomic
concept , let [ ] be all constants and all role chains where = for
some 0 and such that is of the form

[ . . . [ . . . [ . . . [ ] . . . ] . . . ] . . . ];

finally, for every role , let [ ] be every pair of constants, together with every pair
( ) where is a role chain, together with every pair ( ) where is a constant,

= where 0, and such that is of the form

[ . . . [ . . . [ . . . [ [ ]] . . . ] . . . ] . . . ].

1
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9.5.1 A taxonomy of atomic concepts and constants
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Assuming the procedure returns , it can be shown for this interpretation that the
empty role chain is in the extension of , but not in the extension of , and conse-
quently that does not subsume . We omit all further details.

In practice, there are a small number of key questions that would typically be asked
of a description logic KB. Since these KBs resemble databases, where the concepts
correspond roughly to elements of a schema and constants correspond to records,
it is common to ask for all of the instances of a concept:

given some query concept, , find all in KB such that KB = ( ).

On the other hand, since these KB’s resemble frame systems in some ways, it is
common to ask for all of the known categories that an individual satisfies, in order,
for example, to trigger procedures associated with those classes:

given a constant , find all atomic concepts such that KB = ( ).

While the logic and computational methods we have presented so far are adequate
for finding the answers to these questions, a naive approach might consider doing a
full scan of the KB, requiring time that grows with the number of sentences
in the KB. However, one of the key reasons for using a description logic in the
first place is to exploit the fact that concepts are naturally thought of as organized
hierarchically, with the most general ones at the top, and the more specialized ones
further down. In this section, we will consider a special tree-like data structure
that we call a for representing sentences in a description logic KB. This
taxonomy will allow us to answer queries like the above much more efficiently,
requiring time that in many cases grows linearly with the depth of the taxonomy. If
we assume that the taxonomy is an (approximately) balanced tree, the processing
will grow with the number of sentences in the KB. The net result:
it becomes practical to consider extremely large knowledge bases, with thousands
or even millions of concepts and constants.

The key observation is that subsumption is a partial order, and a taxonomy naturally
falls out of any given set of concepts. Assume that . . . are all the atomic
concepts that occur on the left-hand sides of = or sentences in KB. The resultant
taxonomy will have nodes for each of the , and edges from up to , whenever
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is less general that , but not less general than anything more specific than .
This will produce a directed acyclic graph. The graph will have no redundant links
in it, and the transitivity of the links will capture all of the subsumption relationships
implied by the declarations defining . If we add to this the requirement that each
constant in KB be linked only to the most specific such that KB = ( ),
we have a hierarchical representation of KB that makes our key questions easier to
answer.

Once we have a taxonomy of concepts corresponding to some KB, we can con-
sider adding a sentence to the KB for some new atomic concept or constant. This
will involve creating some links from the new concept or constant to existing ones
in the taxonomy, and perhaps redirecting some existing links. This process is called

. Because classification itself exploits the structure of the taxonomy,
the process requires time that can be logarithmic in the size of the KB. Further-
more, we can think of building the entire taxonomy by classification: we start with
a single concept in the taxonomy, and then add new atomic concepts and
constants to it incrementally.

We begin by considering how to add a sentence ( = ) to a taxonomy where
is an atomic concept not appearing anywhere in the KB and is any concept:

1. We first calculate , the of , that is, the set of atomic
concepts in the taxonomy such that KB = ( ), but such that there is
no other than such that KB = ( ) and KB = ( ). We will see
how to do this efficiently below.

2. We next calculate , the of , that is, the set of
atomic concepts in the taxonomy such that KB = ( ), but such that
there is no other than such that KB = ( ) and KB = ( ). We
will also see how to do this efficiently.

3. If there is a concept in , then the new concept is already present
in the taxonomy under a different name (namely, ), and we have handled
this case.

4. Otherwise, if there are any links from concepts in up to concepts in , we
remove them, since we will be putting between the two groups.
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5. We add links from up to each concept in , and links from each concept
in up to .

6. Finally we handle constants: we calculate , the set of constants in the
taxonomy such that for every , KB = ( ), but such that there is no

such that KB = ( ). (This is done by doing intersections and
set differences on the sets of constants below concepts in the obvious way.)
Then, for each , we test if KB = ( ), and if so, we remove the
links from to the concepts in , and add a single link from up to .

To add a sentence ( ) to a taxonomy, the procedure is similar, but simpler.
Because is a new primitive, there will be no concepts or constants below it in
the taxonomy. So we need only link up to the most specific subsumers of .
Similarly, to add a sentence ( ), we again link up to the most specific
subsumers of .

Now, to calculate the most specific subsumers of a concept , we begin at the
very top of the taxonomy with the set as our first . Assume we have a list

of subsumers of . Suppose that some has at least one child immediately
below it in the taxonomy such that KB = ( ). Then we remove from and
replace it with all those children . We keep doing this until no element of has a
child that subsumes .

Observe that if we have an atomic concept below that does sub-
sume , then we will not use any other concept below this during the classifica-
tion. If is high enough in the taxonomy, like just below , an entire subtree
can be safely ignored. This is the sense in which the structure of the taxonomy
allows us to do classification efficiently even for very large knowledge bases.

Finally, to calculate the most general subsumees of a concept , we start with
the most specific subsumers as our first . Since is subsumed by the elements
of , we know that any concept that is below will be below the elements of as
well. Again, other distant parts of the taxonomy will not be used. Suppose that for
some it is not the case that KB = ( ). Then we remove from and
replace it with all the children of (or simply delete , if it has no children). We
keep doing this, working our way down the taxonomy, until every element of is
subsumed by . Finally, we repeatedly delete any that has a parent that is
also subsumed by .

Following this procedure, Figure 9.2 shows how a new concept, , de-
fined by the sentence ( = [ [ ]]), can
be classified, given a taxonomy that already includes appropriate definitions for
concepts like , , First, we calculate the most specific
subsumers of , . We start with = . Assume that none of the
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Figure 9.2: Classifying a new concept in a taxonomy

direct subsumees of except for subsume . Given that, and the
fact that ( ), we replace in the set by . The con-
cept is immediately below , and ( ), so we
then replace in with . Finally, we see that no child of
subsumes ( , not all surgeons are American specialists), so we have
computed the set of most specific subsumers, = .

Now we turn our attention to the most general subsumees. We start with
= = . It is not the case that ( ), so we replace

in with its one child in the taxonomy; now = .
Similarly, it is not the case that ( ), so we replace that
concept in with its children, resulting in = ,

. Then, since is not
subsumed by , and that concept has no children, it is deleted from . Fi-
nally, we see that it is the case that ( ), and we
are done, with = . As a result of this classification
process, the new concept, , is placed between the two concepts
and .
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9.5.3 Answering the questions
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If we construct, in the above manner, a taxonomy corresponding to a knowledge
base, we are left in a position to answer the key description logic questions quite
easily. To find all of the constants that satisfy a query concept, , we simply classify
, and then collect all constants at the fringe of the tree below . This would involve

a simple tree walk in only the part of the taxonomy subtended by . Similarly, to
find all atomic concepts that are satisfied by a constant , we start at and walk
up the tree, collecting all concept nodes that can be reached by following the links
representing subsumption.

The taxonomies we derive by classification in a description logic KB look a lot like
the hierarchies of frames we encountered in the preceding chapter. In the case of
frames, the KB designer could create the hierarchy in any arbitrary way desired,
simply by adding whatever and slot-fillers seemed appropri-
ate. However, with DL’s, the logic of concepts strictly dictates what each concept
means, as well as what must be above or below it in the resulting taxonomy. As
a result, we cannot just throw labeled nodes together in a hierarchy, or arbitrarily
change a taxonomy—we must honor the relationships implicit in the structures of
the concepts. A concept of the form [ [ ]. . . ] appear
in a taxonomy below , even if we originally constructed it to be the referent of

. If we at some point realized that that was an inaccurate rendition of ,
what would have to be changed is the association of the symbol with the
expression, changing it to perhaps [ [ ]. . . ]. But the
compound concept with in it could not possibly go anywhere in the taxonomy
but under .

Recall that in our Frames chapter (Chapter 8) we introduced the notion of
, whereby individual frames were taken to have values (and attached pro-

cedures) represented in parent frames somewhere up the generalization hierarchy.
The same phenomenon can be seen here with description logic taxonomies: a con-
stant in the taxonomy should be taken as having all properties (as expressed by

, , and ) that appear both on it locally (as part of the right-hand
side of the sentence where it was first introduced) as well as on any parent concept
further up the taxonomy.
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We will revisit this issue again in detail in Chapter 16.

lauren :Child rebecca ParentOfDocs

ParentOfDocs :Child Doctor

lauren ParentOfDocs
rebecca Woman

FemaleDoc Woman Doctor
FemaleDoc
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Inheritance here tends to be much simpler than inheritance found in most frame
systems, since it is —there are no exceptions permitted by the logic of the
concept-forming operators. It is important to note, though, that these inferences are
sanctioned by the logic, and issues of how to compute them using the taxonomy are
purely implementation considerations. We will return to a much richer notion of
inheritance in the next chapter.

Another important inference in practical description logic systems involves
the of properties to an individual caused by an assertion. We are
imagining, in other words, that we can add a sentence ( ) to the KB even
if we had already previously classified . This can then cause other constants
to be reclassified. For example, suppose we introduce Lauren with the sentence
( [ ]) and we define by

( = [ ])

Then as soon as it is asserted that ( ), we are forced to
conclude that Rebecca is a doctor. If we also knew that ( ), and
we had the atomic concept defined as [ ], then the
assertion about Lauren should result in Rebecca being reclassified as a .

This kind of cascaded inference is interesting in applications where membership
in classes is monitored, and changes in class membership are considered significant
(e.g., imagine we are monitoring the stock market and have classes representing
stocks whose values are changing in significant ways). It is also reminiscent of the
kind of cascaded computation we saw with frame systems, except that here again
the computations are dictated by the logic.

In this final section, we examine briefly how we can move beyond the simple picture
of description logics presented so far.

First, we consider some extensions to that would make it more useful. Each of
the extensions ends up having serious consequences for computing subsumption.
In many cases, it is no longer possible to use normalization and structure matching
to do the job; in some cases, subsumption can even be shown to be undecidable.

n
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Bounds on the number of role fillers:

Sets of individuals:

Relating the roles:

:BandMember john paul george ringo

:BandMember 4 :BandMember

Company :CEO :President

EXISTS

AT-MOST AT-MOST

AND EXISTS AT-MOST

ALL

AND FILLS AT-MOST ALL FILLS

ALL
EXISTS

ONE-OF
ALL

ALL ONE-OF

AT-MOST

SAME-AS
AND SAME-AS

SAME-AS

SAME-AS
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The construct is used to
say that a role has a minimum number of fillers. We can think of the dual operator

where [ ] describes individuals related by role to
individuals. This seemingly small addition to in fact allows a wide range of

new inferences. First of all, we have descriptions like

[ [ 4 ] [ 3]]

which are in that their extension is guaranteed to be the empty set.
Moreover, a simple concept like [ ] now subsumes one like

[ [ ] [ 1] [ ] [ ]]

even though there is no obvious structure to match.
We should also note that as soon as inconsistency is allowed into the language,

computation gets complex. Besides the difficulties with structure-matching noted
above, normalization suffers also. For example, if we have found to be inconsis-
tent, then although [ ] is not inconsistent by itself, the result of conjoining
it with [ 1 ] is inconsistent, and this would need to be detected during
normalization.

Another important construct would package up a set of
individuals into a set concept, which could then be used, for example, in restricting
the values of roles. [ . . . ] would be a concept that could only be
satisfied by the . In an restriction, we might find such a set:

[ [ ]]

would represent the concept of something whose band members could only be taken
from the specified set. Note that such a combination would have consequences for
the cardinality of the role, implying [ ],
although it would imply nothing about the minimum number of band members.

While we have discussed classes of objects with internal
structure (via its roles), we have ignored a key ingredient of complex terms—how
the role fillers actually interrelate. A simple case of this is when fillers for two roles
are required to be identical. Consider a construct [ ], which equates
the fillers of and . [ [ ]] would thus
mean a company whose CEO was identical to its President. Despite its apparent
simplicity, without some restrictions, makes subsumption very difficult
to compute. This is especially true if we allow a very natural extension to the

construct—allowing it to take as arguments of roles, rather than
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:Mother :Sister :Father :Partner :Lawyer

2 :Child Female

:Parent
:Child

RedBordeauxWine Wine
:Color red
:Region bordeaux

DryRedBordeauxWine Wine
:Color red
:Region bordeaux
:SugarContent dry

RedBordeauxWine

RedBordeauxWine
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single roles. In that case, [ ( )( )]
would represent something whose mother’s sister is its father’s partner’s lawyer.
Computation can be simplified by restricting to chains of “features” or
“attributes”—roles that have exactly one filler.

Another natural extension to is what has
been called a “qualified number restriction.” [ ] would allow us to
represent something that is -related to individuals who are also instances of .
For example, [ ] would represent someone with at least
two daughters. This is a very natural and useful construct, but causes surprising
computational difficulties, even if the rest of the language is kept very simple.

So far we have taken roles to be primitive atomic constructs.
It is plausible to consider a logic of roles reminiscent of the logic of concepts. For
example, some description logics have role-forming operators that construct

(much like over concepts). This would imply a role taxonomy
akin to the concept taxonomy. Another extension that has been explored is that of

. If we have introduced a role like , it is quite natural to think
of introducing to be defined as its inverse.

In , there is no way to that all instances of one concept are
also instances of another. Consider, for example, the concept of a red Bordeaux
wine, which we might define as follows:

( = [
[ ]
[ ]]).

We might also have the following concept:

( = [
[ ]
[ ]
[ ]]),

These two concepts are clearly not equivalent. But suppose that we want to assert
that all red Bordeaux wines are in fact dry. If we were to try to do this by using
the second concept above as the definition of , we would be
saying in effect that red Bordeaux wines are dry . In this case, the
status of the first concept would be unclear: should the subsumption relation be
changed somehow so that the two concepts end up being equivalent? To avoid this
difficulty, we can keep the original definition of , but extend
with a simple form of , which capture universal assertions. A rule will have
an atomic concept as its antecedent, and an arbitrary concept as its consequent:
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( [ ])

Rules of this sort give us a new and quite useful form of propagation: a constant gets
classified, then inherits rules from concepts that it satisfies, which then are applied
and yield new properties for the constant (and possibly other constants), which
can then cause a new round of classification. This is reminiscent of the triggering
of procedures in frame systems, except that the classification is done
automatically.

We now turn our attention to how description logic systems can be utilized in prac-
tical applications.

One mode of use is the exploration of the consequences
of axiomatizing a domain by describing it in a concept hierarchy. In this scenario,
we generate a taxonomy of useful general categories, and then describe individuals
in terms of those categories. The system then classifies the individuals according
to the general scheme, and propagates to related individuals any new properties
that they should accrue. We might then ask if a given individual satisfies a certain
concept, or we might ask for the entire set of individuals satisfying a concept.

This would be appealing in a situation where a catalogue of products was de-
scribed in terms of a complex domain model. The system may be able to determine
that a product falls into some categories unanticipated by the user.

Another situation in which this style of interaction is important involves config-
uration of complex structured items. Asserting that a certain board goes in a certain
slot of a computer hardware assembly could cause the propagation of constraints
to other boards, power supplies, software, . The domain theory then acts as a
kind of object-oriented constraint propagator. One could also ask questions about
properties of an incrementally evolving configuration, or even “what if” questions.

Configuration-style applications
can also make good use of contradiction-detection facilities for those DLs that have
enough power to express them. In particular, as an incremental picture of the con-
figured assembly evolves, it is useful to detect when a proposed part or subassembly
violates some constraint expressed in the knowledge base. This keeps us from mak-
ing invalid configurations. It is also possible to design explanation mechanisms so
that the reasons for the violation can be outlined to the user.

In a
similar way, some of the inferential properties of a description logic system can be
used as partial validation during knowledge acquisition. As we add more concepts
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or constants to a DL knowledge base, a DL system will notice if any inconsistencies
are introduced. This can alert us to mistakes. Because of its classification property,
a DL can alert us to certain failures of domain modeling in a way that frame systems
cannot, for example, the unintended merger of two concepts that look different on
the surface but which mutually subsume one another, or the unintended classifica-
tion of a new item below one that the user had not expected.

In some applications,
it is normal to build the description of an individual incrementally over time. This
might be the case in a diagnosis scenario, where information about a suspected
fault is gathered in pieces, or in a situation with a hardware device sending a stream
of status and error reports. Such an incremental setting leads one to expect the
refinement of classifications of individuals over time. If we are on the lookout for
members of certain classes (e.g., ), we can alert a user when new
members for those classes are generated by new data. We can also imagine actions
(external procedures) being triggered automatically when such class members are
found. While this begins to sound like the sort of operation done with a procedu-
ral system, in the case of a DL, the detection of interesting situations is handled
automatically once the situation is described as a concept.

The above scenario is somewhat
reminiscent of a common use of production systems; in situations where the de-
scription logic language is expressive enough, a DL could in fact be used entirely
to take the place of a production system. In other cases, it may be useful to preserve
the power and style of a production system, but a DL might provide some very
useful added value. In particular, if the domain of interest has a natural object-
oriented, hierarchical structure, as so many do, a true picture of the domain can
only be achieved in a pure production system if there are explicit rules capturing
the inheritance relationships, part-whole relationships, etc. An alternative would
be to use a DL as the working memory. The DL would encode the hierarchical
domain theory, and take care of classification and inheritance automatically. The
production system could then restrict its attention to complex pattern detection and
action—where it belongs—with its rules represented at just the right, natural level
(the antecedents could refer to classes at any level of a DL generalization hierarchy),
avoiding any attempts to encode inheritance or classification procedurally.

It is possible to think of a
concept as a query asking for all of its instances. Imagine we have “raw” data stored
in a relational database system. We can then develop an object-oriented model of
the world in our DL, and specify a mapping from that model to the schema used in
the conventional DBMS. This would then allow us to ask questions of a relational
database mediated by an object-oriented domain model. One could implement such
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a hybrid system either by pre-classifying in the KB all objects from the DB and
using classification of a DL query to find answers, or leaving the data in the DB
and dynamically translating a DL query into a DB query language like SQL.

1. In this chapter, we considered the semantics of a description logic language
that includes concept-forming operators such as and , but no
role-forming operators. In this question, we extend the language with new
concept-forming operators and role-forming operators.

(a) Present a formal semantics in the style of the text for the following
concept-forming operators:

[ ] Role existence.
Something with at least 1

[ ] Maximum role cardinality.
Something with at most ’s.

(b) Do the same for the following role-forming operators:

[ ] Role inverse.
So the role could be defined as [ ].

[ . . . ] Role composition.
The ’s of the ’s . . . of the ’s.
So [ [ ] ] would mean
something all of whose uncles are rich (where an uncle is a brother-
in-law of a parent).

(c) Use this semantic specification to show that for any roles and
the concept

[ [ ] [ ]]

subsumes the concept

[ [ [ [ 2 ]] [ [ 2 ]]]]

by showing that the extension of the latter concept is always a subset
of the extension of the former.
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2. Consider a new concept-forming operator, which takes two argu-
ments, each of which can be a (a sequence of one or more roles).
The description [ ( . . . ) ( . . . )] is intended to apply to an
individual whose ’s of its ’s of its . . . of its ’s are a subset of its ’s
of its ’s of its . . . of its ’s. For example,

[ ( ) ( )]

would mean “something whose friends of its brothers are among the enemies
of its sisters.”

(a) Give a formal semantics for in the style of the text.

(b) Use this semantics to show that for any roles , the concept

[ ( ) ( )]

subsumes the concept

[ [ ( ) ( )] [ [ ( ) ( )]]]

(c) Does the subsumption also work in the opposite direction (that is, are
the two concepts equivalent)? Show why or why not.

(d) Construct an interpretation that shows that neither of the following two
concepts subsumes the other:

[ ( ) ( )]

and
[ ( ) ( )]

3. The procedure given in Section 9.5.2 for finding the most general subsumees
of a concept says at the very end that we should remove any

that has a parent that is also subsumed by . Explain why this is necessary
by presenting an example where the procedure would produce an incorrect
answer without it.

4. When building a classification hierarchy, once we have determined that one
concept subsumes another it is often useful to calculate the
between the two: the concept that needs to be conjoined to to produce
As a trivial example, if we have
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= [ [ ]]
= [ [ ] [ ] ]

then the difference in question is [ ] since is equivalent to

[ [ ]]

(a) Implement and test a procedure which takes as arguments two concepts
in the following simple language, and when the first subsumes the sec-
ond, returns a difference as above. You may assume that your input is
well-formed. The concept language to use is

< > ::= [ < > . . . < >]
< > ::= [ < > < >]
< > ::= < >
< > ::= < >

with the semantics as presented in the text.

(b) The above definition of “difference” is not precise. If all we are after
is a concept such that is equivalent to [ ], then itself
would qualify as the difference, since is equivalent to [ ],
whenever subsumes Make the definition of what your program
calculates precise.

5. For this question, you will need to write, test and document a program that
performs normalization and subsumption for a description logic language.
The input will be a pair of syntactically correct expressions encoded in a list-
structured form. Your system should output a normalized form of each, and
a statement of which subsumes the other, or that neither subsumes the other.

The description language your program needs to handle should contain the
concept-forming operators , , and (as described in the text),

(as used in Question 1), but no role-forming operators, so that roles
are all atomic. You may assume that all named concepts and roles other than

and are primitive, so that you do not have to maintain a symbol
table or classification hierarchy. Submit output from your program working
on at least the following pairs of descriptions

(1) [ [ ]]
(2) [ [ ]]

(1) [ 0 ]
(2) [ 2 ]
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(1) [ [ [ 3 ]]
[ [ [ ]

[ 2 ]]]]
(2) [ [ ]]

(1) [ 1 ]
(2) [ [ 2 ] [ ]]

(1) [ 1 ]
(2) [ [ 2 ] [ ]]

(1) [ [ [ 0 ]]
[ ]]

(2) [ [ 0 ]
[ [ 3 ]]]

6. This question involves writing and running a program to do a simple form of
normalization and classification, building a concept hierarchy incrementally.
We will use the very simple description language specified by the grammar
in Question 4a. The atomic concepts here are either primitives or the names
of previously classified descriptions.

There are two main programs to write: NORMALIZE and CLASSIFY.

NORMALIZE takes a concept description as its single argument, and returns
a normal form description: an expression where every argument is ei-
ther a primitive atom or an expression whose concept argument is itself
in normal form. Within this , primitives should occur at most once,
and expressions with the same role should be combined. Non-primitive
atomic concepts need to be replaced by their definitions. (It may simplify the
code to leave out the atoms and within normalized descriptions,
and just deal with the lists.)

CLASSIFY should take as its argument, an atom, and a description. The idea
is that a new concept of that name is being defined, and CLASSIFY should
first link the name to a normalized version of the description as its definition.
CLASSIFY should then position the newly defined concept in a hierarchy of
previously defined concepts. Initially, the hierarchy should contain a single
concept named . Subsequently, all new concepts can work their way
down the hierarchy to their correct position starting at , as explained in
the text. (Something will need to be done if there is already a defined concept
at that position).
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As we saw in previous chapters on frames and description logics, when we think
about the world in an object-centered way, we inevitably end up thinking in terms of

. This reflects the importance of abstraction, classification, and general-
ization in the enterprise of knowledge representation. Groups of things in the world
naturally share properties, and we talk about them most concisely using words for
abstractions like “furniture” or “situation comedy” or “seafood.” Further, hierar-
chies allow us to avoid repeating representations—it is sufficient to say that “ele-
phants are mammals” to immediately know a great deal about them. Taxonomies
of kinds of objects are so fundamental to our thinking about the world that they are
found everywhere, especially when it comes to organizing knowledge in a com-
prehensible form for human consumption, in encyclopedias, dictionaries, scientific
classifications, and so on.

The centrality of taxonomy means that the idea of that we
saw with frames and description logics is also fundamental to knowledge repre-
sentation. In the kind of classification networks we built using description logics,
inheritance was just a way of doing logical reasoning in a graphically-oriented form:
if we have a network where the concept is directly below ,
which is directly below , then inherits properties from

because logically all instances of are instances of
and all instances of are instances of . Similar consid-

erations apply in the case of frames, although the reasoning there is not strict: if
the slot of frame points to and

points to , then may inherit
properties from and in turn from ,
but we are no longer justified in concluding that an instance of
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Figure 10.1: Inheritance reasoning is path reasoning

. . . .
. . . .

. . . .
.

must be an instance of . In both cases, however, “can inherit
properties from ?” involves asking if is in the transitive closure of some sort of
generalization relation from . As illustrated in Figure 10.1, this amounts to asking
if there is a of connections from to .

Many interesting considerations arise even when we just focus our attention on
where the information comes from in a network of frames or concepts like this. In
order to highlight the richness of path-based reasoning in networks, in this chap-
ter we are going to concentrate just on inheritance and transitivity relations among
nodes in a network. While the networks we will use will suppress a great deal
of representational detail, it is important to keep in mind that they are merely the
backbones of inheritance hierarchies expressing generalization relationships among
frames or concepts. Because the nodes in these networks stand for richly structured
frames or concepts, inheritance reasoning complements the other forms of reason-
ing we have covered in previous chapters. Inheritance reasoning is also the core of
the much more complex default reasoning that we will explore in detail in the next
chapter.

In this chapter, we reduce the frames and descriptions of previous chapters to simple
that appear in , like the one expressed in the graph in

Figure 10.2. We will use the following concepts in our discussion:
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Figure 10.2: A simple inheritance network

in the network, connecting one node directly to another. In the figure,
and are the two edges. These represent

or subsumption relations.

included in the network; a path is a sequence of one or more edges. In
the figure, the edges mentioned above are also paths, as is

.

supported by the paths. In this figure, these conclusions are sup-
ported: ; ; . These con-
clusions are supported because the edges represent or subsumption re-
lations, and these relations are transitive.

Finally, note that for our discussion here we treat object-like concepts, like
, and properties, like , equivalently as nodes. If we wanted to be more

precise, we could use terms like (for a whose role was filled
with the individual ), but for purposes of this exposition that is not really nec-
essary. Also, we normally do not distinguish which nodes at the bottom of the
hierarchy stand for individuals like , and which stand for kinds like .
We will capitalize the names of both.

Before getting into some of the interesting complications with inheritance net-
works, we should look at some simple configurations of nodes and basic forms of
inheritance.

1

1
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As we will see more precisely in Section 10.3, when a network contains negative edges, a path
is considered to be zero or more edges followed by a single positive or negative edge.
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Figure 10.3: Strict inheritance in a tree

The simplest form of inheritance is the kind used in description logics and other
systems based on classical logic: inheritance. In a strict inheritance network,
conclusions are produced by the complete transitive closures of all paths in the
network. Any traversal procedure for computing the transitive closure will do for
determining the supported conclusions.

In a tree-structured strict inheritance network, inheritance is very simple. As
in Figure 10.3, all nodes reachable from a given node are implied. In this figure,
supported conclusions include the fact that Ben is gray, and that Clyde is gray.

In an inheritance network that is a (DAG), the results
are the same as for strict inheritance: all conclusions you can reach by any path
are supported. This includes conclusions found by traversing different branches
upward from a node in question. Figure 10.4 illustrates a strict DAG. It says that
Ernest is both a student and an employee. The network supports the conclusions
that Ernest is an academic, as well as a taxpayer, and salaried.

Note that in this figure we introduce a negative edge with a bar through it,
between and , standing roughly for “is-not-a” or “is-not.” So edges
in these networks have —positive or negative. Thus the conclusion that
Ernest is not illiterate is supported by the network in the figure.
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Figure 10.4: Strict inheritance in a DAG

Inheritance in directed acyclic networks is often called “multiple inheritance”
when a node has more than one parent node; in such cases, because of the meaning
of the edges, the node must inherit from all of its parents.

In our study of frame systems, we saw numerous illustrations of a non-strict in-
heritance policy. In these representations, inherited properties do not always hold;
they can be , or overridden. This is most obviously true in the case of

facets for slots, such as the default origin of one of my trips. But a
closer examination of the logic of frame systems such as those that we covered in
Chapter 8 would suggest that in fact virtually properties (and procedures) can be
overridden (one exception is the facet we discussed briefly). We call
the kind of inheritance networks in which properties can be defeated, “
inheritance networks.”

In a defeasible inheritance scheme, conclusions are determined by searching up-
ward from a —the one about which we are trying to draw a conclusion—
and selecting the first version of the property being considered. An example will
make this clear. In Figure 10.5, there is an edge from to , and one
from there to . There is also, however, a negative edge from directly to

. This network is intended to capture the knowledge that while elephants in
general are gray, Clyde is not. Intuitively, if we were trying to find what conclu-
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Figure 10.5: Defeasible inheritance

sion this network supported about Clyde’s color, we would first find the negative
conclusion about , since that is directly asserted of .

In general, what will complicate defeasible reasoning, and what will occupy us
for much of this chapter, is the fact that different paths in a network can support
conflicting conclusions, and a reasoning procedure needs to decide which conclu-
sion should prevail, if any. In the above example, there is an argument for Clyde
being gray: he is an elephant and elephants are gray; however, there is a “better”
argument for concluding that he is not gray, since this has been asserted of him
specifically.

Of course, we expect that in some cases we will not be able to say which conclu-
sion is better or worse. In Figure 10.6 there is nothing obvious that tells us how to
choose between the positive or negative conclusions about Nixon’s pacifism. The
network tells us that by virtue of his being a Quaker he is a pacifist; it also tells us
that by virtue of his being a Republican, he is not. This type of network is said to
be .

When exploring different accounts for reasoning under this kind of circum-
stance, we typically see two types of approaches: accounts allow us to
choose arbitrarily between conclusions that appear equally well supported;

accounts are more conservative, often accepting only conclusions that are not
contradicted by other paths. In the above case, a credulous account would in essence
flip a coin and choose one of or , since either
conclusion is as good as the other. A skeptical account would draw no conclusion
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Figure 10.6: Is Nixon a pacifist, or not?

about Nixon’s pacifism.

For DAGs with defeasible inheritance, we need a method for deciding which con-
clusion to choose (if any) when there are contradictory conclusions supported by
different paths through the network. In this section, we examine two possible ways
of doing this informally, before moving to a precise characterization of inheritance
reasoning in the next section.

Figure 10.7 shows two examples of defeasible inheritance networks that produce
intuitively plausible conclusions. In the one on the left, we see that while Royal
Elephants are elephants, and elephants are (typically) gray, Royal Elephants are
not. Since Clyde is a Royal Elephant, it would be reasonable to assume he is not
gray.

To decide this in an automated way, the says that we
should prefer conclusions resulting from shorter paths in the network. Since there
are fewer edges in the path from to that includes the negative edge than
in the path that includes the positive edge, the negative conclusion prevails.
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Clyde
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Mammal
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BabyBeluga AquaticCrea-
ture

Gray Gray

A similar consideration arises in probabilistic reasoning in Chapter 12 regarding choosing what
is called a “reference class”: our degree of belief in an individual having a certain property depends
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Figure 10.7: Shortest path heuristic

In the network on the right, we see the opposite polarity conclusion being sup-
ported. Whales are mammals, but mammals are typically not aquatic creatures.
Whales are exceptional in that respect, and are directly asserted to be aquatic crea-
tures. We infer using the shortest path heuristic that is an

.
The intuition behind the shortest path heuristic is that it makes sense to inherit

from the most specific subsuming class. If two superclasses up the chain disagree
on a property (e.g., vs. ), we take the value from the more specific one,
since that is likely to be more directly relevant.
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10.2.2 Problems with shortest path

10.2.3 Inferential distance

on the most specific class he belongs to for which we have statistics.
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Notice then, that in defeasible inheritance networks, not all paths count in gen-
erating conclusions. It make sense to think of the paths in the network as
in support of conclusions. Some arguments are by others. Those that
are not we might call “admissible.” The inheritance problem, then, is “What are
the admissible conclusions supported by the network?”

While intuitively plausible, and capable of producing correct conclusions in many
cases, the shortest path heuristic has serious flaws. Unfortunately, it can produce
incorrect answers in the presence of redundant edges—those that are already im-
plied by the basic network. Look at the network in Figure 10.8. The edge labeled
is simply redundant, in that it is clear from the rest of the network that Clyde is un-
ambiguously an elephant. But by creating an edge directly from to
we have inadvertently changed the polarity of the conclusion about Clyde’s color!
The path from to that goes through edge is now shorter (length=2)
than the one with the negative edge from to (length=3). So the
inclusion of an edge that is already implicitly part of the network undermines the
shortest path heuristic.

Another problem with the shortest path heuristic is the fact that the length of
a path through the network does not necessarily reflect anything salient about the
domain. Depending on the problem or application, some paths may describe object
hierarchies in excruciating detail, while others may be very sketchy. There is no
reason that just because an inheritance chain makes many fine-grained distinctions
there should be a bias against it in drawing conclusions. Figure 10.9 illustrates in
a somewhat extreme way how this causes problems. The left-hand path has a very
large number of nodes in it, and ends with a positive edge. The right-hand path has
just one more edge, and ends with a negative edge. So for this network, the short-
est path heuristic supports the positive conclusion. But if we were to add another
two edges—anywhere in the path—to the left-hand side, the conclusion would be
reversed. This seems rather silly; the network should be considered ambiguous in
the same manner as the one in Figure 10.6.

Shortest path is what is considered to be a , which allows us to
make admissibility choices among competing paths. It tries to provide a

, matching our intuition that more specific information about an item is

H
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Figure 10.8: Shortest path in the face of redundant links

more relevant than information more generally true about a broader class of items
of which it is a member.

As we have seen, shortest path has its problems. Fortunately, it is not the only
possible specificity criterion. A more plausible strategy would be to use

, which rather than being linear distance-based, is topologically based.
Consider Figure 10.8 once again. Starting at the node for , we would like

to say that is more specific than despite the redundant edge
because there is a path to that passes through . Because

it is more specific, we then prefer the negative edge from to
over the positive one from to . More generally, a node is considered
nearer to node than to node according to inferential distance iff there is a path
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10.3 A formal account of inheritance networks
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Figure 10.9: Very long paths

...

...

...

.

...

...

...

.

from to through , regardless of the actual length of any paths from to and
to .

This criterion handles the earlier simple cases of inheritance from Figure 10.7.
Furthermore, in the case of the ambiguous network of Figure 10.9, inferential dis-
tance prefers neither conclusion, as desired.

Unfortunately, inferential distance has its own problems. What should happen,
for example, when the path from through to is itself contradicted by another
path? Rather than attempt to patch the definition to deal with such problematic
cases, we will consider a different formalization of inheritance that incorporates a
version of inferential distance as well as other reasonable accounts of defeasible
inheritance networks.

The discussion above was intended to convey some of the intent and issues behind
defeasible inheritance networks, but was somewhat informal. The ideas in these
networks can be captured and studied in a much more formal way. We here briefly
present one of the clearer formal accounts of inheritance networks (there are many
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that are impenetrable), owing to Lynn Stein.

An = is a directed, acyclic graph with
positive and negative edges, intended to denote “(normally) is-a” and
“(normally) is-not-a,” respectively ( are the nodes, or vertices, in the
graph; are the edges). Positive edges will be written as ( ) and
negative edges will be written as ( )

A is a sequence of one or more positive edges . . . .
A is a sequence of zero or more positive edges followed
by a single negative edge: . . . . A is either a positive or
negative path.

Note that there are no paths with more than one negative edge, although a negative
path could have no positive edges ( , be just a negative edge).

A path (or ) supports a in the following ways:

. . . supports the conclusion ( is an );

. . . supports the conclusion ( is not an ).

A single conclusion can be supported by many arguments. However, not all argu-
ments are equally believable. We now look at what makes an argument prevail,
given other arguments in the network. This stems from a formal definition of ad-
missibility:

. . . ( ) if the corresponding set of edges
are in , and it is according to the definition below. The
hierarchy (or ) if it supports some
corresponding path between and .

A path is if every edge in it is admissible.

An edge ( ) is if there is a positive path
. . . ( 0) in and

1. each edge in . . . is admissible in w.r.t. (recursively);

2. no edge in . . . is redundant in w.r.t. (see below);

3. no intermediate node . . . is a preemptor of ( ) w.r.t.
(see below).



www.manaraa.com

1

1

--- ssss

Γ

Γ

Γ
Γ

i

m

m

i

10.3.1 Extensions

the edge under
consideration



� � � � � �:

� : 2 � 2

�

� � � � 2 �

� � �

� :

� :

� :

2003 R. Brachman and H. Levesque July 17, 2003

Whale Mammal AquaticCreature
Whale BlueWhale

xvsa

a

a

y a y v v x v x

a y x E y x E

b w a

b t t w E m

b t t a

c i c t a

c c w a

q

b w

preemptor of w.r.t.

redundant in w.r.t. node

extension

c 197

Figure 10.10: Basic path situation for formalization

...... ......

So, an edge is admissible with respect to if there is a nonredundant, admissible
path leading to it from that contains no preempting intermediaries. This situation
is sketched in Figure 10.10.

The definitions of preemption along a path and of redundancy will complete the
basic formalization:

A node along path . . . . . . is a ( )
if ( ). For example, in Figure 10.11, the node

preempts the negative edge from to
with respect to both and .

A positive edge is if there is some
positive path . . . ( 1) for which

1. each edge in . . . is admissible in w.r.t. (i.e., none
of the edges are themselves preempted);

2. there are no and such that is admissible in w.r.t. ;

3. there is no such that is admissible in w.r.t. .

By this definition, the edge labeled in Figure 10.11 is redundant.
The definition of redundancy for a negative edge is analogous to the

above.

Now that we have covered the basics of admissibilityand preemption, we can finally
look at how to calculate what conclusions should believed given an inheritance
network. As we noted in Section 10.1.2, we do not expect an ambiguous network
to specify a unique set of conclusions. We use the term to mean a possible
set of beliefs supported by the network. Ambiguous networks will have multiple
extensions. More formally, we have the following:
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Figure 10.11: A preempting node

( = )

( = )

( = )

is iff for every node in , there is a path from to ,
and for every edge ( ) in , there is a positive path from to .
In other words, every node and edge is reachable from .

is (potentially) if there is some node
such that both . . . and . . . are paths.

A of an inheritance hierarchy with respect to a
node is a maximal unambiguous -connected subhierarchy of with
respect to .

So if is a credulous extension of , then adding an edge of to makes
either ambiguous or not -connected.

Figure 10.12 illustrates an ambiguous network, and Figure 10.13 shows its two
credulous extensions. Note that adding the edge from to in
the extension on the left would cause that extension to no longer be -connected
(where is ), because there is no positive path from to .
Adding the edge from to in the extension on the left, or the
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Figure 10.12: An ambiguous network

edge from to in the extension on the right, would make the
extensions ambiguous. Thus, both extensions in the figure are credulous extensions.

Credulous extensions do not incorporate any notion of admissibility or preemp-
tion. For example, the network of Figure 10.5 has two credulous extensions with
respect to node . However, given our earlier discussion and our intuition about
reasoning about the natural world, we would like our formalism to rule out one of
these extensions. This leads us to a definition of extensions:

Let and be credulous extensions of w.r.t. a node . is
to iff there are nodes and such that

and agree on all edges whose endpoints precede topolog-
ically,

there is an edge (or ) that is in , and

this edge is in but not in .

A credulous extension is a if there is no other cred-
ulous extension that is preferred to it.

Γ

�

a v x
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10.3.2 Some subtleties of inheritance reasoning
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Figure 10.13: Two credulous extensions

The key part of this definition is that it appeals to the notion of admissibility defined
above. So, for example, for the shown in Figure 10.5, the extension on the left in
Figure 10.14 is a preferred extension, while the one on the right is not. If we use the
assignment = , = , and = , we can see that the two extensions
agree up to , but the edge is not admissible because it has
a preemptor, , and that edge is in extension on the right but not on the left.

While we have detailed some reasonable formal definitions that allow us to distin-
guish between different types of extensions, an agent still needs to make a choice
based on such a representation of what actually to believe. The extensions offer
sets of consistent conclusions, but one’s attitude towards such extensions can vary.
Different forms of reasoning have been proposed based on the type of formalization
we have presented here:

: choose a preferred extension, perhaps arbitrarily, and
believe all of the conclusions supported by it.
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Figure 10.14: A preferred credulous extension

: believe the conclusions supported by any path that is
present in all preferred extensions.

: believe the conclusions that are supported by
all preferred extensions. This is subtly different from skeptical reasoning
as above, in that these conclusions may be supported by different paths in
each extension. One significant consequence of this is that ideally skeptical
reasoning cannot be computed in a path-based way.

One final point to note is that our emphasis in this chapter has been on “up-
wards” reasoning—in each case, we start at a node and see what can be inherited
from its ancestor nodes further “up” the tree. There are actually many variations
on this definition, and none has emerged as the agreed upon, or “correct” one. One
alternative, for example, looks from the top and sees what propagates downward
through the network.

In Chapter 11, we will reconsider in more general logical terms the kind of
defeasible reasoning seen here in inheritance networks. We will study some very
expressive representation languages for this that go well beyond what can be repre-
sented in a network. While these languages have a clear logical foundation, we will
see that it is quite difficult to get them to emulate in a convincing way the subtle
path-based account of reasoning we have investigated here.
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In the exercises below, we consider three collections of assertions:

For each collection, the questions are the same (and see the follow-up Question 1
in Chapter 11):

1. Represent the assertions in an inheritance network.

2. What are the credulous extensions of the network?

3. Which of them are preferred extensions?

4. Give a conclusion that a credulous reasoner might make but that a skeptical
reasoner would not.

5. Are there conclusions where a skeptical reasoner and an ideally skeptical
reasoner would disagree given this network.

George is a Marine.
George is a chaplain.
A Marine is typically a beer drinker.
A chaplain is typically not a beer drinker.
A beer drinker is typically overweight.
A Marine is typically not overweight.

Polly is a platypus.
Polly is an Australian animal.
A platypus is typically a mammal.
An Australian animal is typically not a mammal.
A mammal is typically not an egg layer.
A platypus is typically an egg layer.

Dick is a Quaker.
Dick is a Republican.
Quakers are typically pacifists.
Republicans are typically not pacifists.
Republicans are typically pro-military.
Pacifists are typically not pro-military.
Pro-military (people) are typically politically active.
Pacifists are typically politically active.
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11.1 Introduction

Dog fido
Carnivore fido

fido

Dog Carnivore

Carnivore fido

The construction is as follows: take any model = of the KB that does not satisfy the
above universal. So there is a dog in that is not a carnivore. Let = be just like

In Chapter 8 on Frames, the kind of reasoning exemplified by the inheritance of
properties was actually a simple form of , where a slot was as-
sumed to have a certain value unless a different one was provided explicitly. In
Chapter 10 on inheritance, we also considered a form of default reasoning in hier-
archies. We might know, for example, that elephants are gray, but understand that
there could be special kinds of elephants that are not. In this chapter, we look at this
form of default reasoning in detail and in logical terms, without tying our analysis
either to procedural considerations or to the topology of a network as we did before.

Despite the fact that FOL is an extremely expressive representation language, it is
nonetheless restricted in the patterns of reasoning it admits. To see this, imagine
that we have a KB in FOL that contains facts about animals of various sorts, and
that we would like to find out whether a particular individual, Fido, is a carnivore.
Assuming that the KB contains the sentence ( ), there are exactly two ways
to get to the conclusion ( ):

1. the KB contains other facts that use the constant explicitly;

2. the KB entails a universal of the form ( ) ( ).

It is not too hard to see that if neither of these two conditions are satisfied, the
desired conclusion simply cannot be derived: there is a logical interpretation that
satisfies the KB but not ( ). So it is clear that if we want to deduce
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except that [ ] = . Since KB contains no facts other than ( ) that mention , still
satisfies KB, but satisfies ( )

each and every

all
in general

Violins have four strings

not

All violins have four strings

All violins that are not or or or have four strings

All violins have four strings except those that do not
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something about a particular dog that we know nothing else about, the only option
available to us in FOL is to use what we know about dog. In general,
to reason from ( ) to ( ) in FOL where we know nothing else about itself, we
need to use what is known to hold for all instances of .

So what is the problem? It is this: all along, we have been imagining that we will
build a KB that contains facts about a wide variety of topics, somewhat like an
encyclopedia. There would be “entries” on turtles, violins, wildflowers, and ferris
wheels as in normal encyclopedias, as well as entries on more mundane subjects,
like grocery stores, birthday parties, rubber balls, and haircuts. Clearly, what we
would like to say about these topics goes beyond facts about particular cases of
turtles or violins. The troublesome fact of the matter is that although we may have
a great deal to write down about violins, say, almost none of it applies to violins.
The problem is how to express what we know about the topics using
FOL, and in particular, using universal quantification.

We might want to state, for example, that

to distinguish them from guitars, which have six. But we most assuredly do
want to state that

since, obviously, this would rule out a violin with a string added or removed. One
possible solution is to to attempt to enumerate the conditions under which violins
would not have four strings:

. . .

where the state the various exceptional cases. The problem is to characterize
these cases. We would need to cover at least the following: natural manufacturing
(or genetic) varieties, like electric violins; cases in exceptional circumstances, like
violins that have been modified or damaged; borderline cases, like miniature toy
violins; imagined cases, like multi-player violins (whatever they might be); and so
on. Because of the range of possibilities, we are almost reduced to saying
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In Chapter 12 we consider ways of dealing with this issue numerically. Here our approach is
qualitative.
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—a true but quite pointless universal.
This is obviously not just a problem with the topic of violins. When we say that

lemons are yellow and tart, that polar bears are white and live in Arctic regions, that
birds have wings and fly, that children sing “Happy Birthday” at birthday parties,
that banks are closed on Sundays, and on and on, we do not mean to say that such
sentences hold of each and every instance of the corresponding class. And yet the
facts are true; it would be wrong to say that at birthday parties, children sing “Oh!
Susanna,” for example.

So we need to distinguish between , properties that do hold for all
instances, easily expressible in FOL, and , properties that hold “in general.”
Much of our common-sense knowledge of the world appears to be concerned with
generics, so it is quite important to consider formalisms that go beyond FOL in
allowing us to handle general, but not truly universal, knowledge.

Assuming we know that dogs are, generally speaking, carnivores, and that Fido is
a dog, under what circumstances is it appropriate to infer that Fido is a carnivore?
The answer we will consider in very general terms is this:

Given that a is generally a , and given ( ), it is reasonable to
conclude ( ) unless there is an explicit reason not to.

This answer is unfortunately somewhat vague: exactly what constitutes a good
reason not to conclude something? Different ways of making this precise will be
the subject of the rest of the chapter.

One thing to notice, however, is that if absolutely nothing is known about the
individual except that it is an instance of , then we should be able to conclude
that it is an instance of , since there can be nothing that would urge us not to. When
we happen to know that a polar bear has been rolling in the mud, or swimming in
an algae-ridden pool, or playing with paint cans, then we may not be willing to
conclude anything about its color; but if we know is that the individual is a
polar bear, it seems perfectly reasonable to conclude that it is white.

Note, however, that just because we don’t know that the bear has been black-
ened by soot, for example, doesn’t mean that it hasn’t been. The conclusion does
not have the guarantee of logical soundness; everything else we believe about polar
bears could be true without this particular bear being white. It is only a reasonable
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. That is to say, if we are pressed for some reason to come to some decision
about its color, white is a reasonable choice. In general, this form of reasoning,
which involves applying some general though not universal fact to a particular in-
dividual is called .

We do not want to suggest, however, that the only source of default reasoning
has to do with general properties of kinds like violins, polar bears, or birthday par-
ties. There are a wide variety of reasons for wanting to conclude ( ) given ( )
even in the absence of true universal quantification. Here are some examples:

Under typical circumstances, ’s are ’s.
(People work close to where they live. Children enjoy singing.)

The prototypical is a .
(Apples are red. Owls hunt at night.)

Most ’s are ’s.
(The people in the waiting room are growing impatient.)

If a was not a , you would know it.
(No nation has a political leader more than 7 feet tall.)

All the known ’s are known (or assumed) to be ’s.
(Natural languages are easy for children to learn.)

A is a , unless I tell you otherwise.
(Being told “The closest gas station is two blocks east”—the assumed default:
the gas station is open).

A is a , unless otherwise indicated.
(The speed limit in a city. An open door to an office, meaning that the occu-
pant can be disturbed.)

A is a unless something changes it.
(Marital status. The position of objects (within limits).)

A is a if it used to be a .
(The color of objects. Their sizes.)
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These categories are not intended to be exhaustive. But they do suggest the very
wide variety of sources of default information. In all cases, our concern in this
chapter will be the same: how to characterize precisely when, in the absence of
universals, it is appropriate to draw a default conclusion. In so doing, we will only
use the simplest of examples, like the default that birds fly, which in FOL would
have to be approximated by ( ( ) ( )). But the techniques considered
here apply to all the various forms of defaults above, which, as we have argued,
cover much of what we know.

In the rest of this chapter, we will consider four approaches to default reasoning:
closed-world reasoning, circumscription, default logic, and autoepistemic logic. In
all cases, we start with a KB from which we wish to derive a set of implicit beliefs.
In the simple case with no default reasoning, implicit beliefs are just the entailments
of the KB; but with defaults, we go beyond these by making various assumptions.

Ordinary deductive reasoning is , which is to say that new facts can
only produce additional beliefs. In other words, if KB = then KB = for
any KB such that KB KB However, default reasoning is :
new facts will sometimes invalidate previous beliefs. For example, if we are only
told that Tweety is bird, we may believe that Tweety flies. However, if we are now
told that Tweety is an emu, we may no longer believe that she flies. This is because
the belief that Tweety flies was a default based on an of information to the
contrary. When we find out that Tweety is an exceptional bird, we reconsider.

For this reason, default reasoning of the kind we will discuss in this chapter is
often called , where the emphasis is not so much on how
assumptions are made or where they come from, but on inference relations that are
similar to entailment, but which are non-monotonic.

The simplest formalization of default reasoning we will consider was also the first
to be developed, and is based on the following observation:

Imagine representing facts about the world in FOL within a fixed, finite
vocabulary of predicates, function and constant symbols. Of the large
(but finite) number of atomic sentences that can be formed, only a very
small fraction are expected to be . A reasonable representational
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This definition applies to the propositional subset of FOL. We will deal with quantifiers below.
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convention, then, is to explicitly represent the true atomic sentences,
and to assume that any unmentioned atomic sentence is false.

Consider, for example, information sources like an airline flight guide. The kind
of information we find in a such a guide might be roughly represented in FOL by
sentences like

( , ),
( , ),
( , ),

telling us which cities have flights between them. What we do not expect to find in
such a guide are statements about which cities do have flights between them:

( , ).

The convention is that if an airline does not list a flight between two cities, then
there is none. Similar conventions are used, of course, in encyclopedias, dictionar-
ies, maps, and many other information sources. It is also the assumption used in
computerized , modeled exactly on such information sources.

In general terms, the assumption here, called the or CWA,
is the following:

Note that expressed this way, the CWA can be seen to involve a form of default
reasoning. A sentence assumed to be false could later be determined in fact to be
true.

Perhaps the easiest way to formalize the reasoning inherent in the CWA is to
consider a new form of entailment, =, where we say that KB = iff KB = ,
where

KB = KB is atomic and KB = .

So = is just like ordinary entailment, except with respect to an augmented KB,
namely one that includes all negative atomic facts not explicitly ruled out by the
KB. In the airline guide example above, KB would include all the appropriate

( ) sentences.
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It is useful to introduce two terms at this point: we say that a KB exhibits
knowledge if and only if there is no sentence such that both and are known.
This is the same as requiring the KB to be satisfiable. We also say that a KB exhibits

knowledge if and only if for every sentence (within its vocabulary),
either or is known.

In general, of course, knowledge can be incomplete. For example, suppose KB
consists of a single sentence, ( ). Then, KB does not entail either or ,
and so exhibits incomplete knowledge. If we consider the CWA as formalized as
above, however, for any sentence , it holds that either KB = or KB = .
(The argument is by induction on the length of .) So with the CWA, we have
completely filled out the entailment relation for the KB. Every sentence is
by KB , that is, either it or its negation is entailed by KB .

It is not hard to see that if a KB is complete in this sense (the way KB is),
it also has the property that if it tells us that one of two sentences is true, then it
must also tell us which. In other words, if KB exhibits complete knowledge and
KB = ( ) then KB = or KB = Again, note that this is not the case in
general, for example, for the KB comprising only ( ) as described above.

The idea behind the CWA then, is to act the KB represented complete
knowledge. Whenever KB = , then either KB = directly, or the assumption is
that is what was intended, and it is conceptually added to the KB.

The fact that every sentence is decided by the CWA allows queries to be handled
very directly. The question as to whether KB = ends up reducing to a collection
of questions about the literals in We begin with the following general properties
of entailment:

1. KB = ( ) iff KB = and KB =

2. KB = iff KB =

3. KB = ( ) iff KB = and KB =

Next, as discussed above, because KB is complete, we also have the following
properties:

4. KB = ( ) iff KB = or KB =

5. KB = ( ) iff KB = or KB =
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Putting all of these together, we can recursively reduce any question about whether
KB = to a set of questions about the literals in For example, it is the case that

KB = (( ) ( )) iff
either KB = and KB = , or KB = , or KB = .

If we further assume that KB is consistent (which we discuss below), we get:

6. If KB is consistent, KB = iff KB =

With this extra condition, we can reduce a query to a set of questions about the
in For example, assuming consistency, the sentence (( ) ( ))

will be entailed under the CWA if and only if either and are entailed or is
not entailed or is entailed. What this suggests, is that for a KB that is consistent
and complete, : a conjunction
is entailed if and only if both conjuncts are; a disjunction is entailed if and only if
either disjunct is; and a negation is entailed if and only if the negated sentence is
not entailed. As long as we have a way of handling atomic queries, all other queries
can be handled recursively.

Just because a KB is consistent does not mean that KB will also be consistent.
Consider, for example, the consistent KB composed of the single sentence ( )
mentioned above. Since KB = it is the case that KB Similarly,
KB So KB contains ( ) and thus is inconsistent. In this case,
KB = for sentence

On the other hand, it is clear that if a KB consists of just atomic sentences
(like the KB from above) and is itself consistent, then KB will be
consistent. The same is true if the KB contains conjunctions of atomic sentences
(or of other conjunctions). It is also true if the KB contains disjunctions of negative
literals. But it is not clear what a reasonable closure assumption should be for
disjunctions like ( ).

One possibility is to apply the CWA only to atoms that are completely “uncon-
troversial.” For example, in the above case, while we might not apply the CWA
to either or , since they are both controversial (because we know that one of
them is true), we might be willing to apply it to any other atom. This suggests a
generalized version of the CWA, which we call the

, or GCWA, where KB = if and only if KB = , where KB is defined
as follows:
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The intuition behind this is as follows: say that we know that there is a flight from Cleveland
either to Dallas or to Houston (but not which one). As a result, we also know that there is a flight from
Cleveland to one of Dallas, Houston, or Austin. But since we know that there is definitely a flight to
one of the first two, it makes sense, under normal closed-world reasoning, to assume that there is no
flight to Austin.

c 211

KB = KB for all collections of atoms . . .
if KB = ( . . . ) then KB = ( . . . )

So an atom can be assumed to be false only if it is the case that whenever a
disjunction of atoms including that atom is entailed by the KB, then the smaller
disjunction without the atom is also entailed. In other words, we will not assume
that is false if there exists an entailed disjunction of atoms including that cannot
be reduced to a smaller entailed disjunction.

For example, suppose that KB is ( ) and consider the atom . Here we
have that KB = ( ), and this indeed reduces to KB = ( ); however,
we also have that KB = ( ), even though KB = . So KB . Similarly,

KB However, consider an atom . Here it is the case that KB since
although KB = ( ), we also have the reduced disjunction KB = ( ).

Note that if we restrict the definition of KB to the case where = 0, we get

KB = KB if KB = then KB =

or equivalently,

KB = KB if KB = then KB is inconsistent .

It follows then that for a consistent KB, the GCWA implies the CWA, i.e., KB
would only include in the case where KB = which means that KB would
be the same as KB . But more importantly, it is the case that if KB is consistent,
then so must be KB . The proof is as follows: suppose KB is inconsistent, and
let KB . . . be an inconsistent subset with a minimal set of liter-
als. It follows from this inconsistency that KB = ( . . . ) But then, since

KB KB = ( . . . ) This means that KB . . . is also
inconsistent, contradicting the minimality assumption. So the GCWA is an exten-
sion to the CWA that is always consistent, and implies the CWA when the KB itself
is consistent.

So far we have only considered the properties of the CWA in terms of sentences
without quantifiers. Unfortunately, its most desirable properties do not immedi-
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ately generalize to sentences with quantifiers. To see why, consider a simple repre-
sentation language containing a single predicate as before and con-
stants . If we start with a KB containing only atomic sentences of the form

( ) the CWA will add to this a collection of literals of the form
( ) In the resulting KB , for any pair of constants and

either ( ) is in KB or ( ) is in KB .
Let us suppose that there is a certain constant that does not ap-

pear in the imagined guide, so that for every , ( )
is in KB . Now consider the query, ( ) Ideally, by
closed-world reasoning, this sentence should be entailed: there is no city directly
connected to . However, even under the CWA, neither this sentence nor
its negation is entailed: the CWA precludes being connected to any of
the cities, . . . but it does not preclude being connected
to some other cities. That is, there is a model of KB where the domain
includes a city not named by any such that it and the denotation of are
in the extension of . So the problem is that the CWA has not gone
far enough: not only do we want to assume that is not connected to the

we want to assume that there are no other possible cities to connect to.
Perhaps the easiest way to achieve this effect is to assume that the named con-

stants are the only individuals of interest, in other words, that every individual is
named by one of the This leads to a stronger form of closed-world reasoning,
which is the , and a new form of en-
tailment: KB = iff KB = , where

KB = KB [ = . . . = ] ,
where . . . are all the constant symbols appearing in KB.

So this is exactly like the CWA, but with the additional assumption that no objects
exist apart from the named constants. Returning to the example, since

( ) is entailed under the CWA for every it will fol-
low that ( ) is entailed under the CWA with domain
closure.

The main property of this extension to the CWA is the following:

KB = iff KB = for every appearing in KB
KB = iff KB = for some appearing in KB.

This means that the correspondence between entailment conditions and truth con-
ditions now generalizes to quantified sentences. With this additional completeness
assumption, it is the case that KB = or KB = , for any even with quanti-
fiers. Similarly, the recursive query operation, which reduces queries to the atomic
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case, now works for quantified sentences as well. This property can also be ex-
tended to deal with formulas with equality (and hence all of FOL) by including a

, which adds to KB all sentences of the form ( = ), for
distinct constants and .

Finally there is the issue of consistency. First note that domain closure does not
rule out the use of function symbols. If we use sentences like ( ) ( ( ))
then under the CWA with domain closure, we end up assuming that each term ( )
is equal to one of the constants. In other words, even though individuals have a
unique constant name, they can have other non-constant names.

However, it is possible to construct a KB that is inconsistent with domain clo-
sure in more subtle ways. Consider, for instance, the following:

( ), ( , ), [ ( ) ( ( , ) ( ))]

This KB is consistent and does not even use equality. However, KB is inconsis-
tent. The individual denoted by cannot be the only instance of since the other
two sentences in effect assert that there must be another one. It is also possible to
have a consistent KB that asserts the existence of infinitely many instances of ,
guaranteeing that domain closure cannot be used for any finite set of constants. It is
worth noting, on the other hand, that such examples are somewhat farfetched; they
look more like formulas that might appear in axiomatizations of set theory than in
databases. For “normal” applications, domain closure is much less of a problem.

In general terms, the CWA is the convention that arbitrary atomic sentences are
taken to be false by default. Formally, = is defined as the entailments of KB ,
which is KB augmented by a set of negative literals. For a sentence to be believed
(under the CWA), it is not necessary for to be true in all models of the KB, but
only those that are also models of KB . In the first-order case, because of the
presence of the negated literals in KB , we end up looking at models of the KB
where the extension of the predicates is made as small as possible. This suggests a
natural generalization: consider forms of entailment where the extension of certain
predicates (perhaps not all) is as small as possible.

One way to handle default knowledge is to assume that we have a predicate
to talk about the exceptional cases where a default should not apply. Instead of

saying that all birds fly, we might say:

[ ( ) ( ) ( )]
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This can be read as saying that all birds that are not in some way abnormal fly, or
more succinctly, that all normal birds fly. Now imagine we have this fact in a KB
along with these facts:

( ) ( ) ( = ) ( )

The intent here is clear: we would like to conclude by default that Tweety flies,
whereas Chilly, of course, does not.

Note, however, that KB = ( ): there are interpretations satisfying the
KB where ( ) is false. However, in these interpretations, the denotation
of is contained in the extension of . This then suggests a strategy for
making default conclusions: as with the CWA, we will only consider certain inter-
pretations of the KB, but in this case, only those where the predicate is as small
as possible. In other words, the strategy is to Intuitively, the
default conclusions are taken to be those that are true in models of the KB where
as few of the individuals as possible are abnormal.

In the above example, we already know that Chilly is an abnormal bird, but we
do not know one way or another about Tweety. The default assumption we wish to
make is that the extension of is only as large as it has to be given what we know;
hence it includes Chilly, since it has to because of Chilly’s known abnormality, but
excludes Tweety, because nothing that we know dictates that must include her.
This is called the predicate , and as a whole, the technique is
called

Note that while Chilly is abnormal in her flying ability, she may be quite normal
in having two legs, laying eggs, and so on. This suggests that we do not really
want to use a single predicate and not be able to assume any defaults at all
about Chilly, but rather have a family of predicates for talking about the various
aspects of individuals. Chilly might be in the extension of , but not in that of

, for instance.

Circumscription is intended to be a much more fine-grained tool than the CWA,
and because of this and the fact that we wish to apply it in much broader settings,
the formalization we use does not involve adding negative literals to the KB. In-
stead, we characterize a new form of entailment directly in terms of properties of
interpretations themselves.

Let be a fixed set of unary predicates, which we will intuitively understand to
be the predicates. Let and be logical interpretations over the same domain



www.manaraa.com

7

P

P

�

�

�

�

0 0 0

0

0

0

1 1

2 2

1 2 1 2

1 2 1 2 2 1

7

;

; :

P ; P P :

< :

� ; �

< :

�

�

: :

; :

<

:

;

c

d c d :

c d

2003 R. Brachman and H. Levesque July 17, 2003

more
normal

minimal entailment

all
most normal



= hD I i

= hD I i �

= � = 2 I � I

= = = � = = 6� =

j

j = = j = j

= = = = j

6j

j = j

= 6j = j = =
= =

f g = j

j :

: _:

Flies tweety Flies tweety
Flies tweety Ab tweety

tweety Ab
Ab

Ab tweety

Bird
Bird Flies Flies
Ab
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the definition as presented above works even in such situations.
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such that every constant and function is interpreted the same. So = and
= Then we define the relationship, :

iff for every it is the case that [ ] [ ]

Also, if and only if but Intuitively, given two in-
terpretations over the same domain, we are saying that one is less than another in
this ordering if it makes the extension of all the abnormality predicates smaller. In-
formally then, we can think of an interpretation that is less than another as

.
With this idea, we can define a new form of entailment = (which we call

) as follows:

KB = iff for every interpretation such that = KB either = or
there is an such that and = KB

This is very similar to the definition of entailment itself: we require every inter-
pretation that satisfies KB to satisfy except that it may be excused when there is
another more normal interpretation that also satisfies the KB. Roughly speaking,
we do not require to be true in interpretations satisfying the KB, but only in
the minimal or ones satisfying the KB.

Consider for example, the KB above with Tweety and Chilly. As noted, KB =
( ) However, KB = ( ) The reason is this: if = KB

but = ( ) then = ( ) So let be exactly except that we
remove the denotation of from the extension of . Then (assuming

= , of course), and = KB Thus, in the minimal models of the KB,
Tweety is a normal bird: KB = ( ) from which we can infer that Tweety
flies. We cannot do the same for Chilly, since in all models of the KB, normal or not,
Chilly is an abnormal bird. Note that the only default step in this reasoning was to
conclude that Tweety was normal; the rest was ordinary deductive reasoning given
what we know about normal birds. This then is the circumscription proposal for
formalizing default reasoning.

Note that in general, we do not expect the “most normal” models of the KB all
to satisfy exactly the same sentences. Suppose for example, a KB contains ( ),

( ), and ( ( ) ( )) Then in any model of the KB, the extension of
must contain either the denotation of or the denotation of . Any model that

contains other abnormal individuals (including ones where the denotations of both

� �

�

all

one of them

11.3.2 The circumscription axiom
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and are abnormal) would not be minimal. Because we need to consider what
is true in minimal models, we see that KB = ( ) and KB = ( )
In other words, we cannot conclude by default that is a normal bird, nor that

is. However, what we can conclude by default is that is normal:
KB = ( ) ( )

This is very different from the behavior of the CWA. Under similar circum-
stances, because it is consistent with what is known that is normal, using the
CWA we would add the literal ( ), and by similar reasoning, ( ), leading
to inconsistency. Thus circumscription is more cautious than the CWA in the as-
sumptions it makes about “controversial” individuals, like those denoted by and

. However, circumscription is less cautious than the GCWA: the GCWA would not
conclude anything about either the denotation of or , whereas circumscription is
willing to conclude by default that one of them flies.

Another difference between circumscription and the CWA involves quantified
sentences. By using interpretations directly rather than adding literals to the KB,
circumscription works equally well with unnamed individuals. For example, if the
KB contains [ ( ) ( = ) ( = ) ( )], then with
circumscription we would conclude by default that this unnamed individual flies:

[ ( ) ( = ) ( = ) ( ) ( )]

The reason here is the same as before: in the minimal models there will be a single
abnormal individual, Chilly. This also carries over to unnamed abnormal individ-
uals. If our KB contains the assertion that

[ ( ) ( = ) ( = ) ( )]

then a model of the KB will be minimal if and only if there are exactly two abnormal
individuals: Chilly, and the unnamed one. Thus, we conclude by default that

[( ( ) ( )) ( = = )]

So unlike the CWA and the GCWA, we do not need to name exceptions explic-
itly to avoid inconsistency. Indeed, the issue of consistency for circumscription is
considerably more subtle than it was for the CWA, and characterizing it precisely
remains an open question.

One of the conceptual advantages of the CWA is that, although it is a form of non-
monotonic reasoning, we can understand its effect in terms of ordinary deductive



www.manaraa.com

0 0

0

�

�

�
�

� � � �

�

�

< :

�

x x x x ;

;

x x x x :

x x x ;

x x :

x x :

11.3.3 Fixed and variable predicates



j [ f g j
=

=j j =j

= = = j

=

8 ^ : �

8 � ^ :

8 �

j :9

j :9

2003 R. Brachman and H. Levesque July 17, 2003

can,
second-order

logic

there are no penguins

Ab

Ab

Bird Ab Flies
Bird tweety

Penguin Bird Flies

Penguin Ab

Ab

Penguin

c 217

reasoning over a KB that has been augmented by certain assumptions. As we saw
above, we cannot duplicate the effect of circumscription by simply adding a set of
negative literals to a KB.

We however, view the effect of circumscription in terms of ordinary de-
ductive reasoning from an augmented KB if we are willing to use

. Without going into details, it is worth observing that for any KB, there is
a second-order sentence such that KB = if and only if KB = in
second-order logic. What is required here of the sentence is that it should restrict
interpretations to be minimal in the ordering. That is, if an interpretation is such
that =KB, what we need (to get the correspondence with = ) is that = if and
only if there does not exist such that = KB The idea here (due to John
McCarthy) is that instead of talking about another interpretation , we could just
as well have said that there must not exist a smaller extension for the predicates
that would also satisfy the KB. This requires quantification over the extensions of

predicates, and is what makes second-order.

Although the default assumptions made by circumscription are usually weaker than
those of the CWA, there are cases where it appears too strong. Suppose, for exam-
ple, that we have the following KB:

[ ( ) ( ) ( )]
( )

[ ( ) ( ( ) ( ))]

It then follows that [ ( ) ( )] that is, with respect to flying anyway,
penguins are abnormal birds.

The problem is this: to make default assumptions using circumscription, we end
up minimizing the set of abnormal individuals. For the above KB, we conclude that
there are no abnormal individuals at all:

KB = ( )

But this has the effect of also minimizing penguins. In the process of wanting to
derive the conclusion that Tweety flies, we end up concluding not only that Tweety
is not a penguin, which is perhaps reasonable, but also that ,
which seems unreasonable:

KB = ( )
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In our zeal to make things as normal as possible, we have ruled out penguins. What
would be much better in this case, it seems, is to be able to conclude by default
merely that penguins are the only abnormal birds.

One solution that has been proposed is to redefine = so that in looking at
more normal worlds, we do not in the process exclude the possibility of exceptional
classes like penguins. What we should say is something like this: we can ignore a
model of the KB if there is a similar model with fewer abnormal individuals,

. That is, in the process of minimizing abnormal-
ity, we should not be allowed to also minimize the set of penguins. We say that
the extension of remains in the minimization. But it is not as if all
predicates other than will remain fixed. In moving from a model to a lesser
model where has a smaller extension, we are willing to change the extension
of , and indeed to conclude that Tweety flies. We say that the extension of
is in the minimization.

More formally, we redefine with respect to a set of unary predicates (under-
stood as the ones to be minimized) and a set of arbitrary predicates (understood
as the predicates that are fixed in the minimization). Let and be as before.
Then if and only if for every it is the case that [ ] [ ]
and for every it is the case that [ ] = [ ] The rest of the definition
of = is as before. Taking = and = amounts to saying that
we want to minimize the instances of holding constant the instances of .
The earlier version of = was simply one where was empty.

Returning to the example bird KB, there will now be minimal models where
there are penguins: KB = ( ) In fact, a model of the KB will be
minimal if and only if its abnormal individuals are precisely the penguins: obvi-
ously the penguins must be abnormal; conversely, assume to the contrary that in
interpretation we have an abnormal individual who is not one of the penguins.
Then construct by moving out of the extension of and, if it is in the exten-
sion of , into the extension of . Clearly, satisfies KB and So it
follows that

KB = [( ( ) ( )) ( )]

Unfortunately, this version of circumscription still has some serious problems.
For one thing, our method of using circumscription needs to specify not only which
predicates to minimize, but also which additional predicates to keep fixed: we need
to be able to figure out somehow beforehand that flying should be a variable pred-
icate, for example, and it is far from clear how.

More seriously perhaps, KB = ( ). The reason is this: consider a
model of the KB where Tweety happens to be a penguin; we can no longer find a
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It would be nice here to be able to somehow conclude that any two named constants
denote distinct individuals. Unfortunately, it can be shown that this cannot be done using a mechanism
like circumscription.
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lesser model where Tweety flies since that would mean changing the set of pen-
guins, which must remain fixed. What we do get is that

KB = ( ) ( )

So if we know that Tweety is not a penguin, as in

( ) [ ( ) ( )]

then we get the desired conclusion. But this is not derivable by default. Even if we
add something saying that birds are normally not penguins, as in

[ ( ) ( ) ( )]

Tweety still does not fly, because we cannot change the set of penguins. Various so-
lutions to this problem have been proposed in the literature, but none are completely
satisfactory.

In fact, this sort of problem was already there in the background with the ear-
lier version of circumscription. For example, consider the KB we had before with
Tweety and Chilly, but this time without ( = ) Then as with the pen-
guins, we lose the assumption that Tweety flies and only get

KB = ( = ) ( )

The reason is that there is a model of the KB with a minimal number of abnormal
birds where Tweety does not fly, namely one where Chilly and Tweety are the same
bird. Putting Chilly aside, all it really takes is the existence of a single abnormal
bird: if the KB contains [ ( ) ( )] then although we can assume
by default that this flightless bird is unique, we have not ruled out the possibility
that Tweety is that bird, and we can no longer assume by default that Tweety flies.
This means that there is a serious limitation in using circumscription for default
reasoning: we must ensure that any abnormal individual is known to be distinct
from the other individuals.

In the previous section, we introduced the idea of circumscription as a generaliza-
tion of the CWA: instead of minimizing all predicates, we minimize abnormality

+
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predicates. Of course, in the CWA section above, we looked at it differently: we
thought of it as deductive reasoning from a KB that had been enlarged by certain
default assumptions, the negative literals that are added to form KB .

A generalization in a different direction then suggests itself: instead of adding to
a KB all negative literals that are consistent with the KB, we provide a mechanism
for specifying explicitly which sentences should be added to the KB when it is
consistent to do so. For example, if ( ) is entailed by the KB, we might want
to add the default assumption ( ), if it is consistent to do so. Or perhaps this
should only be done in certain contexts.

This is the intuition underlying . A KB is now thought of as a
consisting of two parts, a set of first-order sentences as usual, and

a set of , which are specifications of what assumptions can be made
and when. The job of a default logic is then to specify what the appropriate set of
implicit beliefs should be, somehow incorporating the facts in , as many default
assumptions as we can, given the default rules in , and the logical entailments of
both. As we will see, defining these implicit beliefs is non-trivial: in some cases,
there will be more than one candidate set of sentences that could be regarded as
a reasonable set of beliefs (just as there could be multiple preferred extensions in
Chapter 10); in other cases, no set of sentences seems to work properly.

Perhaps the most general form of default rule that has been examined in the litera-
ture is due to Reiter: it consists of three sentences, a a

and a The informal interpretation of this triple is that should be
believed if is believed and it is consistent to believe That is, if we have and
we do not have then we can assume We will write such a rule as ; ; .

For example, a rule might be ( ); ( ); ( ) . This
says that if we know that Tweety is bird, then we should assume that Tweety flies
if it is consistent to assume that Tweety flies. This type of rule, where the justi-
fication and conclusion are the same, is called a and is by far
the most common case. We will sometimes write such rules as ( )

( ). We call a default theory all of whose rules are normal a
. As we will see below, there are cases where non-normal defaults are

useful.
Note that the rules in the above are particular to Tweety. In general, we would

like rules that could apply to any bird. To do so, we allow a default rule to use for-
mulas with free variables. These should be understood as abbreviations for the set
of all substitution instances. So, for example, ( ); ( ); ( ) stands
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for all rules of the form ( ); ( ); ( ) where is any ground term. This
will allow us to conclude by default of any bird that it flies, without also forcing us
to believe by default that birds fly, a useful distinction.

Given a default theory KB = ( ), what sentences ought to be believed? We will
call a set of sentences that constitute a reasonable set of beliefs given a default the-
ory an of the theory. In this subsection, we present a simple and workable
definition of extension; in the next, we will argue that sometimes a more complex
definition is called for.

For our purposes, a set of sentences is an extension of a default theory ( )
if and only if for every sentence ,

iff ; ; =

Thus, a set of sentences is an extension if it is the set of all entailments of
where is a suitable set of assumptions. In this respect, the definition of extension
is similar to the definition of the CWA: we add default assumptions to a set of basic
facts. Here, the assumptions to be added are those that we will call

: an assumption is applicable if and only if it is the conclusion
of a default rule whose prerequisite is in the extension and the negation of whose
justification is not. Note that we require to be in , not in . This has the effect of
allowing the prerequisite to be believed as the result of other default assumptions,
and therefore, of allowing default rules to chain. Note also that this definition is not
constructive: it does not tell us how to find an given and , or even if there is
one or more than one to be found. However, given and , the is completely
characterized by its set of applicable assumptions, .

For example, suppose we have the following normal default theory:

= ( ) ( ) ( )
= ( ) ( ) .

We wish to show that there is a unique extension to this default theory character-
ized by the assumption ( ) To show this, we must first establish that the
entailments of ( ) —call this set —are indeed an extension ac-
cording to the above definition. This means showing that ( ) is the only
assumption applicable to : it is applicable since contains ( ) and does
not contain ( ) Moreover, for no other is ( ) applicable, since
contains ( ) only for = for which also contains ( ) So this

n
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is indeed an extension. Observe that unlike circumscription, we do not require
Tweety and Chilly to be distinct to draw the default conclusion.

But are there other extensions? Assume that some is also an extension for
some applicable set of assumptions ( ) . . . ( ) First observe that no
matter what assumptions we make, we will never be able to conclude that

( ) Thus ( ) must be applicable to However, we will not
be able to conclude ( ) for any other that or . So ( )
is the only applicable assumption, and therefore must be the entailments of

( ) as above.
In arguing above that there was a unique extension, we made statements like “no

matter what assumptions we make, we will never be able to conclude .” Of course,
if is we can conclude anything we want. For example, if we could
somehow add the assumption ( ) then we could conclude ( ) It
turns out that such contradictory assumptions are never possible: an extension of
a default theory ( ) is inconsistent if and only if is inconsistent.

Now consider the following default theory:

= ( ) ( )
= ( ) ( ) ( ) ( ) .

Here, there are two defaults that are in conflict for Dick. There are, correspondingly
two extensions:

1. is characterized by the assumption ( )

2. is characterized by the assumption ( )

Both of these are extensions since their assumption is applicable, and no other as-
sumption (for any other than ) is. Moreover, there are no other extensions:
The empty set of assumptions does not give an extension since both ( )
and ( ) would be applicable; for any other potential extension, assump-
tions would be of the form ( ) or ( ) none of which are applicable
for any other than , since we will never have the corresponding prerequisite

( ) or ( ) in . Thus, and are the only extensions.
So what default logic tells us here is that we may choose to assume that Dick is

a pacifist or that he is not a pacifist. On the basis of what we have been told, either
set of beliefs is reasonable. As in the case of inheritance hierarchies in Chapter 10,
there are two immediate possibilities:
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1. a reasoner will only believe those sentences that are common to all
extensions of the default theory;

2. a reasoner will simply choose arbitrarily one of the extensions of
the default theory as the set of sentences to believe.

Arguments for and against each type of reasoning have been made. Note, that
minimal entailment, in giving us what is true in minimal models is much more
like skeptical reasoning.

In some cases, the existence of multiple extensions is merely an indication that
we have not said enough to make a reasonable decision. In the above example, we
may want to say that the default regarding Quakers should only apply to individuals
not known to be politically active. Assuming we have the fact

[ ( ) ( )]

we can replace the original rule with as the prerequisite by a non-normal
one like

( ); ( ( ) ( )); ( ) .

Then, for ordinary Republicans and ordinary Quakers, the assumption would be as
before; for Quaker Republicans like Dick, we would assume (unequivocally) that
they were not pacifists. Note that if we merely say that Republicans are politically
active , we would again be left with two extensions.

This idea of arbitrating among conflicting default rules is crucial when it comes
to dealing with concept hierarchies. For example, suppose we have a KB that con-
tains [ ( ) ( )] together with two default rules:

( ) ( )
( ) ( ).

If we also have ( ) we get two extensions: one where Chilly is assumed
to fly and one where Chilly is assumed not to fly. Unlike the Quaker Republican
example, however, what ought to have happened here is clear: the default that
penguins do not fly should the more general default that birds fly. In other
words, we only want one extension, where Chilly is assumed not to fly. To get this
in default logic, it is necessary to encode the penguin case as part of the justification
in a non-normal default for birds:

( ); ( ( ) ( )); ( ) .

∆

∆ ∆

∆

no

grounded extension

2003 R. Brachman and H. Levesque July 17, 2003

:

;

p p

p

p p p :

;

p p

p p p :

p p

p p p

p

; S; S

� � � � S ; � S; � S :

; :



h ^ : ^ :

^ : ^ : ^ i

F D

F D h : i

E

: 2 E : : 62 E

F

F D F D

h i

E
2 E : 62 E

F D

F
h i 2 D 2 : 62 2

E F D E E

Bird tweety Flies tweety Penguin tweety Emu tweety
Ostrich tweety Dead tweety Flies tweety

c 224

This is not a very satisfactory solution since there may be a very large number of
interacting defaults to consider:

( ); [ ( ) ( ) ( )
( ) ( ) . . .]; (

It is a severe limitation of default logic and indeed of all the default formalisms
considered in this chapter that unlike the inheritance formalism of Chapter 10, they
do not automatically prefer the most specific defaults in cases like this.

Now consider the following example. Suppose we have a default theory ( )
where is empty and contains a single non-normal default TRUE; ; ,
where is any atomic sentence. This default theory has extensions: if were an
extension, then iff is an applicable assumption iff This means
that with this default rule, there is no reasonable set of beliefs to hold. Having no
extension is very different from having a single but inconsistent one, such as when

is inconsistent. A skeptical believer might go ahead and believe all sentences
(since every sentence is trivially common to all the extensions), but a credulous
believer is stuck. Fortunately, this situation does not arise with normal defaults, as
it can be proven that every normal default theory has at least one extension.

An even more serious problem is shown in the following example. Suppose we
have a default theory ( ) where is empty and contains a single non-normal
default ; TRUE; . This theory has two extensions, one of which is the set of all
valid sentences, and the other of which is the set consisting of the entailments of

. (The assumption is applicable here since and TRUE ) However,
on intuitive grounds, this second extension is quite inappropriate. The default rule
says that can be assumed if is believed. This really should not allow us to
conclude by default that is true any more than a fact saying that is true if is
true would. It would be much better to end up with a single extension consisting of
just the valid sentences, since there is no good reason to believe by default.

One way to resolve this problem is to rule out any extension for which a proper
subset is also an extension. This works for this example, but fails on other examples.
A more complex definition of extension, due to Reiter, appears to handle all such
anomalies: Let ( ) be any default theory. For any set let ( ) be the least set
containing , closed under entailment, and satisfying the following:

If ; ; , ( ) then ( )

Then a set is a of ( ) if and only if = ( ) This defini-
tion is considerably more complex to work with than the one we have considered,
but does have some desirable properties, including handling the above example
correctly, while agreeing with the simpler definition on all of the earlier examples.
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sentences
with about

Any bird that can be consistently believed to fly does fly.

Any bird not believed to be flightless flies.
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We will not pursue this version in any more detail except to observe one simple
feature: in the definition of ( ) we test if rather than ( ) Had
we gone with the latter, the definition of ( ) would have been this: the least set
containing , closed under entailment, and containing all of its applicable assump-
tions. Except for the part about “least set”, this is precisely our earlier definition of
extension. So this very small change to how justifications are considered ends up
making all the difference.

One advantage circumscription has over default logic is that defaults end up as or-
dinary in the language (using abnormality predicates). In default logic,
although we can reason defaults, we cannot reason them. For instance,
suppose we have the default ; ; . It would be nice to say that we also implic-
itly have the defaults ( ); ; and ; ; ( ) . Similarly, we might
want to say that we also have the “contrapositive” default ; ; . But these
questions cannot even be posed in default logic since, despite its name, it is not a
logic of defaults at all, as there is no notion of entailment among defaults. On the
other hand, default logic deals more directly with what it is consistent to assume,
whereas circumscription forces us to handle defaults in terms of abnormalities. The
consistency in default logic is, of course, relative to what is currently believed. This
suggests another approach to default reasoning where like circumscription, defaults
are represented as sentences, but like default logic, these sentences talk about what
it is consistent to assume.

Roughly speaking, we will represent the default about birds, for example, by

Given that beliefs (as far as we are concerned) are closed under entailment, then a
sentence can be consistently believed if and only if its negation is not believed. So
we can restate the default as

To encode defaults like these as sentences in a logic, we extend the FOL language
to talk about belief directly. In particular, we will assume that for every formula
there is another formula to be understood informally as saying “ is believed
to be true.” The should be thought of as a new unary connective (like negation).
Defaults, then, are represented by sentences like

[ ( ) ( ) ( )]
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As we have been doing throughout the book, we use “know” and “believe” interchangeably.
Unless otherwise indicated, “believe” is what is intended, and “know” is used for stylistic variety.
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For this to work, it must be the case that saying that that a bird is believed to be
flightless is not the same as saying that the bird is flightless. Suppose, for example,
that we know that either bird or bird is flightless, but we do not know which. In
this case, we know that one of them is flightless, but neither of them is believed to
be flightless. Since we imagine reasoning using sentences like the above, we will
be reasoning about birds of course, but also about . The
fact that this is a logic about our own beliefs is why it is called

As usual, our primary concern is to determine a reasonable set of beliefs in the
presence of defaults. With autoepistemic logic, the question is: given a KB that
contains sentences using the operator, what is a reasonable set of beliefs to hold?
To answer this question, we begin by examining some minimal properties we expect
any set of beliefs to satisfy. We call a set if and only if it satisfies these
three properties:

1. Closure under entailment: If = then

2. Positive introspection: If then

3. Negative introspection: If then

So first, we want to be closed under entailment. Since we have not yet defined
entailment for a language with operators, we take this simply to mean ordinary
logical entailment, where we treat

[ ( ) ( ) ( )]

as if it were something like

[ ( ) ( ) ( )]

where is a new predicate symbol.
The other two properties of a stable set deal with the operator. They ensure

that if is believed then so is , and if is not believed then is believed.
These are called introspection constraints since they deal with beliefs about beliefs.

Given a KB, there will be many stable sets that contain it. In deciding what
sentences to believe, we want a stable set that contains the entailments of the KB
and the appropriate introspective beliefs, but nothing else. This is called a

of the KB and its formal definition, due to Robert Moore, is this: a set
is a stable expansion of KB if and only if for every sentence it is the case that
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iff KB =

This is a familiar pattern: the implicit beliefs are those sentences that are entailed
by KB where is a suitable set of assumptions. In this case, the assumptions
are those arising from the introspection constraints.

To see how this leads to default reasoning, suppose we a have a KB that consists
of the following:

( ) ( ) ( = ) ( )
[ ( ) ( ) ( )]

Informally, let’s consider the consequences of this KB. First we see that there is no
way to conclude : is not explicitly in the knowledge
base, and there is no rule that would allow us to conclude it, even by default (the
conclusion of our one rule is of the form ). This means that if is a stable
expansion of the KB, it will not include this fact. But because of our negative in-
trospection property, a stable expansion that did not include the fact
would include the assumption, ( ). Now given this assumption,
and the fact that [ ( ) ( ) ( )] is in the KB, we conclude

( ) using ordinary logical entailment. So in autoepistemic logic, default
assumptions are typically of the form , and new default beliefs about the world,
like ( ), are deduced from these assumptions.

The above illustrated informally how the notion of a stable expansion of a knowl-
edge base can account for default reasoning of a certain sort. To be more precise
about this, and show that the KB above does in fact have a stable expansion contain-
ing ( ) and that it is unique, we will consider the simpler propositional
version of the definition and show how to enumerate stable expansions. In the
propositional case, we replace the sentence,

[ ( ) ( ) ( )]

by all of its instances, as we did with default rules in the previous section.
Let us a call a sentence if it does not contain any operators. The first

thing to observe is that in the propositional case, a stable expansion is completely
determined by its objective subset; the non-objective part can be reconstructed us-
ing the two introspection constraints and logical entailment.

�

�

�

�
�

guess

1 2

1 2

2

n

i

i i i

i

i

n

i i

i

i

i i

i

n


:

j

: 6j

:

^ : : �

^ : : �

: :
:

^ : : � :

: �

: :

� � �

�

� � �

�

�

� � �

� �

�

�

� �

�

; ; ;

;

:

;

c c

c c c c

c c

c ; c :

2003 R. Brachman and H. Levesque July 17, 2003

Input: B B B
Output:

B

B B

B

B B B B
B

B
B

B

B
B

B B B
B

B B

B B

Bird chilly Bird tweety Flies chilly
Bird tweety Flies tweety Flies tweety
Bird chilly Flies chilly Flies chilly

Flies tweety Flies chilly
Flies

Bird Flies Flies Flies
Bird Flies

Flies Bird

Flies tweety Flies chilly
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Figure 11.1: A procedure to generate stable expansions

a propositional KB, containing subformulas , , . . . ,
the objective part of a stable expansion of the KB.

1. Replace each in KB by either TRUE or TRUE.

2. Simplify, and call the resulting objective knowledge base KB .

3. If was replaced by TRUE, confirm that KB = ; if was replaced
by TRUE, confirm that KB = .

4. If the condition is confirmed for every , then return KB , whose entail-
ments form the objective part of a stable expansion.

So imagine we have a KB that contains objective and non-objective sentences,
where , , . . . , are all the formulas mentioned. Assume for simplicity
that all the are objective. If we knew which of the formulas were true in
a stable expansion, we could calculate the objective part of that stable expansion
using ordinary logical reasoning. So the procedure we will use is to nondeter-
ministically which of the formulas are true, and then check whether the result
makes sense as the objective part of a stable expansion: if we guessed that was
true, we need to confirm that is entailed; if we guessed that was false, we
need to confirm that is not entailed. A more precise version of this procedure is
shown in Figure 11.1. Observe that using this procedure we can generate at most
2 stable expansions.

To see this procedure in action, consider a propositional version of the flying
bird example. In this case, our KB is

( ) ( ) ( )
[ ( ) ( ) ( )]
[ ( ) ( ) ( )]

There are two subformulas with operators, ( ) and ( )
and so at most 2 = 4 stable expansions. For each constant , if ( ) is
true, then [ ( ) ( ) ( )] simplifies to TRUE; if ( ) is

TRUE then the sentence simplifies to [ ( ) ( )] which will reduce to
( ) since the KB contains ( ) So, our four cases are these:

1. ( ) true and ( ) true, for which KB is
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Bird tweety Bird chilly Flies chilly

Flies tweety

Flies tweety Flies chilly

Bird tweety Bird chilly Flies chilly Flies chilly

Flies tweety
Flies chilly Flies chilly

Flies tweety Flies chilly

Bird tweety Bird chilly Flies chilly Flies tweety

Flies chilly
Flies tweety

Flies tweety Flies chilly

Bird tweety Bird chilly Flies chilly Flies tweety Flies chilly

Flies chilly
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( ) ( ) ( )

This is the case because the two implications each simplify to TRUE. Then,
following Step 3, for each of the two formulas, which were replaced by
TRUE, we need to confirm that the are entailed by KB . KB does not
entail ( ). As a result, this is not a stable expansion.

2. ( ) true and ( ) false, for which KB is

( ) ( ) ( ) ( )

Following Step 3, we need to confirm that KB entails ( ) and
that it does not entail ( ). Since KB entails ( ) this is
not a stable expansion (actually, this KB fails on both counts).

3. ( ) false and ( ) true, for which KB is

( ) ( ) ( ) ( )

Step 3 tells us to confirm that KB entails ( ) and does not entail
( ). In this case, we succeed on both counts, and this character-

izes a stable expansion.

4. Finally, ( ) false and ( ) false, for which KB is

( ) ( ) ( ) ( ) ( )

Since KB entails ( ) this is not a stable expansion.

Thus, this KB has a unique stable expansion, and in this expansion, Tweety flies.
As another example, we can use the procedure to show that ( ) has no

stable expansion: if is false, then the KB is which entails ; conversely, if
is true, then KB is TRUE which does not entail . So there is no stable expansion.

Similarly, we can use the procedure to show that the KB consisting of the sen-
tences ( ) and ( ) has exactly two stable expansions: if is true
and false, the KB is which entails and does not entail , and so this is the
first stable expansion; symmetrically, the other stable expansion is when is false
and true; if both are true, the KB is TRUE which neither entails nor ; and if
both are false, the KB is ( ) which entails both.

It is worth noting that as with default logic, in some cases, this definition of
stable expansion may not be strong enough. Consider, for example, a KB consisting
of a single sentence, ( ). Using the above procedure, we can see that there
are two stable expansions: one containing , and one that does not. But intuitively
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11.8 Exercises

minimal stable expansion

Canadians are typically not francophones.
All Québecois are Canadians.
Québecois are typically francophones.
Robert is a Québecois.
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it seems like the first expansion is inappropriate: the only possible justification for
believing is itself. As in the default logic case, it seems that the assumption is
not properly grounded.

A new definition of stable expansion (due to Konolige) has been proposed to
deal with this problem: a set of sentences is a if and only
if it is a stable expansion that is minimal in its objective sentences. In the above
example, only the stable expansion not containing would be a minimal stable
expansion. However, further examples suggest that an even stronger definition may
be required, for which there is an exact correspondence between stable expansions
and the grounded extensions of default logic.

In this chapter, we have examined four different logical formalisms for default rea-
soning. While each of them does the job in many cases, they each have drawbacks
of one sort or another. Getting a logical account of default reasoning that is sim-
ple, broadly applicable, and intuitively correct remains an open problem. In fact,
because so much of what we know involves default reasoning, it is perhaps the cen-
tral open problem in the whole area of knowledge representation. Not surprisingly,
much of the theoretical research over the last twenty years has been on this topic.

1. Although the inheritance networks of Chapter 10 are in a sense much weaker
than the other formalisms considered in this chapter for default reasoning,
they use default assertions more fully.

Consider the following assertions:

Here is a case where it seems plausible to conclude by default that Robert is
a francophone.
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All Québecois are abnormal Canadians.

Québecois are typically abnormal Canadians.
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(a) Represent these assertions in an inheritance network (treating the sec-
ond one as defeasible), and argue that it unambiguously supports the
conclusion that Robert is a francophone.

(b) Represent them in first-order logic using two abnormality predicates,
one for Canadians and for one for Québecois, and argue that as it stands,
minimizing abnormality would be sufficient to conclude that Robert
is a francophone.

(c) Show that minimizing abnormality would work if we add the assertion

but will not work if we only add

(d) Repeat the exercise in default logic: Represent the assertions as two
facts and two normal default rules, and argue that the result has two
extensions. Eliminate the ambiguity using a non-normal default rule.
You may use a variable-free version of the problem where the letters

and stand for the propositions that Robert is Québecois, Canadian,
and francophone respectively, and where defaults are considered only
with respect to Robert.

(e) Write a variable-free version of the assertions in autoepistemic logic,
and show that the procedure described in the text generates two stable
expansions. How can the unwanted expansion be eliminated?

2. Consider the Chilly and Tweety KB presented in the text.

(a) We showed that for this KB, if we write the default that birds fly using an
abnormality predicate, the resulting KB minimally entails that Tweety
flies. Prove that without ( = ), the conclusion no longer
follows.

(b) Suppose that for any two constants and , we hoped to conclude by
default that they were unequal. Imagine that we have a binary predicate

and a FOL sentence

( ( ) ( = ))

Would using minimal entailment work? Explain.

3. Consider the following proposal for default reasoning: as with minimal en-
tailment, we begin with a KB that uses one or more predicates. Then,

0

0

B

B B

B B B

t t :

x x x x :

x x x x :

x x x x :

x x :

Ab Ab

disjunctive

strong

weak
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Bird Fly Fly

TRUE Bird Fly
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instead of asking what is entailed by the KB, we ask what is entailed by KB ,
where

KB = KB ( ) KB = ( )

Compare this form of default reasoning to minimal entailment. Show an
example where the two methods disagree on some default conclusions. State
a sufficient condition for them to agree.

4. This question concerns the interaction between defaults and knowledge that
is . Starting with autoepistemic logic, there are different ways one
might represent a default like “Birds fly.” The first way, as in the text, is what
we might call a default:

( ( ) ( ) ( ))

Another way is what we might call a default:

( ( ) ( ) ( ))

In this question, we will work with the following KB:

, , , ,

where we assume that all names denote distinct individuals.

(a) Propositionalize and show that the strong and weak defaults lead to
different conclusions about flying ability.

(b) Consider the following version of the default:

( ( ) ( ) ( ))

Show that this version does not lead to reasonable conclusions.

(c) Now consider using default logic and circumscription to represent the
default. Show that one of them behaves more like the strong default,
while the other is more like the weak one.

(d) Consider the following representation of the default in default logic:

[ ( ) ( )]

Discuss how this representation handles disjunctive knowledge.
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typical

usually rarely

Vagueness, Uncertainty, and
Degrees of Belief

In earlier chapters, we learned how precise logical statements about the world, in
many different forms, can be useful for capturing knowledge and applying it. How-
ever, when we try to emulate the more commonsensical kinds of reasoning that
people do, we find that the crisp precision of classical logics may fall short of what
we want. As we saw in Chapter 11, trying to represent what is known about a

bird stretches our logical forms in one direction—not every bird has all of
what we usually think of as the characteristics of birds in general. But there are
additional needs in artificial intelligence that ask us to stretch our representations
in other ways.

Sometimes it is not appropriate to express a general statement with the totality
of a logical universal. In other words, not every generality has the force of “ ’s
are always, purely, exactly, and unarguably ’s.” As we have seen, there are cir-
cumstances where ’s might (or perhaps only ) be ’s; for example,
birds usually fly, but not always. In other cases, ’s might be fair, but not excellent
examples of ’s; we might, for example, prefer to say that someone is barely com-
petent, or somewhat tall. In situations where we use physical sensors, we might
also have some unavoidable imprecision, as with, for example, a thermometer that
is only accurate to a certain precision.

These cases show that in many situations it may be hard to gauge something
precisely or categorically. In addition to the intrinsic imperfection of statements
like those above, the way that we generate conclusions from data may also be im-
precise. For example, if we learn a fact or a rule from some other person, we may
need to discount for that person’s untrustworthiness, fallibility or past inaccuracies.
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Similarly, we may only understand a physical system to a modest level of depth,
and not be able to confidently apply rules in 100% of the cases; such is the case
with many types of medical knowledge.

In cases like the above, the use of equivocal information and imperfect rules can
yield conclusions that “follow” from premises, but not in the standard logical sense
we have been investigating so far. The “conclusions” that we come to may not be
categorical—we may not be confident in an answer, or only be able to come within
some error range of the true answer, or only really be able to say that something
is “pretty good.” As a result of this fairly common need to equivocate on specific
data and general rules, we need to find ways to stretch the types of knowledge rep-
resentation techniques we have investigated so far in this book. In this chapter, we
look at some of the more common ways to expand our core representations to in-
clude frequencies, impurity of examples, doubt, and other modes of non-categorical
description.

A natural first reaction to the need to expand our interpretation of what follows from
some premises would probably be to suggest using . A probability is
a number expressing the chance that a proposition will be true or that an event
will occur. The introduction of numbers—especially real numbers—would seem
to be the key to avoiding the categorical nature of binary logical values. Given the
introduction of the notion of “less than 100%” into the KR mix, we can easily see
a way to go from “all birds fly” to “95% of birds fly.”

But as appealing as probabilities are, they won’t fill the bill in all ways. Cer-
tainly there will be repeatable sequences of events for which we will want to rep-
resent the likelihood of the next outcome—probabilities work well for sequences
like coin tosses—but we also need to capture other senses of “less than 100%.” For
example, when we talk about the chances that the Blue Jays will win the World
Series, or that Tweety will fly, we are not talking really about the laws of chance
(as we would in assessing the probability of in tossing a fair coin), but rather
opinions based on evidence and an inference about the possibility of the occurrence
of an individual event or the property of a specific bird. And finally, in a somewhat
different vein, to speak of someone being “fairly tall” doesn’t feel like the use of a
probability at all.

So let us take a moment to sort out some different ways to loosen the categorical
grip of standard logics. We start by looking at a typical logical sentence, of the form

( ), as in “Everyone in this room is married.” We can distinguish at least three
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quantifier all
most

statistical
objective

predicate

vague predicates

sentence

uncertain knowledge
subjective

frequency
e.g.

Note that nothing says that these three representational approaches can’t work together: we may
need to represent statements like, “I am pretty sure that most people in the room are fairly short.”
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different types of modification we might try in order to make this logical structure
more flexible:

1. We can relax the strength of the . Instead of “for ,” we might
want to say “for ” or “for 95% of ,” as in “95% of the people in this
room are married.” This yields an assertion about frequency—a in-
terpretation. We say that our use of probability in such sentences is ,
since it is about the world, pure and simple, and not subject to interpretation
or degrees of confidence.

2. We could relax the applicability of the . Instead of only strict asser-
tions like “Everyone in the room is (absolutely) tall,” we could have state-
ments like “Everyone in the room is moderately tall.” This yields the notion
of a predicate like “tall” that applies to an individual to a greater or lesser
extent. We call these . Note that with the relaxation of
the predicate, a person might be considered simultaneously to be both tall
(strongly) and short (weakly).

3. We could relax our degree of belief in the as a whole. Instead of say-
ing “Everyone in the room is married,” we might say “I believe that everyone
in the room is married, but I am not very sure.” This lack of confidence can
come from many sources, but it does not reflect a probabilistic concern (ei-
ther everyone is married or they’re not) or a less than categorical predicate
(a person is either fully married or not married at all). Here we are dealing
with ; when we can quantify our lack of certainty, we
are using a notion of probability, since it reflects some individual’s
personal degree of belief, and not the objective frequency of an event.

This separation of concerns allows us to better determine appropriate representa-
tional mechanisms for less-than-categorical statements. We now look at objective
probabilities, subjective probabilities, and vague predicates, in turn.

Objective probabilities are about . Even though we like to think in terms
of the probability or chance of a single event happening, , whether the next card
I am dealt will be the Ace of Spades, or whether tomorrow will be rainy, the “chance

n n n1 1 1
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of rain” we speak of actually refers to the percentage of time that a rain event will
happen , when the conditions are exactly the same as they are now. In
frequentist terms, the “chance of ” is really the percentage of times is expected
to happen out of a sequence of many events, when the basic process is repeated
over and over, each event is independent of those that have gone before, and the
conditions each time are exactly the same. As a result, the notion of objective
probability, or chance of something, is best applied to processes like coin-flipping
and card-drawing. Weather forecasting draws on the fact that the conditions today
are similar enough to the conditions on prior days to help us decide how to place
our bets—whether or not to carry an umbrella or go ahead with a planned picnic.

The kind of probability that deals with factual frequencies is called
because it does not depend on who is assessing the probability. (In Section 12.3,
we will talk about probabilities, which deal with degrees of belief.) Since
this is a statistical view, it does not directly support the assignment of a belief about
a random event that is not part of any obvious repeatable sequence.

Technically, a probability is a number between 0 and 1 (inclusive) representing the
frequency of an event ( , a coin’s landing on two times in a row) in a large
enough space of random samples ( , a long sequence of coin flips). An event with
probability 1 is considered to always happen, and one with probability 0 to never
happen. More formally, we begin with a universal set of all possible occurrences
( , the result of a large set of coin flips). An event is understood to be any
subset of . A is a function from events to numbers in the
interval [0 1] satisfying the following two basic postulates:

1. ( ) = 1.

2. If . . . are disjoint events, then ( . . . ) = ( )+. . .+ ( ).

It follows immediately from these two postulates that

( ) = 1 ( )

and hence that
( ) = 0

It also follows (less obviously) from these that for any two events and ,

( ) = ( ) + ( ) ( )

Another useful consequence is the following:
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12.2.2 Conditional probability and independence
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If . . . are disjoint events and exhaust all the possibilities, that
is, if ( ) = for = , and ( . . . ) = then

( ) = ( ) + . . . + ( )

When thinking about probability, it is sometimes helpful to think in terms of a very
simple interpretation of : we imagine that is a finite set of some sort, and
that ( ) is the number of elements in divided by the size of in other words,
the proportion of elements of that are also in . It is easy to confirm that this
particular set-theoretic interpretation of satisfies the two basic postulates above,
and hence all the other properties as well.

A key idea in probability theory is . The probability of one event may
depend on its interaction with others. We write a conditional probability with a
vertical bar (“ ”) between the event in question and the conditioning event, e.g.,

( ) means the probability of , given that has occurred. This is defined more
formally by the following:

( ) =
( )

( )

Note that we cannot predict in general the value of ( ) given the values of
( ) and ( ) In other words, in terms of our simple set-theoretic interpretation,

we cannot predict the size of ( ) given only the sizes of and .
It does follow immediately from the definition of conditioning that

( ) = ( ) ( )

and more generally, we have the following :

( . . . ) = ( . . . )
( . . . ) ( ) ( )

We also get conditional versions of the properties noted above, such as

( ) = 1 ( )

and the following:

n

n

1 2

1
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If . . . are disjoint events and exhaust all the possibilities, then

( ) = ( ) + . . . + ( )

A very useful rule, called , uses the definition of conditional probability
to relate the probability of given to the probability of given :

( ) =
( ) ( )

( )

Imagine, for example, that is a disease and is a symptom, and we wish to know
the probability of someone having the disease given that they exhibit the symptom.
While it may be hard to estimate directly the frequency with which the symptom
indicates the disease, it may be much easier to provide the numbers on the right-
hand side of the equation, , the unconditional (or ) probabilities of the
disease and of the symptom in the general population, and the probability that the
symptom will appear given that the disease is present. We will find Bayes’ rule
especially helpful when we consider subjective probabilities, below.

Finally, we say that an event is of event if does
not affect the probability of , that is, if

( ) = ( )

This says that the chance of getting event is unaffected by whether or not event
has occurred. In terms of our simple set-theoretic interpretation, is conditionally
independent of if the proportion of elements within set is the same as the
proportion of elements in the general population It follows from the definition
that event is independent of if and only if

( ) = ( ) ( )

if and only if is independent of . So the relation of conditional independence is
symmetric. We also say that if

( ) = ( )

Observe that when we are trying to assess the likelihood of some event given
everything we know, it will not be sufficient to know only some of the conditional
probabilities regarding . For example, if we know that both and are true, then
it does not help to know the value of ( ), since it is unrelated to ( )
unless is independent from given .
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As we proposed in Section 12.1, an agent’s degree of confidence or cer-
tainty in a sentence is separable from and indeed orthogonal to the propositional
content of the sentence itself. Regardless of how vague or categorical a sentence
may be, the degree of belief in it can vary. We might be absolutely certain, for
example, that Bill is quite tall; similarly, we might only suspect that Bill is married.

Degrees of beliefs of this sort are often derived from observations about groups
of things in the world. We may be confident that it will rain today because of the
statistical observation about similar-looking days in the past. Moving from statistics
to graded beliefs about individuals thus seems similar to the move we make from
general facts about the world to . We may conclude that Tweety the bird
flies based on a belief that birds generally fly. But default conclusions tend to be
all or nothing: we conclude that Tweety flies or we do not. With subjective beliefs,
we are expressing levels of confidence rather than all-or-nothing conclusions.

Because degrees of belief often derive from statistical considerations, they are
usually referred to as (subjective) probabilities. Subjective probabilities and their
computations work mechanically like objective ones, but are used in a different
way. We work with them typically in seeing how evidence combines to change our
confidence in a belief about the world, rather than to simply derive new conclusions.

In the world of subjective probability, we define two types of probability relative
to drawing a conclusion. The probability of a sentence involves the prior
state of information or background knowledge (which we indicate by ): ( ).
For example, suppose we know that .2% of the general population has hepatitis.
Given just this, our degree of belief that some randomly chosen individual, John,
has hepatitis is .002. This would be the subjective probability prior to any specific
evidence to consider about John. A probability is derived when new ev-
idence is taken into account: ( ), where is the new evidence. If we
take into account evidence that John is jaundiced, for example, we may conclude
that the posterior probability of John’s having hepatitis, given his symptoms and
the prior probability, is .65. A key issue then, is how we from
various sources to reevaluate our beliefs.

As we have pointed out, there is a basic difference between statistical information
like “the probability that an adult male is married is .43” and a graded belief about
whether a particular individual is married. Intuitively, it ought to be reasonable
to try to derive beliefs from statistical information. The traditional approach to
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doing this is to find a for which we have statistical information, and
use the statistics about the class to compute an appropriate degree of belief for the
individual. A reference class would be a general class into which the individual in
question would fit, and information about which would comfortably seem to apply.

For example, imagine trying to assign a degree of belief to the proposition “Eric
is tall,” where Eric is an American male. If all we knew was the following,

20% of American males are tall.

then we might be inclined to assign a value of .2 to our belief about Eric’s height.
This move from statistics to belief is usually referred to as .

But there is a problem with such a simpleminded technique. Individuals will
in general belong to many classes. For example, we might know that Eric is from
California, and

32% of Californian males are tall.

In general, more specific reference classes would seem to be more informative. So,
we should now be inclined to assign a higher degree of belief to “Eric is tall,” since
(B) gives us more specific information. But suppose we also know

1% of jockeys are tall.

If we do not know Eric’s occupation, should we leave our degree of belief un-
changed? Or do we have to estimate the probability of his also being a jockey
before we can decide? Imagine we also know

8% of American males ride horses.

and

Eric collects unusual hats.

Does this change anything, or is it irrelevant? Simple direct inference computations
are full of problems because of multiple reference classes. This is reminiscent of
our description of specificity in inheritance networks and the problems with simple
algorithms like shortest path.

Given problems like those above, it would be nice to have a more principled way
of calculating subjective probabilities and how these are affected by new evidence.
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This is one less than 2 because we can use the constraint that the sum of values equals 1.
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As a starting point, we might assume that we have a number of propositional
variables (or atomic sentences) of interest, . . . . For example, might be the
proposition that Eric is a lawyer, might be the proposition that Sue is married,

might be the proposition that Sue is rich, and so on. In different states of the
world, different combinations of these sentences will be true. We can think of each
state of the world as characterized by an interpretation which specifies which
atomic sentences are true and which are false. By a

we mean a specification of the degree of belief for each of the 2 possibilities
for all the propositional variables. In other words, for each intepretation , ( )
is a number between 0 and 1 such that ( ) = 1, where the sum is over all 2
possibilities. Intuitively, we are imagining a scenario where an agent does not know
the true state of the world, and ( ) is the degree of belief the agent assigns to the
world state specified by .

Using a joint probability like this, we can calculate the degree of belief in any
sentence involving any subset of the variables. The idea is that the degree of belief
in is the sum of over all interpretations where is true. In other words, we
believe to the extent that we believe in the world states that satisfy . More
formally, we define

( ) = ( )

and where, as before, ( ) = ( ) ( ). By this account, the degree of
belief that Eric is tall given that he is male and from California is the sum of over
all possible world states where Eric is tall, male, and from California divided by the
sum of over all possible world states where Eric is male and from California. It
is not hard to see that this definition of subjective probability satisfies the two basic
postulates of probability listed in Section 12.2.

While this approach does the right thing, and tells us how to calculate any sub-
jective probability given any evidence, there is one major problem with it: it as-
sumes we have a joint probability distribution over all of the variables we care
about. For atomic sentences, we would need to specify the values of 2 1
numbers. This is unworkable for any practical application.

In order to cut down on what needs to be known to reason about subjective proba-
bilities, we will need to make some simplifying assumptions.

P
�

�

�

1 1

1 1 2

1 1 2

1

1 2 2 3 1

+1

+1

+1

Pr

Pr Pr Pr

Pr Pr Pr Pr

Pr

Pr Pr

n n i

i i

n n

n n

i

i j

i j

j

n

n n n n n

n

j j n

n j

j n

n j n

j j n j j

2003 R. Brachman and H. Levesque July 17, 2003

h i

:

h i ^ ^ ^

h i � � � �

h i

j ^ ^ � j ^ ^ � � � j �
�

j ^ ^

�

j ^ ^ j

p ; ; p P ; ; P P

p p

J P ; ; P P P P ;

J P ; ; P P P P :

n

p

p p

p p

p

J P ; ; P
P P P P P P P P P :

P P P

p ; ; p

P P P P P ;

all

will

belief network

parent

Each propositional variable in the belief network is conditionally in-
dependent from the non-parent variables given the parent variables.

parents

c 242

First, we introduce some notation. Assuming we start with atomic sentences
. . . , we can specify an interpretation using . . . , where each is

either (when the sentence is true) or (when the sentence is false). From our
definition above, we see that

( . . . ) = ( . . . )

since there is a single interpretation that satisfies the conjunction of the literals.
One extreme simplification we could make is to assume that of the atomic

sentences are conditionally independent from each other. This amounts to assuming
that

( . . . ) = ( ) ( ) ( )

With this assumption, we would only need to know numbers to fully specify the
joint probability distribution, and therefore all other probabilities.

But this independence assumption is too extreme. Typically there be de-
pendencies among the atomic sentences.

Here is a better idea: let us first of all represent all the variables, , in a di-
rected acyclic graph, which we will call a (or Bayesian network).
Intuitively, there should be an arc from to if we think of the truth of the for-
mer as directly affecting the truth of the latter. (We will see an example below.) We
say in this case that is a of in the belief network.

Let us suppose that we have numbered the variables in such a way that the
parents of any variable appears later in the ordering. (We can always do this
since the graph is acyclic.) Observe that by the chain rule of Section 12.2, we have
that

( . . . ) =
( . . . ) ( . . . ) ( ) ( )

We can see that formulated this way, we would still need to specify 2 1 numbers
since for each term ( . . . ) there are 2 conditional probabilities to
specify (corresponding to the truth or falsity of . . . ), and 2 = 2 1.

However, what we are willing to assume in a belief network is this:

More precisely, we assume that

( . . . ) = ( ( ))
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Figure 12.1: A simple belief network

where ( ) is the conjunction of those . . . literals that are parents
of in the graph. With these independence assumptions, we get that

( . . . ) =
( ( )) ( ( )) ( ( ))

The idea of belief networks, then, is to use this equation to define a joint probability
distribution , from which any probability we care about can be calculated.

Before looking at an example, observe that to fully specify , we need to know
( ( )) for each variable . If has parents in the belief network,

we will need to know the 2 conditional probabilities, corresponding to the truth or
falsity of each parent. Summing up over all variables, we will have no more than

2 numbers to specify, where is the maximum number of parents for any node.
As grows, we expect this number to be much much smaller than 2 .

Consider the four-node belief network in Figure 12.1. This graph represents
the assumption that

( ) = ( ) ( ) ( ) ( )

We can see that the full joint probability distribution is completely specified by
(1 + 2 + 2 + 4) = 7 numbers, rather than the 15 that would be required without the
independence assumptions.

Let’s look at an example to see how we might compute using belief networks. First,
we construct the graph: we assign a node to each variable in the domain, and draw
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Figure 12.2: A belief network example

arrows toward each node from a select set of nodes perceived to be “direct causes”
of . Here’s a sample problem due to Eugene Charniak:

We want to do some reasoning about whether or not my family is out
of the house. Imagine the family has a dog. We virtually always put
the dog out ( ) when the family is out ( ). We also put the dog out for
substantial periods of time when it has a (fortunately, infrequent) bowel
problem ( ). A reasonable proportion of the time when the dog is out,
you can hear her barking ( ) when you approach the house. One last
fact: we usually (but not always) leave the light on ( ) outside the
house when the family is out.

Using this set of facts, we can construct the belief network of Figure 12.2, where
the arcs can be interpreted as causal connections.
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This graph represents the following assumption about the joint probability dis-
tribution:

( ) =
( ) ( ) ( ) ( ) ( )

This joint distribution is considerably simpler than the full one involving the five
variables, given the independence assumptions captured in the belief network. As
a result, we need only (1 + 2 + 1 + 4 + 2) = 10 numbers to specify the full probability
distribution, as shown in the figure.

Suppose we want to use this belief network with the numbers in the figure to
calculate the probability that the family is out, given that the light is on, but we don’t
hear barking: ( ). Using the definition of conditional probability, we
have that

( ) =
( )

( )
=

( )
( )

The sum in the numerator has 4 terms, and the sum in the denominator has 8 terms
(the 4 from the numerator and 4 others). We can compute the 8 needed elements of
the joint distribution from the probability numbers given in the figure, as follows:

1. ( ) = 15 6 01 99 3 = 0002673
that is: ( ) ( ) ( ) ( ) (1 ( ))

2. ( ) = 15 6 01 01 99 = 00000891

3. ( ) = 15 6 99 9 3 = 024057

4. ( ) = 15 6 99 1 99 = 0088209

5. ( ) = 85 05 01 97 3 = 000123675

6. ( ) = 85 05 01 03 99 = 0000126225

7. ( ) = 85 05 99 3 3 = 00378675

8. ( ) = 85 05 99 7 99 = 029157975

Thus, ( ) is the sum of the first four values above (.003315411) divided
by the sum of all eight values (.00662369075), which is about .5.

It is sometimes possible to compute a probability value without using the full
joint distribution. For example, if we wanted to know the probability of the family’s
being out given just that the light was on, ( ), we could first use Bayes’ rule
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to convert ( ) to ( ) ( ) ( ). From our given probabilities,
we know the first two terms, but not the value of ( ). But we can compute that
quite simply: ( ) = ( ) ( ) + ( ) ( ). We have each of
those four values available (the last one using the rule for negation), and thus we
have all the information we need to compute ( ) without going through the
full joint distribution.

In a sense, using the full joint probability distribution to compute a degree of
belief is like using the set of all logical interpretations to compute entailment: it
does the right thing, but is feasible only for small problems. While a belief network
may make what needs to be known in advance practical, it does not necessarily
make practical. Not surprisingly, calculating a degree of belief from a
belief network can be shown to be NP-hard, as hard as full satisfiability. More
surprisingly, determining an value for a degree of belief can also be
shown to be NP-hard. Nonetheless specialized reasoning procedures have been
developed that appear to work well on certain practical problems or on networks
with restricted topologies.

Belief networks are useful for computing subjective probabilities based on inde-
pendence assumptions and causal relationships. But in making decisions under
uncertainty, there are usually other factors to take into account, such as the relative
merit of the different outcomes, and their costs. In general, these are concerns in
what is usually called and lie outside the scope of this book. How-
ever, one simple approach to decision-making is worth glancing at since it is based
on a direct extension to the belief network representation scheme we have just seen.

attempt to extend the reasoning power of belief networks
with a larger set of node-types. In Figure 12.3, which might allow us to decide what
course of action to take in the face of coronary artery disease, we see four types of
nodes: are drawn as circles, and represent probabilistic variables as
before; are drawn as double circles, and represent straightfor-
ward computations based on their inputs; are drawn as rectangles,
and represent all-or-nothing decisions to be made by the user; the —
there is only one—is drawn as a diamond, and represents the final decision to be
made based on some valuation function. Arcs in the diagram represent the appro-
priate obvious influence or relevance relationships (probabilistic and deterministic)
between the nodes.

The intent with diagrams like these is for a system to reason about the relation-
ships between variables that are probabilistically determined, choice-determined,



www.manaraa.com



Dempster-
Shafer Theory

12.3.6 Dempster-Shafer theory

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

2003 R. Brachman and H. Levesque July 17, 2003

angiogram
test

heart
surgery

value

cost

life
years

heart
attack

chest
pain

test
results

future
chest
pain life

quality

coronary artery
disease

X X X X X X X X X X X X X X X Xz
-�

�
�

� �3

�
�

�
�

�
�

� �7

�
�

�
�

�
�

�
�

�
� �>

?
� � � � � �1

�
�

�
�

�
� ��

-

Z
Z

Z
Z

Z
Z Z~

P P P P P P Pq

-� � � � � � � � � � � � � � �1

�
�

�
�

�
� �3

?

?

H H H H H H HHj

� �3
@

@R

@
@

@R

�
�

�
��+

��������������9

B
B

B
B

B
B

B
B

B
B

B
BN

� �
@ @

@@
��

c 247

Figure 12.3: Influence diagram

and deterministically determined. This yields a powerful framework to support
decision-making, and a number of implemented systems reason with these sorts of
representations.

There are other techniques available for allowing a system to pool evidence and
support decisions. While we will not go into any of these in detail, it is worth
mentioning one of the more prominent alternatives, often referred to as

, after the inventors.
Consider the following example. If we flip an unbiased coin, the degree of

belief would be .5 that the coin comes out heads. But now consider flipping a coin
where we do not know whether or not the coin is biased. In fact, it may have tails
on both sides, for all we know. In cases like this, although we have no reason to
prefer heads to tails, we may not want to assign the same degree of belief of .5 to
the proposition that the result is heads. Instead, due to lack of information, we may
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want to say only that the degree of belief lies somewhere between and 0 and 1.
Instead of using a single number to represent a degree of belief, Dempster-

Shafer representations use two-part measures, called and . These
are essentially lower and upper bounds on the probability of a proposition. For a
coin known to be perfectly unbiased, we have .5 belief and .5 plausibility that the
result is heads; but for the mystery coin, we have 0 belief that the result is heads
(meaning we have no reason to give it any credence) and 1 plausibility (meaning
we have no reason to disbelieve it either). The “value” of a propositional variable
is represented by a range, which we might called the of the
variable.

To see where these ideas are useful, imagine we have a simple database with
names of people and their believed ages. In a situation with complete knowledge,
the ages would be simple values ( , 24). But we might not know the exact age
of someone, and would instead have the field in the table filled by a range, as
illustrated below:

Mary [22,26]
Tom [20,22]
Frank [30,35]
Rebecca [20,22]
Sue [28,30]

This would mean, for example, that we believed the age of Tom to lie somewhere
between 20 and 22; 20,21,22 would be the set of possibilities for ( ).

In this kind of setting, simple membership questions like ( ) are no
longer applicable. It is more natural to ask about the of given the pos-
sibility distribution of ( ). For example, given the above table, if = [20 25],
it is that ( ) ; it is that ( ) ; and it is

that ( ) .
Now consider the following question: what is the probability that the age of

an individual selected at random from the table is in the range [20 25]? We would
like to say that the belief (lower bound) in this proposition is 2 5 since two of the
five people in the table are of necessity in the age range from 20 to 25, and the
plausibility (upper bound) in this proposition is 3 5 since at most three of the five
people in the table are in the age range. So the answer is the interval [ 4 6].

This calculation seems commensurate with the information provided. In fact,
the Dempster-Shafer (more complex than is worth going into
here) allows us to combine multiple sources of information like these in which
we have varying levels of knowledge and confidence.
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Figure 12.4: A degree curve for the vague predicate Tall

As mentioned in Section 12.1, quite apart from considerations of frequency and
degree of belief, we can consider the degree to which certain predicates are satisfied.

Let us begin with this question: is a man whose height is 5 feet 9 inches tall? A
first answer might be, compared to what? Obviously, the tallness of a man depends
on whether we are comparing him to jockeys, to basketball players, or to all North
American males. But suppose we fix on a reference class, so that by “tall” we really
mean “tall compared to the rest of North American males.” We might still want to
say that this is not a black-or-white affair; people are tall , just
as they are healthy, fast runners, or close to retirement, to varying degrees.

We call predicates that are intuitively thought of as holding to a degree
. In English, these correspond to adjectives that can be modified by the

adverb “very,” unlike, for instance, “married” or “dead.” Typically, we assume
that for each vague predicate there is corresponding precise in terms
of which the predicate is understood. For “tall” the base function is “height”; for
“rich” it is “net worth”; for “bald” it might be something like “percent hair cover”.

We can capture the relationship between a vague predicate like and its base
function using a function like the one depicted in Figure 12.4, which we call
a . As the height of a person (a North American male) varies from 4
to 8 feet, this curve shows a degree of tallness, from 0 (not at all) to .5 (middling)
to 1 (totally). This definition of would yield the following values for various
individuals and their heights:
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Figure 12.5: Degree curves for variants on Tall

Larry 4’6” 0.00
Roger 5’6” 0.25
Henry 5’9” 0.50
Michael 6’2” 0.90
Wilt 7’1” 1.00

Curves for , and , which are also based on , are
shown in Figure 12.5. The predicate varies in degree in a way that is comple-
mentary to ; is similar to but rises later; rises earlier, but
then decreases, reflecting the fact that an individual can be too tall to be considered
to be only to a high degree. The individuals in the above table would thus
have the following degrees of ness and -ness:

Larry 4’6” 1.00 0.00
Roger 5’6” 0.75 0.00
Henry 5’9” 0.50 0.10
Michael 6’2” 0.10 0.47
Wilt 7’1” 0.00 1.00

In a more qualitative way, given these degree curves, we might consider a man who
is 5’6” pretty short (.75), and at the same time barely tall (.25). In these figures, we
have drawn the degree curves as straight lines with similar slopes, but there is no
reason why they cannot be smooth rounded curves or have different slopes. The
crucial thing is that an object’s degree of satisfaction can be non-zero for multiple
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predicates over the same base function, and in particular for two predicates that are
normally thought of as opposites, such as and .

As with logic and probability, we need to consider boolean combinations of vague
properties, and to what degree these are taken to be satisfied. Negation poses no
special problem: we take the degree to which the negation of a property is satisfied
to be one minus the degree to which the property itself is satisfied, as with and

above. In this case, reasoning with vague predicates is exactly like reasoning
with probabilities, where ( ) = 1 ( ).

Conjunctions and disjunctions, however, appear to be different. Suppose, for
example, that we are looking for a candidate to train as a basketball player. We
might be looking for someone who is tall, physically coordinated, strong, and so
on. Imagine that we have a person who rates highly on each of these. Obviously this
person should be considered a very good candidate. This suggests that the degree
to which a person satisfies the conjoined criterion

. . .

should be the product of the degrees to which she satisfies each individual one.
If there were a total of twenty criteria, say, and all were satisfied at the very high
level of .95, we would not want to say the degree of satisfaction of the conjoined
criterion was only 36 = ( 95)

There is, consequently, a difference between the of satisfying the
conjoined criterion—which, assuming independence, would be the product of the
probabilities of satisfying each individual criterion—and the to which the
conjoined criterion is satisfied. Arguably, the degree to which an individual is and

is the of the degrees to which the individual is and is . Similarly, the
degree to which a criterion is satisfied is best thought of as the
degree to which each individual criterion is satisfied.

One of the most interesting applications of vague predicates involves their use in
production rules of the sort we saw in Chapter 7. In a typical application of what
is sometimes called , the antecedent of a rule will concern quantities
that can be measured or evaluated, and the consequent will concern some control
action. Unlike standard production systems where a rule either does or does not
apply, here the antecedent of a rule will apply to some degree and the control action
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will be affected to a commensurate degree. In that regard, these rules work less like
logical implications and more like continuous mappings between sets of variables.
The advantage of rules using vague predicates is that they enable inferences even
when the antecedent conditions are only partially satisfied. In this kind of a system,
the antecedents apply to values from the same base functions, and the consequent
values are taken from the same base functions. The rules are usually developed in
groups and are not taken to be significant independent of one another; their main
goal is to work in concert to jointly affect the output variable. Rules of this sort
have been used in a number of successful engineering applications.

Let us consider an example of a set of such rules. Imagine that we are trying to
decide on a tip at a restaurant based on the quality of the food and service. Assume
that service and food quality can each be described by a simple number on a linear
scale (e.g., a number from 0 to 10). The amount of the tip will be characterized as
a percentage of the cost of the meal, where for example, the tip might normally be
around 15%. We might have the following three rules:

1. the service is poor the food is rancid the tip is stingy.

2. the service is good the tip is normal.

3. the service is excellent the food is delicious the tip is generous.

In the last rule we see vague predicates like “excellent,” “delicious,” and “gen-
erous,” and we imagine in most circumstances that the service will be excellent to
some degree, the food will be delicious to some degree, and the resulting tip should
be correspondingly generous to some degree. Of course the other two rules will
also apply to some degree and could temper this generosity. We assume that for
each of the eight vague predicates mentioned in the rules (like “rancid”) we are
given a degree curve relating the predicate to one of three base quantities: service,
food quality, or tip. The problem we wish to solve is the following: given a specific
numeric rating for the service and another specific rating for the food, calculate a
specific amount for the tip, subject to the above rules.

One popular method used to solve this problem is as follows:

1. , that is, determine the degree to which each of the vague
predicates used in the antecedents hold of each of the inputs; in other words,
use the given degree curves to determine the degree to which the predicates
“poor,” “rancid,” “good,” etc., apply for the given ratings of the inputs, ser-
vice and food.
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evaluate the antecedents

evaluate the consequents

aggregate the consequents

“defuzzify” the output
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For example, if we are given that the service rating is 3 out of 10, and the
food rating is 8 out of 10, the degree curves might tell us that the service is
excellent to degree 0.0 and that the food is delicious to degree 0.7.

2. , that is, determine the degree to which each rule is
applicable by combining the degrees of applicability of the individual predi-
cates determined in the first step, using the appropriate combinations for the
logical operators.

For the third rule in our example, the antecedent is the disjunction of the
service being excellent and the food being delicious. Using the numbers
from the previous step, we conclude that the rule applies to degree 0.7 (the
maximum of 0.0 and 0.7). The other two rules are similar.

3. , that is, determine the degree to which the predi-
cates “stingy,” “normal,” and “generous” should be satisfied. The intuition
is that the consequent in each rule should hold only to the degree that the rule
is applicable.

For the third rule in our example, the consequent is the predicate “generous.”
We need to reconsider the degree curve for this predicate to ensure that we
will be generous only to the degree that this third rule is applicable. One
way to do this (but not the only way) is to cut off the given degree curve at a
maximum of 0.7. The other two rules can be handled similarly.

4. , that is, obtain a single degree curve for the tip
that combines the “stingy,” “normal,” and “generous” ones in light of the
applicability of the rules. The intuition is that each possible value for the tip
should be recommended to the degree that it is supported by the rules in the
previous step.

In our example, we take the three clipped curves for “stingy,” “normal,” and
“generous” from the previous step and we overlay them to form a composite
curve whose value at any tip value is the maximum of the values given by the
three individual curves. Other ways of combining these curves are possible,
depending on what was done in the previous step.

5. , that is, use the aggregated degree curve to generate a
weighted average value for the tip.

One way to do this in our example is to take the aggregated curve from the
previous step and find the center of area under the curve. This is the tip value
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Figure 12.6: Fuzzy control example

for which there is as much weight for lower tip values as there is for higher
tip values. The result is a recommended tip of 15.8%.

The five step process is illustrated graphically in Figure 12.6. Starting at the
bottom left hand side, we see the two input values for service and food. Imme-
diately above, the degree curves for “excellent” and “delicious”, the antecedents
of the third rule, are seen to intersect the given input values at 0.0 and 0.7. The
maximum of these, 0.7, is projected to the right where it intersects the degree curve
for “generous,” the consequent of the third rule. Immediately to the right of this,
we see this curve clipped at the value of 0.7. This clipped curve is then combined
with the clipped curves for “normal” and for “cheap” just above, to produce the
final aggregated curve in the bottom right hand corner. The center of area of this
final curve is the point where the tip is 15.8%, the final output. So in this example,
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Tall VeryTall FairlyTall

Tall
height Tall bill

height bill
height bill

height bill Tall bill

height bill Tall bill
Tall bill height bill height bill

Tall bill

Tall bill height bill

Tall bill

Note in the restaurant example, for instance, that the impact that a degree curve has on the final
tip depends on the area below that curve. A single spike at a particular value (representing a degree
curve for a precise value) would have much less impact on the center of area calculation than a curve
with a larger spread.
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the quality of the food was sufficient to compensate for the somewhat mediocre
service, yielding a slightly more generous than normal tip.

While the procedure described above appears to work well in many applications, it
is hard to motivate it from a semantic point of view, and indeed, several incompati-
ble variants have been proposed. It has been suggested that despite the conceptual
differences between degrees of belief and degrees of satisfaction (noted above),
much of the reasoning with vague predicates can be recast more transparently in
terms of subjective probability.

Under this interpretation, we treat , , , etc., as ordinary
predicates, true of a person in some interpretations and false in others. There are no
“borderline” cases: in some interpretations, a person whose height is 5’9” is tall,
and in others not. Each of the base predicates, such as , is associated with a base
measure, such as . We imagine that in addition to sentences like ( ) we
have atomic sentences like ( ) = where is a number.

Turning now to probabilities, for each , ( ( ) = ) will be a number
between 0 and 1, and the sum over all must equal to 1. As we go from = 4 to

= 8 feet say, we expect to see some sort of bell-shaped curve around a mean of
say 5’7”.

What do we expect for the curve as we vary for ( ( ) = ( ))?
We expect a bell curve again, but with a higher mean (say 6’1”) and perhaps sharper
(less spread). By Bayes’ Rule, we know that

( ( ) = ( )) =
( ( ) ( ) = ) ( ( ) = )

( ( ))

What can we say about the curve for ( ( ) ( ) = )? It has to be a
curve such that when you multiply it by the original bell curve and then divide by
a constant (i.e., ( ( ))), you get the second shifted sharper bell curve. Here’s
the main observation: if we draw this curve, going from = 4 to = 8 feet,
what we need is exactly the sort of curve we have been calling the degree curve for
tallness. In other words, the proposal in this reconstruction is to reinterpret “degree
of tallness for height of ” as “degree of belief in tallness given a height of ”.
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AveragedTip tip food service

tip food service

tip food service
food service

Generous Normal Stingy

tip food service
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When and are not independent, the only requirement on the probability of ( ) is that it
be no larger than the probability of either one.

We assume a countable number of possible values for the tip. Otherwise, the summations here
would have to be integrals.
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What then happens to boolean combinations of properties? Things work out so
long as we are prepared to assume that

( ) = ( ) ( )

This is allowed, provided we do assume that and are independent. More-
over, with this assumption, we derive that

( ) = ( ) ( )

by using general properties of probability.
Finally, what about the production rules? In the given restaurant example, we

want to calculate an aggregate tip, given the service and food rating. In subjective
terms, for a food rating of and a service rating of , the weighted average is
defined by

= (( = ) ( = ) ( = ))

We do not have nearly enough information to calculate the joint probabilities of all
the propositions involved. However, we will sketch some reasonable assumptions
that would permit a subjective value to be computed.

First, observe that for any , and , the value we need,

(( = ) ( = ) ( = ))

is equal to

(( = ) ( = ) ( = ))
( ( = ) ( = ))

where is or its negation, is or its negation, and is
or its negation. Taking the first of these terms, we assume that the tip is completely
determined given , and , so that

(( = ) ( = ) ( = )) =
(( = ) )
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Applying Bayes’ rule, we get that this is equal to

( ( = )) (( = ))

( ( = )) (( = ))

If we now assume that tips are equally likely, this is equal to

( ( = ))

( ( = ))

For any value of , we have that

( ( = ))

can be assumed to be

( ( = )) ( ( = )) ( ( = ))

which can be calculated from the given degree curves for , , and
. This leaves us only with calculating

( ( = ) ( = ))

which we can again assume to be

( ( = ) ( = ))
( ( = ) ( = ))
( ( = ) ( = ))

To calculate these, we use the given production rules: we assume that the prob-
ability of a proposition like is the maximum of the probability of the
antecedents of all rules where it appears as a consequent. So, for example,

( ( = ) ( = ))

is assumed to be equal to

( ( = ) ( = ))
( ( = ) ( = ))

Taking the food quality to be independent of the service quality, this is equal to

( ( = ))
( ( = ))

and for these we use the remaining degree curves for , , and so
on. This completes the required calculation.
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Metastatic cancer is a possible cause of a brain tumor
and is also an explanation for an increased total serum
calcium. In turn, either of these could cause a patient
to fall into an occasional coma. Severe headache could
also be explained by a brain tumor.
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1. One way to understand probabilities is to imagine taking a snapshot of all the
entities in the domain of discourse (assuming there are only finitely many),
and looking at the proportion of them having certain properties. We can then
use elementary set theory to analyze the relationships among various prob-
abilities. Under this reading, the probability of given is defined as the
number of elements in both and divided by the number of elements in
alone: ( ) = Similarly, ( ) the probability of itself can
be thought of as ( ) where is the entire domain of discourse. Note
that according to this definition, the probability of is 1 and the probability
of the empty set is 0.

Use this simple model of probability to do the following:

(a) Prove that ( ) = ( ) ( ) ( )

(b) Prove Bayes’ Theorem: ( ) = ( ) ( ) ( )

(c) Suppose that . . . are mutually exclusive events of which one
must occur. Prove that for any event we have that

( ) = ( )

(d) Derive (and prove correct) an expression for ( ) that does not use
either disjunction or conjunction.

(e) Recall that two statistical variables and are said to be
iff ( ) = ( ) ( ). However, just because and

are independent, it does not follow that (( ) ) = ( ) ( )
Explain why.

2. Consider the following example:
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a

b c

d e

a :

b a : b a :

c a : c a :

e c : e c :

d b; c : d b; c :

d b; c : d b; c :

a; b; c

a

c f t

v

a priori

The fire alarm in a building can go off if there is a fire in
the building or if the alarm is tampered with by vandals.
If the fire alarm goes off, this can cause crowds to gather
at the front of the building and firetrucks to arrive.
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(a) Represent these causal links in a belief network. Let stand for “meta-
static cancer,” for “increased total serum calcium,” for “brain tu-
mor,” for “occasional coma,” and for “severe headaches.”

(b) Give an example of an independence assumption that is implicit in this
network.

(c) Suppose the following probabilities are given:

( ) = 2
( ) = 8 ( ) = 2
( ) = 2 ( ) = 05
( ) = 8 ( ) = 6
( ) = 8 ( ) = 8
( ) = 8 ( ) = 05

and assume that it is also given that some patient is suffering from se-
vere headaches, but has not fallen into a coma. Calculate joint proba-
bilities for the 8 remaining possibilities (that is, according to whether

and are true or false).

(d) According to the numbers above, the probability that the patient
has metastatic cancer is .2. Given that the patient is suffering from
severe headaches but has not fallen into a coma, are we now more or
less inclined to believe the hypothesis? Explain.

3. Consider the following example:

(a) Represent these causal links in a belief network. Let stand for “alarm
sounds”, for “crowd gathers”, for “fire exists”, for “firetruck ar-
rives”, and for “vandalism exists”

(b) Give an example of an independence assumption that is implicit in this
network.

(c) What are the 10 conditional probabilities that need to be specified to
fully determine the joint probability distribution? Suppose that there is
a crowd in front of the building one day, but that no firetrucks arrive.
What is the chance that there is a fire, expressed as some function of
the 10 given conditional probabilities?
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a priori

Aching elbows and aching hands may be the result of
arthritis. Arthritis is also a possible cause of tennis el-
bow, which in turn may cause aching elbows. Dishpan
hands may also cause aching hands.

a
priori
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(d) Suppose we find out that in addition to setting off the fire alarm, vandals
can cause a firetruck to arrive by phoning the Fire Department directly.
How would your belief network need to be modified. Assuming all the
given probabilities remain the same (including the probability
of vandalism), there would still not be enough information to calculate
the full joint probability distribution. Would it be sufficient to be given

( ) and ( )? How about being told ( ) and ( )
instead? Explain your answers.

4. Consider the following example:

(a) Represent these facts in a belief network. Let stand for “arthritis,”
for “aching hands,” for “aching elbow,” for “tennis elbow,”

and for “dishpan hands.”

(b) Give an example of an independence assumption that is implicit in this
network.

(c) Write the formula for the full joint probability distribution over all 5
variables.

(d) Suppose the following probabilities are given:

( ) = ( ) = 1
( ) = ( ) = 99
( ) = ( ) = 99
( ) = ( ) = 00001
( ) = 0001
( ) = 01
( ) = 001
( ) = 01

Assume that we are interested in determining whether it is more likely
that a patient has arthritis, tennis elbow, or dishpan hands.

i. With no observations at all, which of the three is most likely
?
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ii. If we observe that the patient has aching elbows, which is now the
most likely?

iii. If we observe that the patient has both aching hands and elbows,
which is the most likely?

iv. How would your rankings change if there were no causal con-
nection between tennis elbow and arthritis, where for example,

( ) = ( ) = 00999

Show the calculations justifying your answers.
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Abductive Reasoning

deductive

abductive reasoning

In the last section of this chapter, we will see that it can be useful to have some deductive tasks
that return formulas as well.

So far in this book we have concentrated on reasoning that is primarily
in nature: given a KB representing some explicit beliefs about the world, we try to
deduce some , to determine if it is an implicit belief, or perhaps to find a constant
(or constants) such that is an implicit belief. This pattern shows up not only in
ordinary logical reasoning, but also in description logics and procedural systems.
In fact, a variant even shows up in probabilistic and default reasoning, where extra
assumptions might be added to the KB, or degrees of belief might be considered.

In this chapter, we consider a completely different sort of reasoning task. Sup-
pose we are given a KB and an that we do not believe at all (even with default
assumptions). We might ask the following: given what we already know, what
would it take for us to believe that was true? In other words, what else would we
have to be told for to become an implicit belief? One interesting aspect of this
question is that the answer we are expecting will not be “yes” or “no” or the names
of some individuals; instead, the answer should be a formula of the representation
language.

The typical pattern for deductive reasoning is as follows:

given ( ), from , we can deduce ;

the corresponding pattern for what is called is as follows:

given ( ), from , we can abduce ;

Abductive reasoning is in some sense the converse of deductive reasoning: instead
of looking for sentences entailed by given what is known, we look for sentences

�

2

2

p

q p q

q

p q

;

induction



^ �

^ �

�
�

^ : �

� ^

13.1 Diagnosis

2003 R. Brachman and H. Levesque July 17, 2003

explanation

i.e.

i.e.

diagnosis

Disease Symptoms

Symptoms Disease

TennisElbow SoreElbow
TennisElbow TennisPlayer
Arthritis Treated SoreJoints
SoreJoints SoreElbow SoreHips

The term “abduction” in this sense is due to the philosopher C. S. Peirce, who also discussed a
third possible form of reasoning, , which takes as given (a number of instances of) both
and , and induces that ( ) is true.
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that would entail given what is known.
Another way to look at abduction is as a way of providing an . The

typical application of these ideas is in reasoning about causes and effects. Imagine
that is a cause (for example, “it is raining”) and is an effect (for example, “the
grass is wet”). Deductive reasoning would be used to predict the effects of rain, ,
wet grass, among others; abductive reasoning would be used to conjecture the cause
of wet grass, , rain, among others. In this case, we are trying to find something
that would be sufficient to explain a sentence’s being true.

One case of reasoning about causes and effects where abductive reasoning appears
especially useful is . Imagine that we have a collection of facts in a KB
of the form

( . . . )

where the ellipsis is collection of hedges or qualifications. The goal of diagnosis is
to find a disease (or diseases) that best explains a given set of observed symptoms.

Note that in this setting we would not expect to be able to reason deductively
using facts of the form

( . . . )

because facts like these are much more difficult to obtain. Typically, a disease will
have a small number of well-known symptoms, but a symptom can be associated
with a large number of potential diseases (e.g., fever can be caused by hundreds of
afflictions). It is usually much easier to account for an effect of a given cause than
to prescribe a cause of a given effect. So the diagnosis we are looking for will not
be an entailment of what is known; rather, it is merely a conjecture.

For example, imagine a KB containing the following (in non-quantified form,
to keep things simple):

,
,

,
.
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Treated Arthritis

TennisPlayer
TennisElbow SoreElbow

TennisElbow ChickenPox

Vegetarian

TennisElbow Vegetarian
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Now suppose we would like to explain an observed symptom: . Infor-
mally, what we are after is a diagnosis like which clearly accounts
for the symptom, given what is known. Another equally good diagnosis would be
( ) which also explains the symptom. So we are imagining that
there will in general be multiple explanations for any given symptom, quite apart
from the fact that logically equivalent formulas like ( ) would
work as well.

In characterizing precisely what we are after in an explanation, it useful to think in
terms of four criteria:

Given KB and a formula to be explained, we are looking for a for-
mula satisfying the following:

1. is sufficient to account for . More precisely, we want to find
an such that KB = , or equivalently, KB = ( ).
Any that does not satisfy this property would be considered too
weak to serve as an explanation for .

2. is not ruled out by the KB. More precisely, we want it to be the
case that KB is consistent, or equivalently, that KB = .
Without this, a formula like ( ), which always satisfies the
first criterion above, would be a reasonable explanation. Simi-
larly, if were a fact in the above KB, then even
though would still entail , it would not
be an appropriate diagnosis.

3. is as simple and parsimonious as possible. By this we mean
that does not mention extraneous conditions. A simple case of
the kind of situation we want to avoid is when is unnecessarily

. In the above example, a formula like

( )

satisfies the first two criteria: it implies the symptom and is con-
sistent with the KB. But the part about chicken pox is unneces-
sary. Similarly (but less obviously), the can be unnecessarily

. If were a fact in the above KB, then a formula
like

( )

1 n i

i
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SoreJoints
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would still satisfy the first two criteria, although the vegetarian
part is unnecessary. In general, we want to use as few terms as
possible. In the propositional case, this means as few literals as
possible.

4. is in the appropriate vocabulary. Note, for example, that ac-
cording to the first three criteria above, is a formula
that explains . We might call this the explana-
tion. It is also the case that satisfies the first three cri-
teria. For various applications, this may or may not be suitable.
Intuitively, however, in this case, since we think of in
this KB as being almost just another name for the conjunction of

and , it would not really be a good explana-
tion. Usually, we have in mind a set of possible hypotheses
(a set of atomic sentences) in terms of which explanations are to
be phrased. In the case of medical diagnoses, for instance, these
would be diseases or conditions like or .
In that case, would not be a suitable explanation.

We call an that satisfies the four conditions above an abductive
of with respect to KB.

With this definition of an explanation in hand, we will see that in the propositional
case at least, certain simplifications to the task of generating explanations are pos-
sible.

First of all, while we have considered explaining an arbitrary formula , it is
sufficient to know how to explain a single literal, or even just an atom. The reason
for this is that we can choose a new atom that appears nowhere else, and get that

is an explanation for with respect to KB if and only if is an explanation for
with respect to (KB ( ), as can be verified by considering the definition of
explanation above. In other words, according to the criteria in the above definition,
anything that is an explanation for would also be considered an explanation for

, and vice-versa.
Next, while we have considered explanations that could be any sort of formula,

it is sufficient to limit our attention to conjunctions of literals. To see why, imagine
that some arbitrary formula is an explanation for , and assume that when is
converted into DNF, we get ( ), where each is a conjunction of lit-
erals. Observe that each entails , and uses terms of the appropriate vocabulary.



www.manaraa.com
i

i i

0 0

0 0 0

prime implicate

etc.

13.2.2 Prime implicates

2003 R. Brachman and H. Levesque July 17, 2003

j : � j [ f g

6j
j

� 6j

j

f ^ ^ � : ^ � : ^ � g

_ : _ : _

_: _: _:
j j : _ :

j [f g 6j

�

_: _ : _ _:

: ^

d �

d � d

� �

� c

c � c �

c

c

c

c c c

c c c c

p q r g ; p q g ; q r g

p q g r g

p p q q r r

� � � � �

�

c c � c

c � c �

�

g g

p q g r g g g g
p q r

g

c 267

Moreover, at least one of the must be consistent with the KB (since otherwise
would not be). This is also as simple or simpler than itself. So this single
by itself can be used instead of as an explanation for .

Because a conjunction of literals is logically equivalent to the negation of a
clause, it then follows that to explain a literal , it is sufficient to look for a clause
(in the desired vocabulary) with as few literals as possible that satisfies the follow-
ing constraints:

1. KB = ( ), or equivalently, KB = ( ), and

2. KB = .

This brings us to the topic of prime implicates.

A clause is said to be a of a KB if and only if

1. KB = , and

2. for every , it is the case that KB = .

Note that for any clause , if KB = , then some subset of or perhaps itself must
be a prime implicate of KB. For example, if we have a KB consisting of

( ) ( ) ( )

then among the prime implicates are ( ) and ( ). Each of these
clauses is entailed by KB, and no subset of either of them is entailed. In this KB,
the tautologies ( ) ( ), ( ), , are also prime implicates. In general,
note that for any atom , unless KB = or KB = , the tautology ( ) will
be a prime implicate.

Returning now to explanations for a literal , as we said, we want to find mini-
mal clauses such that KB = ( ) but KB = . Therefore, it will be sufficient
to find prime implicates containing , in which case, the negation of ( ) will
be an explanation for . For the example KB above, if we want to generate the ex-
planations for , we first generate the prime implicates of KB containing , which
are ( ), ( ), and ( ), and then we remove the atom and negate
the clauses to obtain three explanations (as conjunctions of literals): ( ), ,
and itself. Note that tautologous prime implicates will always generate trivial
explanations.
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From the above we can derive a procedure to compute explanations for any literal
in some vocabulary :

1. calculate the set of prime implicates of the KB that contain the literal ;

2. remove from each of the clauses;

3. return as explanations the negations of the resulting clauses, provided that
the literals are in the language .

The only thing left to consider is how to generate prime implicates.
As it turns out, Resolution can be used directly for this: it can be shown that

in the propositional case, Resolution is complete for non-tautologous prime im-
plicates. In other words, if KB is a set of clauses, and if KB = where is a
non-tautologous prime implicate, then KB . The completeness of Resolution
for the empty clause, used in the Resolution chapter, is just a special case: the
empty clause, if entailed, must be a prime implicate. So we can compute all prime
implicates of KB containing by running Resolution to completion, generating
resolvents, and then keeping only the minimal ones containing . If we want to
generate trivial explanations as well, we then need to add the tautologous prime
implicates to this set.

This way of handling explanations suggests that it might be a good idea to pre-
compute all prime implicates of a KB using Resolution, then to generate explana-
tions for a literal by consulting this set as needed. Unfortunately, this will not work
in practice. Even for a KB that is a set of Horn clauses, there can be
many prime implicates. For example, consider the following Horn KB over the
atoms , , , for 0 , and and . This example is a version of
parity checking; means bit is on, means off, means the count up to level

is even, means odd:

This KB contains 4 + 2 Horn clauses of size 3 or less. Nonetheless there are 2
prime implicates that contain : any clause of the form [ . . . ] where

is either or and an even number of them are ’s will be a prime implicate.
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Figure 13.1: A circuit for a full adder

In this section, we apply the above ideas to a circuit diagnosis problem. Overall,
the problem is to determine which component (or components) of a Boolean circuit
might have failed given certain inputs and outputs, and a background KB specifying
the structure of the circuit, the normal behaviour of logic gates, and perhaps a fault
model.

The circuit in question is the full adder shown in Figure 13.1. A full adder
takes three bits as input—two addends and a carry bit from a previous adder—and
produces two outputs—the sum and the next carry bit. The facts we would expect
to have in a KB capturing this circuit are as follows:

Components, using gate predicates:

( ) ( ) ( ) ( );

( ), ( ),
( ), ( ),

( );

the whole circuit: ( ).

Connectivity, using functions for input , and for output (where
inputs and outputs are numbered from the top down in the diagram):

3

13.3.1 The diagnosis
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( ) = ( ), ( ) = ( ),
( ) = ( ), ( ) = ( ),
( ) = ( ), ( ) = ( ),
( ) = ( ), ( ) = ( ),
( ) = ( ), ( ) = ( ),

( ) = ( ), ( ) = ( ).

Truth tables in terms of functions , and :

(0 0) = 0, (0 1) = 0,
(0 0) = 0, (0 1) = 1,
(0 0) = 0, (0 1) = 1,

The normal behavior of logic gates, using a predicate Ab:

( ) ( ) ( ) = ( ( ) ( ))

( ) ( ) ( ) = ( ( ) ( ))

( ) ( ) ( ) = ( ( ) ( ))

Finally, we may or may not wish to include some specification of possible
abnormal behaviors of the circuit. This is what is usually called a .
For example, we might have the following specification:

short circuit:
[ ( ) ( )] ( ) ( ) = ( )

In this example, nothing is specified regarding the behavior of abnormal and-gates.
Of course by leaving out parts of a fault model like this, or by making it too weak,
we run the risk that certain abnormal behaviors may be inexplicable, as we will
discuss further below. Note also that abnormal behavior can be compatible with
normal behavior on certain inputs (the output is the same whether or not the gate is
working).

The abductive diagnosis task is as follows: given a KB as above, and some input
of the circuit, for example,

( ) = 1, ( ) = 0, ( ) = 1,
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explain some output of the circuit, for example,

( ) = 1, ( ) = 0,

in the language of Ab. What we are looking for, in other words, is a minimal
conjunction of ground ( ) and ( ) terms such that

KB =

To do this computation, we can use the techniques described above, although we
first have to “propositionalize” by observing, for example, that the universally quan-
tified in the above need only range over the five given gates.

To do this by hand, the easiest way is to make a table of all 2 possibilities
regarding which gates are normal or abnormal, seeing which of them entail the ob-
servations, and then looking for commonalities (and thus simplest possible expla-
nations). In Figure 13.2, in each row of the table, the sixth column says whether or
not the conjunction of Ab literals (either positive or negative) together with the KB
and the input settings entails the output observations. (Ignore the seventh column
for now.) For example, in row 5, we see that

( ) ( ) ( ) ( ) ( )

entails the outputs; however, it is not an explanation since

( ) ( ) ( )

also entails the outputs (as can be verified by examining the 4 rows of the table
with these values) and is simpler. Moreover, no subset of these literals entails the
outputs. Continuing in this way, we end up with 3 abductive explanations:

1. ( ) ( ) ( ),
gates and are defective, but is working;

2. ( ) ( ) ( ),
gate is defective, but and are working;

3. ( ) ( ) ( );,
gates and are defective, but is working.

Observe that not all components are mentioned in these explanations. This is be-
cause, given the settings and the fault model, we would get the same results whether
or not the components were working normally. Different settings (or different fault
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Figure 13.2: Diagnosis of the full adder

models) could lead to different diagnoses. In fact, a key principle in this area is
what is called , that is, trying to discover tests that would dis-
tinguish between competing explanations. In the case of the circuit, this amounts to
trying to find different input settings that would provide different outputs depending
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entailed? consistent?

( ) ( ) ( ) ( ) ( ) no yes
( ) ( ) ( ) ( ) ( ) no yes
( ) ( ) ( ) ( ) ( ) no yes
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( ) ( ) ( ) ( ) ( ) yes yes
( ) ( ) ( ) ( ) ( ) no yes
( ) ( ) ( ) ( ) ( ) yes yes
( ) ( ) ( ) ( ) ( ) yes yes
( ) ( ) ( ) ( ) ( ) no yes
( ) ( ) ( ) ( ) ( ) no yes
( ) ( ) ( ) ( ) ( ) no yes
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on what is or is not working normally. One principle of good engineering design is
to make a circuit , that is, configured in such a way as to facilitate testing
its (usually inaccessible) internal components.

One problem with the abductive form of diagnosis presented above is that it re-
lies crucially on the presence of a fault model. Without a specification of how a
circuit would behave when it is not working, certain output observations can be
inexplicable, and this form of diagnosis can be much less helpful.

In many cases, however, we know how a circuit is supposed to work, but may
not be able to characterize its failure modes. We would like to find out which com-
ponents could be at fault when output observations conflict with this specification.
Of course, with no fault model at all, we would be free to conjecture that com-
ponents were at fault. What we are really after, then, is a diagnosis, that
is, one that does not assume any unnecessary faults.

This second version of diagnosis can be made precise as follows:

Assume KB uses the predicate as before. (The KB may or may not
include a fault model.) We want to find a set of components such
that the set

( ) ( )

is with the set

KB

and no proper subset of is. Any such is called a
of the circuit.

So for consistency-based diagnosis, we look for (minimal sets of) assumptions of
abnormality that are consistent with the settings and observations, rather than (min-
imal sets of) assumptions of normality and abnormality that entail the observations.

In the case of the circuit example above (with the given fault model), we can
look for the diagnoses by hand by again making a table of all 2 possibilities re-
garding which gates are normal or abnormal, seeing which of them are consistent
with the settings and observations, and then looking for commonalities (and thus
minimal sets of faulty components). Returning to the table in Figure 13.2, in each

13.4.1 Extensions
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row of the table, the seventh column says whether or not the conjunction of Ab
literals (either positive or negative) is consistent with the KB together with the in-
put settings and the output observations. (Ignore the sixth column this time.) For
example, in row 5, we see that

( ) ( ) ( ) ( ) ( )

is consistent with the inputs and outputs. This does not yet give us a diagnosis since

( ) ( ) ( ) ( ) ( )

is also consistent (row 16), and assumes a smaller set of abnormal components.
Continuing in this way, this time we end up with 3 consistency-based diagnoses:
, , and . Further testing could then be used to narrow down the

possibilities.
While it is difficult to compare the two approaches to diagnosis in general terms,

it is worth noting that they do behave quite differently regarding fault models. In
the abductive case, with less of a fault model, there are usually fewer diagnoses
involving abnormal components, since nothing follows regarding their behaviour;
in the consistency-based case, the opposite usually happens, since anything can be
assumed regarding their behaviour. For example, one of three possibilities consid-
ered in the consistency-based account is that both and are abnormal, since
it is consistent that is producing a 0, and then that the output of is 0. In the
abductive case, none of the explanations involve being abnormal, since there
would then be no way to confirm that the output of is 0. In general, however, it
is difficult to give hard and fast rules about which type of diagnosis should be used.

We conclude this chapter by examining some complications to the simple picture
of abductive reasoning we have presented, and then finally sketching some non-
diagnostic applications of abductive reasoning.

There are are a number of ways in which our account of abductive reasoning could
be enlarged for more realistic applications.

In the first-order case of abductive reasoning,
we might need to change, at the very least, our definition of what it means for
an explanation to be as simple as possible. It might also be useful to consider
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explaining formulas with free variables, as a way of answering certain types of
WH-questions, in a way that goes beyond answer extraction. Imagine we have a
query like ( ). We might return the answer ( = ) using answer extraction,
since this is one way of explaining how ( ) could be true. But we might also
return something like ( ) as the answer to the question. For example, if we ask
the question “what are yellow song birds that serve as pets?” the answer we are
expecting is probably not the names of some individual birds, but rather another
predicate like “canaries.” Note however that it is not clear how to use Resolution
to generate explanations in a first-order setting.

We have insisted that explanations entail everything to be
explained. We might, however, imagine cases where missing observations need to
be accounted for. For example, we might be interested in a medical diagnosis that
does not entail , without necessarily requiring that it entail .

We have used logical entailment as the relation between an expla-
nation and what is being explained . In a more general setting, it might be
preferable to require that it be reasonable to believe given , where this belief
could involve default assumptions. For example, being a bird might explain an
animal being able to fly, even though it would not entail it.

We have preferred explanations and diagnoses that are as sim-
ple as possible. However, in general, not all simplest ones would be expected to be
equally likely. For example, we may have two circuit diagnoses, each involving a
single component, but it may be that one of them is much more likely to fail than
the other. Perhaps the failure of one component makes it very likely that another
will fail as well. Moreover, the “causal laws” we have between (say) diseases and
symptoms would typically have a probabilistic component: only a certain percent-
age of the time would we expect a disease to show a symptom.

Finally, let us consider other applications of abductive reasoning.
This is an application where a system is given input from

a camera, say, and must determine what is being viewed. At one level, the question
is this: what scene would explain the image elements being observed? Abduction
is required here since, as with diseases and symptoms, it is presumed to be easier
to obtain facts that tell us what would be visible if an object were present, than to
obtain facts that tell us what object is present if certain patterns are visible. At a
higher level, once certain properties of the object have been determined, another
question to consider is this: what object(s) would explain the collection of proper-
ties discovered? Both of these tasks can be nicely formulated in abductive terms. 2Σ Σ
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In this case, the observations are the actions of an agent, and
the explanation we seek is one that relates to the high-level goals of the agent. If
we observe the agent boiling water, and heating a tomato sauce, we might abduce
that a pasta dish is being prepared.

As a final application, consider the following. In-
stead of asking “what would I have to be told to believe that is true?” as in
abductive reasoning, we ask “what would I learn if I were told that were true?”
For example, we might be looking for new symptoms that would be entailed if a
disease were present. This is clearly a form of deductive reasoning, but one where
we are interested in returning a formula, rather than a yes/no answer or the names
of some individuals. In a sense, it is the dual of explanation: we are looking for
a formula that is entailed by together with the KB, but one that is not already
entailed by the KB itself, that is simple and parsimonious, and that is in the correct
vocabulary.

Interestingly, there is a precise connection between this form of reasoning and
the type of explanation we have already defined: we should learn on being told

in the above sense if and only if the formula is an abductive explanation for
as already defined. For instance, to go back to the tennis example at the start of

the chapter, one of new things we ought to learn on being told

( )

would be (that is, the arthritis is being treated). If we now go back to
the definition of explanation, we can verify that is indeed an abductive
explanation for

( )

since entails this sentence, is consistent with the KB, and is as simple
as possible. The nice thing about this account is that an existing procedure for
abductive reasoning could be used directly for this type of deductive reasoning.

1. In Chapter 4, we saw that Resolution was logically complete for the empty
clause, but not for clauses in general. Prove that Resolution is complete for
prime implicants that are not tautologous. Assume that is a prime
implicant of a set of clauses Then there is a derivation of given and the
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Figure 13.3: A circuit for AND

31

2

1

negation of Show how to modify this derivation to obtain a new Resolution
derivation that ends with but uses only the clauses in

2. In this question we explore what it could mean to say that a KB “says some-
thing” about some topic. More precisely, we say that a set of propositional
clauses is to an atom iff appears (either positively or nega-
tively) in a non-tautologous prime implicate of .

(a) Give an example of a consistent set of clauses where an atom is
mentioned, but where is not relevant to .

(b) Suppose we have a clause , and a literal . Show that if
= , then appears in a prime implicate of .

(c) Suppose we have a clause , and a literal . Show that if
= , then is logically equivalent to where is with

replaced by .

(d) Suppose is consistent. Use parts (b) and (c) to show that is relevant
to iff there is a non-tautologous clause with , where =
or = such that = .

(e) Use part (d) to argue that there is polynomial time procedure that takes
a set of Horn clauses and an atom as arguments and decides whether

is relevant to . the naive way of doing this would take expo-
nential time since can have exponentially many prime implicates.
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3. Consider the binary circuit for logical AND depicted in Figure 13.3, where
, , and are logical inverters, and is an OR gate.

(a) Write sentences describing this circuit: its components, connectivity,
and normal behaviour.

(b) Write a sentence for a fault model saying that a faulty inverter has its
output the same as its input.

(c) Assuming the above fault model and that the output is given inputs of
and , generate the three abductive explanations for this behaviour.

(d) Generate the three consistency-based diagnoses for this circuit under
the same conditions.

(e) Compare the abductive and consistency-based diagnoses and explain
informally why they are different.
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change

belief revision
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Of course, we might also have changing beliefs about a changing world, but we will not pursue
this here.

The language of FOL is sometimes criticized as being an overly “static” represen-
tation formalism. Sentences of FOL are either true or false in an interpretation and
stay that way. Unlike procedural representations or production systems, there is
seemingly nothing in FOL corresponding to any sort of .

In fact, there are two sorts of changes that we might want to consider. First, there
is the idea of changing what is believed about the world. Suppose is a sentence
saying that birds are the descendants of dinosaurs. At some point, you might come
to believe that is true, perhaps by being told directly. If you had no beliefs about
before, this is a straightforward process that involves adding to your current KB.
If you had previously thought that was false, however, perhaps having concluded
this from a number of other beliefs, dealing with the new information is a much
more complicated process. The study of which of your old beliefs to discard is
an important area of research known as , but one that is beyond the
scope of this book.

The second notion of change to consider is when the beliefs themselves are
about a changing world. Instead of merely believing that John is a student, for
example, you might believe that John was not a student initially, but that he became
a student by enrolling at a university, and that he later graduated, and ceased to be
a student. In this case, while the world you are imagining is certainly changing, the
beliefs you have about John’s history as a whole need not change at all.

In this chapter, we will study how beliefs about a changing world of this sort
can in fact be represented in a dialect of FOL called the . This
is not the only way to represent a changing world, of course, but it is a simple and
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powerful way to do so. It also naturally lends itself to various sorts of reasoning,
including planning, discussed separately in the next chapter.

One way of thinking about change is to imagine being in a certain situation, with
actions moving you from one situation to the next. The situation calculus is a dialect
of FOL in which such situations and actions are taken to be objects in the domain.
In particular, there are two distinguished sorts of first-order terms:

: such as (the act of jumping), ( ) (kicking object ), and
( ) (robot putting object on top of object ). The constant and

function symbols for actions are completely application-dependent.

, which denote possible world histories. A distinguished constant
and function symbol are used. denotes the initial situation, before

any action has been performed; ( ) denotes the situation that results from
performing action in situation .

For example, the situation term ( ( ) ( ( ) )) denotes the situ-
ation that results from first picking up object in and then picking up object .
Note that this situation is not the same as ( ( ) ( ( ) )), since
they have different histories, even though the resulting states may be indistinguish-
able.

Predicates and functions whose values may vary from situation to situation are
called , and are used to describe what holds in a situation. By convention,
the last argument of a fluent is a situation. For example, the fluent ( )
might stand for the relation of robot holding object in situation . Thus, we can
have formulas like

( ) ( ( ( ) ))

which says that robot is not holding in some situation , but is holding in the
situation that results from picking it up. Note that in the situation calculus there is
no distinguished “current” situation. A single formula like this can talk about many
different situations, past, present, or future.
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Finally, a distinguished predicate ( ) is used to state that action can be
performed in situation . For example,

( ( ) )

says that the robot is able to pick up object in the initial situation.
This completes the specification of the dialect.

To reason about a changing world, it is necessary to have beliefs not only about
what is true initially, but also about how the world changes as the result of actions.

Actions typically have , that is, conditions that need to be true for
the action to occur. For example, in a robotics setting, we might have the following:

a robot can pick up an object if and only if it is not holding anything, the
object is not too heavy, and the robot is next to the object:

( ( ) )
( ) ( ) ( );

it is possible for a robot to repair an object if and only if the object is broken
and there is glue available:

( ( ) ) ( ) ( )

Actions typically also have , that is, fluents that are changed as a result of
performing the action. For example,

dropping a fragile object causes it to break:

( ) ( ( ( ) ));

repairing an object causes it to be unbroken:

( ( ( ) ))

Formulas like those above are often called and
respectively. Effect axioms are called if they describe when a fluent be-
comes true, and otherwise.

14.1.3 Frame axioms
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To fully capture the dynamics of a situation, we need to go beyond the preconditions
and effects of actions. So far, if a fluent is not mentioned in an effect axiom for an
action , we would not know anything at all about it in the situation ( ). To
really know how the world can change, it is also necessary to know what fluents
are by performing an action. For example,

dropping an object does not change its colour:

( ) ( ( ( ) ));

dropping an object does not break an object when = or is not fragile:

( ) [ = ( )]
( ( ( ) ))

Formulas like these are often called . Observe that we would not
normally expect them to be entailed by the precondition or effect axioms for the
actions involved.

Frame axioms do present a serious problem, however, sometimes called the
. Simply put, the problem is that it will be necessary to know and

reason effectively with an extremely large number of frame axioms. Indeed, for
any given fluent, we would expect that only a very small number of actions affect
the value of that fluent; the rest leave it invariant. For instance, an object’s colour is
unaffected by picking things up, opening a door, using the phone, making linguini,
walking the dog, electing a new Prime Minister of Canada All of these
will require frame axioms. It seems very counterintuitive that we should need to
even think about these 2 facts (where is the number of actions, and

, the number of fluents) about what does not change when we perform an action.
What counts as a solution to this problem? Suppose the person responsible for

building a KB has written down the relevant effect axioms. That is, for each
fluent ( ) and action that can cause the fluent to change, we have an effect
axiom of the form

( ) ( ) ( ( ))

where ( ) is some condition on situation . What we would like is a systematic
procedure for generating all the frame axioms from these effect axioms. Moreover,
if possible, we also want a parsimonious representation for them, since in their
simplest form, there are too many.

And why do we want such a solution? There are at least three reasons:
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Frame axioms are necessary beliefs about a dynamic world that are not en-
tailed by other beliefs we may have.

For the convenience of the KB builder: generating the frame axioms auto-
matically gives us modularity, since only the effect axioms need to be given
by hand. This ensures there is no inadvertent omission or error.

Such a solution is useful for theorizing about actions: we can see what as-
sumptions need to be made to draw conclusions about what does not change.

We will examine a simple solution to the frame problem in Section 14.2.

Given a KB containing facts expressed in the situation calculus as above, there are
various sorts of reasoning tasks we can consider. We will see in the next chapter
that we can do planning. In Section 14.3, we will see that we can figure out how
to execute a high-level action specification. Here we consider two basic reasoning
tasks: projection and legality testing.

The is the following: given a sequence of actions and some ini-
tial situation, determine what would be true if those actions were performed starting
in that initial situation. This can be formalized as follows:

Suppose that ( ) is a formula with a single free variable of the situ-
ation sort, and that is a sequence of actions . . . . To find out
if ( ) would be true after performing starting in the initial situation

, we determine whether or not KB = ( ( )) where ( )
is an abbreviation for ( ( . . . ( ( )) . . .))

For example, using the above effect and frame axioms, it follows that the fluent
( ) would hold after the sequence of actions

( ) ( ) ( ) ( ) ( )

In other words, the fluent holds in the situation

= ( ( ) ( ( ) ( ( ) ( ( ) ( ( ) )))))

It is a separate matter to determine whether or not the given sequence of actions
could in fact be performed starting in the initial situation. This is called the

. For example, a robot might not be able to pick up more than one
object at a time. We call a situation term if it is either the initial situation,

�
n

i i

2 1 0

2
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1
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or the result of performing an action whose preconditions are satisfied starting in a
legal situation. For example, although the term

( ( ) ( ( ) ))

is well formed, it is not a legal situation, since the precondition for picking up
( not holding anything) will not be satisfied in a situation where has already
been picked up. So the legality task is determining whether a sequence of actions
leads to a legal situation. This can be formalized as follows:

Suppose that is a sequence of actions . . . . To find out if
can be legally performed starting in the initial situation , we deter-
mine whether or not KB = ( ( . . . )) for every

such that 1 .

Before concluding this section on the situation calculus, it is perhaps worth
noting some of the representational limitations of this language:

: there are no unknown or unobserved exogenous actions per-
formed by other agents, and no unnamed events;

: we have not talked about how long an action takes, or when it occurs;

: if a situation is the result of performing two actions, one of
them is performed first and the other afterwards;

: there are no continuous actions like pushing an object from
one point to another, or a bathtub filling with water;

: we cannot say that an action occurred in reality, or
occur;

: there are no actions that are constructed from other
actions as parts, such as iterations or conditionals.

Many of these limitations can be dealt with by refinements and extensions to the
dialect of the situation calculus considered here. We will deal with the last of these
in Section 14.3 below.

But first we turn to a solution to the frame problem.
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The solution to the frame problem we will consider depends on first putting all
effect axioms into a normal form.

Suppose, for example, that there are two positive effect axioms for the fluent
:

( ) ( ( ( ) ))
( ) ( ( ( ) ))

So an object is broken if it is fragile and it was dropped, or something next to it
exploded. Using a universally quantified action variable , these can be rewritten
as a single formula

= ( ) ( )
= ( ) ( )

( ( ))

Similarly, a negative effect axiom like

( ( ( ) )),

saying that an object is not broken after it is repaired, can be rewritten as

= ( ) ( ( ))

In general, for any fluent ( ), we can rewrite all of the positive effect axioms
as a single formula of the form

( ) ( ( )) (1)

and all the negative effect axioms as a single formula of the form

N ( ) ( ( )) (2)

where ( ) and N ( ) are formulas whose free variables are among the
and .

Now imagine that we make a completeness assumption about the effect axioms
we have for a fluent: assume that formulas (1) and (2) above characterize the
conditions under which an action changes the value of fluent . We can in fact
formalize this assumption using what are called as fol-
lows: ΠF

F4

4

1 1

Π
Π

Π
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do
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( ) ( ( )) ( ) (3)
if were false, and made true by doing action , then condition
must have been true;

( ) ( ( )) N ( ) (4)
if were true, and made false by doing action , then condition N
must have been true.

Informally, these axioms add an “only if” component to the normal form effect
axioms: (1) says that is made true if holds, while (3) says that is made true
only if holds. In fact, by rewriting them slightly, these explanation closure
axioms can be seen to be disguised versions of frame axioms:

( ) ( ) ( ( ))

( ) N ( ) ( ( )).

In other words, remains false after doing when is false, and remains true
after doing when N is false.

If we are willing to make two assumptions about our KB, the formulas (1), (2), (3),
and (4) can be combined in a particularly simple and elegant way. Specifically, we
assume that our KB entails the following:

integrity of the effect axioms for every fluent :

( ) N ( )

unique names for actions:

( ) = ( ) ( = ) ( = )
( ) = ( ), where and are distinct action names

The first assumption is merely that no action satisfies the condition to make the
fluent both true and false. The second assumption is that the only action terms
that can be equal are two identical actions with identical arguments.

With these two assumptions, it can be shown that for any fluent KB entails
that (1), (2), (3), and (4) together are logically equivalent to the following formula:

( ( )) ( ) ( ( ) N ( ))
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A formula of this form is called a for the fluent because it
completely characterizes the value of fluent in the successor state resulting from
performing action in situation . Specifically, is true after doing if and only
if before doing , (the positive effect condition for ) was true or both and

N (the negative effect condition for ) were true. For example, for the fluent
, we have the following successor state axiom:

( ( ))
= ( ) ( )
= ( ) ( )

( ) = ( )

This says that an object is broken after doing action if and only if is a dropping
action and is fragile, or is a bomb exploding action when is near to the bomb,
or was already broken and is not the action of repairing it.

Note that it follows from this axiom that dropping a fragile object will break
it. Moreover, it also follows logically that talking on the phone does not affect
whether or not an object is broken (assuming unique names, talking on the
phone is distinct from any dropping, exploding, or repairing action). Thus a KB
containing this single axiom would entail all the necessary effect and frame axioms
for the fluent in question.

We have, therefore, a simple solution to the frame problem in terms of the following
axioms:

successor state axioms, one per fluent,

precondition axioms, one per action,

unique name axioms for actions.

Observe that we do not get a small number of axioms at the expense of prohibitively
long ones. The length of a successor state axiom is roughly proportional to the
number of actions that affect the value of the fluent, and, as we noted earlier, we do
not expect in general that very many of the actions would change the value of any
given fluent.

The conciseness and perspicuity of this solution to the frame problem clearly
depends on three factors:
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1. the ability to quantify over actions, so that only actions changing the fluent
need to be mentioned by name;

2. the assumption that relatively few actions affect each fluent, which keeps the
successor state axioms short;

3. the completeness assumption for the effects of actions, which allows us to
conclude that actions that are not mentioned explicitly in effect axioms leave
the fluent invariant.

The solution also depends on being able to put effect axioms in the normal form used
above. This would not be possible, for example, if we had actions whose effects
were . For example, imagine an action whose effect is to
make either the fluent or the fluent true. An effect axiom like

( ( )) ( ( ))

cannot be put into the required normal form. In general, we need to assume that
every action is deterministic in the sense that all the given effect axioms are of
the form

( ) ( ) ( ( ))

How to deal in some way with nondeterministic choice and other complex actions
is the topic of the next section.

So far, in our treatment of the situation calculus, we have assumed that there are
only primitive actions, with effects and preconditions independent of each other.
We have no way of handling , that is to say, actions that have other
actions as components. Examples of these are actions like the following:

: if the car is in the driveway then drive and otherwise walk;

: while there are blocks on the table, remove one;

: pick a red block up off the table and put it on the
floor;

and others, as described below. What we would like to do is to such actions in
terms of their primitive components in such a way that we can inherit their solution
to the frame problem. To do this, we need a compositional treatment of the frame
problem for complex actions. This is precisely what we will provide, and we will
see that it results in a novel kind of programming language.



www.manaraa.com

5 � s s �

x

x; s

def

def

def

Broken
Broken

1 1

1

1

1 1

1 1

1

1

1

5



^

^
^

_

:
^
^

^

9 ^

^ _ : ^

14.3.1 The Do formula

Do

Do

Do
Do Do Do

Do

Do Do

0

0

0

0

0
0

0 0

0 00 00 00 0

0
0 0

2003 R. Brachman and H. Levesque July 17, 2003

if then else

Poss
do

Poss do
do do

do
Poss do

do do

Poss do

if then else

if then else

A
A; s; s A s

s

s :

b b :

s s ;

b ; s

; b ; s

b ; b ; s

s b ; b ; s

; b ; s

; b ; s

s ; b ; s

A

A; s; s A; s s A; s

A B A B

A B ; s; s s : A; s; s B; s ; s

� � A B

� A B ; s; s

� s A; s; s � s B; s; s

pickup InRoom kitchen putaway goto kitchen

pickup
InRoom kitchen pickup

putaway pickup
putaway pickup

InRoom kitchen pickup
goto kitchen pickup

goto kitchen pickup

If ( ) is a formula of the situation calculus with a free variable , then is that formula with the
situation argument suppressed. For example, in a complex action we would use the test ( )
instead of ( ).
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To handle complex actions in general, it is sufficient to show that for each complex
action we care about, there is a formula of the situation calculus, which we call

( ), that says that action when started in situation can terminate legally
in situation . Because complex actions can be nondeterministic, there may be
more than one such Consider, for example, the complex action

[ ( ) ; ( ) ( ) ( )]

For this action to start in situation and terminate legally in the following sen-
tence must be true:

( ( ) )
[ ( ( ( ( ) ))

( ( ) ( ( ) ))
= ( ( ) ( ( ) )))

( ( ( ( ) ))
( ( ) ( ( ) ))

= ( ( ) ( ( ) ))) ]

In general, we define the formula recursively on the structure of the complex
action as follows:

1. For any primitive action , we have

( ) = ( ) = ( ).

2. For the sequential composition of complex actions and , [ ; ], we
have

([ ; ] ) = ( ) ( ).

3. For a conditional involving a test of the form [ ], we have

([ ] ) =
[ ( ) ( )] [ ( ) ( )].
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4. For a test action, [ ?], determining if a condition currently holds, we have

([ ?] ) = ( ) = .

5. For a nondeterministic branch to action or action , [ ], we have

([ ] ) = ( ) ( ).

6. For a nondeterministic choice of a value for variable , [ ], we have

([ ] ) = ( ).

7. For an iteration of the form [ ], we have

([ ] ) = ( )

where the ellipsis is an abbreviation for the conjunction of

( ) ( )
( ) ( ) ( ) ( )

Similar rules can be given for recursive procedures, and even constructs involv-
ing concurrency and interrupts. The main point is that what it means to perform
these complex actions can be fully specified in the language of the situation cal-
culus. What we are giving, in effect, is a purely logical semantics for many of the
constructs of traditional programming languages.

What we end up with, then, is a programming language, called , that gener-
alizes conventional imperative programming languages. It includes the usual im-
perative constructs (sequence, iteration, ), as well as nondeterminism and other
features. The main difference, however, is that the primitive statements of
are not operations on internal states, like assignment statements or pointer updates,
but rather primitive actions in the world, such as picking up a block. Moreover,
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what these primitive actions are supposed to do is not fixed in advance by the lan-
guage designer, but is specified by the user separately by precondition and successor
state axioms.

Given that the primitive actions are not fixed in advance or executed internally,
it is not immediately obvious what it should mean to execute a program .
There are two steps:

1. find a sequence of primitive actions such that ( ( )) is en-
tailed by the KB;

2. pass the sequence of actions to a robot or simulator for actual execution in
the world.

In other words, to execute a program we must first find a sequence of actions that
would take us to a legal terminating situation for the program starting in the initial
situation , and then run that sequence.

Note that to find such a sequence, it will be necessary to reason using the given
precondition and effect axioms, performing projection and legality testing. For
example, suppose we have the program

[ ; ( ) ]

To decide between and , we need to determine whether or not ( )
would be true in the situation that results from performing action .

To see how this would work, consider a simple example in a robotics domain involv-
ing three primitive actions, ( ) (picking up a block), ( ) (putting
a block on the floor), and ( ) (putting a block on the table), and three
fluents ( ) (the robot is holding a block), ( ) (a block is on the
floor), and ( ) (a block is on the table).

The precondition axioms are the following:

( ( ) ) ( );

( ( ) ) ( );

( ( ) ) ( ).

The successor state axioms are the following:

Do
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( ( )) = ( )
( ) = ( ) = ( );

( ( )) = ( )
( ) = ( );

( ( )) = ( )
( ) = ( ).

We might also have the following facts about the initial situation:

( );

( ) ( = ) ( = )

So initially, the robot is not holding anything, and and are the only blocks on
the table. Finally, we can consider two complex actions, removing a block, and
clearing the table:

( ) : [ ( ) ; ( )];

: ( )
[ ( )? ; ( )].

This completes the specification of the example.
To execute the program , it is necessary to first find an appro-

priate terminating situation, ( ), which determines the actions to perform.
To find this situation, we can use Resolution theorem-proving with answer extrac-
tion for the query

KB = ( )

We omit the details of this derivation, but the result will yield a value for like

= ( ( ) ( ( )
( ( ) ( ( ) ))))

from which the desired sequence starting from is

( ) ( ) ( ) ( )

In a more general setting, an answer predicate could be necessary. In fact, in some
cases, it may not be possible to obtain a definite sequence of actions. This happens,
for example, if what is known about the initial situation is that either block or
block is on the table.
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/* for primitive actions */

/* for sequences */

/* for while loops (test false) */

/* for while loops (test true) */

do(A,S1,S2) :-
prim action(A), poss(A,S1), S2=do(A,S1).

do(seq(A,B),S1,S2) :-
do(A,S1,S3), do(B,S3,S2).

do(while(F,A),S1,S2) :-
not holds(F,S1), S2=S1.

do(while(F,A),S1,S2) :-
holds(F,S1), do(seq(A,while(F,A)),S1,S2).

?- do(clear table,s0,S).

c 293

Observe that if what is known about the initial situation and the actions can be
expressed as Horn clauses, the evaluation of programs can be done directly
in . Instead of expanding ( ) into a long formula of the situation
calculus and then using Resolution, we write clauses such as

and so on. Then the goal

would return the binding for the final situation.
This idea of using Resolution with answer extraction to derive a sequence of

actions to perform will be taken up again in the next chapter on planning. When
the problem can be reduced to , we get a convenient and efficient way of
generating a sequence of actions. This has proven to be an effective method of
providing high-level control for a robot.

In the exercises below, and in the follow-up exercises of Chapter 15, we consider
three application domains where we would like to be able to reason about action
and change:

Consider a world with pots that may contain water. There is a sin-
gle fluent, where ( ) is intended to say that a pot
contains litres of water in situation There are only two possible actions,
which can always be executed: ( ) which discards all the water con-
tained in the pot , and ( ), which pours as much water as possible
without spilling from pot to , with no change when = . To simplify

-
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Figure 14.1: The 15-puzzle

goal stateinitial state
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13 5 4

10 2 7 15

1 6 3 8

the formalization, we assume that the usual arithmetic constants, functions
and predicates are also available. (You may assume that axioms for these
have already been provided or built-in.)

The 15-puzzle consists of 15 consecutively numbered tiles located in a
4 4 grid. The object of the puzzle is to move the tiles within the grid so
that each tile ends up at its correct location, as shown in Figure 14.1. The do-
main consists of , numbered 1 to 16, , numbered 1 to 15, and of
course, actions and situations. There will be a single action ( ) whose
effect is to move tile to location when possible. We will also assume a
single fluent, which is a function , where ( ) refers to the location
of tile in situation . The only other non-logical terms we will use is the
situation calculus predicate and, to simplify the formalization, a pred-
icate ( ) which holds when location is one move away from
location For example, location 5 is adjacent only to locations 1, 6, and 9.
(You may assume that axioms for have already been provided.)

Note that in the text we concentrated on fluents that were predicates. Here
we have a fluent that is a function. Instead of writing ( ), you will be
writing ( ) = .

Imagine that we have a collection of blocks on a table, and that
we have a robot arm that is capable of picking up blocks and putting them
elsewhere as shown in Figure 14.2

We assume that the robot arm can hold at most one block at a time. We
also assume that the robot can only pick up a block if there is no other
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Figure 14.2: The blocks word

block on top of it. Finally, we assume that a block can only support or
be supported by at most one other block, but that the table surface is large
enough that all blocks can be directly on the table. There are only two ac-
tions available: ( ) which picks up block and moves it onto block

, and ( ) which moves block onto the table. Similarly, we have
only two fluents: ( ) which holds when block is on block , and

( ) which holds when block is on the table.

For each application, the questions are the same:

1. Write the precondition axioms for the actions.

2. Write the effect axioms for the actions.

3. Show how successor state axioms for the fluents would be derived from these
effect axioms. Argue that the successor state axioms are not logically entailed
by the effect axioms, by briefly describing an interpretation where the effect
axioms are satisfied but the successor state ones are not.

4. Show how frame axioms are logically entailed by the successor state axioms.
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Planning

Chapter 15

planning
goal

plan

When we explored reasoning about action in Chapter 14, we considered how a
system could figure out what to do, given a complex nondeterministic action to
execute, by using what it knows about the world and the primitive actions at its
disposal. In this chapter, we consider a related but more fundamental reasoning
problem: how to figure out what to do to make some arbitrary condition true. This
type of reasoning is usually called . The condition that we want to achieve
is called the , and the sequence of actions we seek that will make the goal true
is called a .

Planning is one of the most useful ways that an intelligent agent can take ad-
vantage of the knowledge it has and its ability to reason about actions and their
consequences. If we think of Artificial Intelligence as the study of intelligent be-
havior achieved through computational means, then planning is central to this study
since it is concerned precisely with generating intelligent behavior, and in partic-
ular, with using what is known to find a course of action that will achieve some
goal. The knowledge in this case involves information about the world, about how
actions affect the world, about potentially complex sequences of events, and about
interacting actions and entities, including other agents.

In the real world, because our actions are not totally guaranteed to have certain
effects, and because we simply cannot know everything there is to know about
a situation, planning is usually an uncertain enterprise, and it requires attention
to many of the issues we have covered in earlier chapters, such as defaults and
reasoning under uncertainty. Moreover, planning in the real world involves trying
to determine what future states of the world will be like, but also observing the
world as plans are being executed, and replanning as necessary. Nonetheless, the
basic capabilities needed to begin considering planning are already available to us.

V �
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n n
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15.1.1 An example

15.1 Planning in the situation calculus
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Given its appropriateness for representing dynamically changing worlds, the situa-
tion calculus is an obvious candidate to support planning. We can use it to represent
what is known about the current state of the world and the available actions.

The planning task can be formulated in the language of the situation calculus
as follows:

Given a formula, ( ), of the situation calculus with a single free
variable , find a sequence of actions = . . . , such that

KB = ( ( )) ( ( ))

where ( ) abbreviates ( ( . . . ( ) . . .)) and
( ( )) abbreviates ( ( . . . ))

In other words, given a goal formula, we wish to find a sequence of actions such
that it follows from what is known that

1. the goal formula will hold in the situation that results from executing the
actions in sequence starting in the initial state, and

2. it is possible to execute each action in the appropriate situation (that is, each
action’s preconditions are satisfied).

Note that this definition says nothing about the structure of the KB—for example,
whether or not it represents complete knowledge about the initial situation.

Having formulated the task this way, to do the planning, we can use Resolution
theorem-proving with answer extraction for the following query:

KB = ( ) ( )

As with the execution of complex actions in Chapter 14, if the extracted answer is
of the form ( ), then is a correct plan. But as we will see in Section 15.4.2,
there can be cases where the existential is entailed, but where the planning task
is impossible because of incomplete knowledge. In other words, the goal can be
achieved, but we can’t find a specific way that is guaranteed to achieve it.

Let us examine how this version of planning might work in the simple world de-
picted in Figure 15.1. A robot can roll from room to room, possibly pushing ob-
jects through doorways between the rooms. In such a world, there are two actions:
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Figure 15.1: A simple robot world

( ), in which the robot pushes object through doorway from
room to , and ( ), in which the robot rolls through doorway
from room to . To be able to execute either action, must be the doorway con-
necting and , and the robot must be located in . After successfully completing
either action, the robot ends up in room . In addition, for the action ,
the object must be located initially in room , and will also end up in room .

We can formalize these properties of the world in the situation calculus using
the following two precondition axioms:

( ( ) )
( ) ( );

( ( ) )
( ) ( ) ( ).

In this formulation, we use a single fluent, ( ), with the following suc-
cessor state axiom:

( ( )) ( ) ( ( ) ( )),

i i

0

0
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Π

do
do

do

do
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15.1.2 Using Resolution
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where ( ) is the formula

= = ( )
= = ( )

= ( )

In other words, the robot is in room after an action if that action was either a
or a to , or the robot was already in , and the action was not a
or a to some other . For any other object, the object is in room

after an action if that action was a to for that object, or the object was
already in , and the action was not a to some other for that object.

Our KB should also contain facts about the specific initial situation depicted
in Figure 15.1: there are three rooms, an office, a supply room, and a closet, two
doors, two boxes, and the robot, with their locations as depicted. Finally, the KB
needs to state that the robot and boxes are distinct objects and, for the solution to
the frame problem presented in Chapter 14, that and are distinct
actions.

Now suppose that we want to get some box into the office—that is, the goal we
would like to achieve is

( ) ( )

To use Resolution to find a plan to achieve this goal, we must first convert the KB
to CNF. Most of this is straightforward, except for the successor state axiom, which
expands to a set of clauses that includes the following (for one direction of the
formula only):

[ = = ( ) ( ( ))]
[ = = ( ) ( ( ))]
[ = ( ) ( ( ))]
[ ( ) = = ( )

( ( ))]
[ ( ) = ( ) = ( )

( ( ))]

The here are Skolem terms of the form ( ) arising from the existentials
in the subformula ( )
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Figure 15.2: Planning using Resolution

The Resolution proof tree for this planning problem is sketched in Figure 15.2.
The formulas on the left are taken from the KB, while those on the right start with
the negation of the formula to be proved:

( ) ( ) ( )

[InRoom(robot,office, )]

[Connected(doorA,office,supplies)]

[ Connected( , , ), Poss(goThru( , , , ), ),
InRoom(robot, , )]

[InRoom(box1,supplies, )]

[ InRoom( , , ), InRoom( , , ( , )),
robot, pushThru( , , , )]

[ goThru( , , ), InRoom( , , ( , )),
robot]

[Connected(doorA,supplies,office)]

[ InRoom( , , ), Poss(pushThru( , , , ), ),
InRoom(robot, , ),
Connected( , , )]

[ pushThru( , , , ), InRoom( , , ( , ))]

[Box(box1)]

[ ]

[ InRoom(robot,office, )]

[ Connected( , ,supplies), InRoom(robot, , )]

[ Poss(goThru( , ,supplies), )]

[ InRoom(box1,supplies, ), Legal( ),
Poss(goThru( , ,supplies), )]

[ InRoom(box1,supplies, (goThru( , ,supplies), )),
Poss(goThru( , ,supplies), ),
Legal( )]

[ InRoom(robot,supplies, ), Legal( ),
InRoom(box1,supplies, )]

[ Connected( , ,office), InRoom(robot, , ),
InRoom(box1, , ), Legal( )]

[ Poss(pushThru(box1, , ,office), ), Legal( )]

[ InRoom(box1,office, ), Legal( )]

[ Box( ), InRoom( ,office, ), Legal( )]
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Legal
Poss Legal

do
Legal Poss Legal

do
do

Legal

pushThru box1 doorA supplies office
goThru doorA office supplies

goThru pushThru

?- box(X), inRoom(X,office,S), legal(S).

X = box1
S = do(pushThru(box1,doorA,supplies,office),

do(goThru(doorA,office,supplies),s0))
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Notice that whenever a literal is derived, it is expanded to a clause contain-
ing , or to the empty clause in the case of ( ). For example, in the
second step of the derivation, is replaced by a term of the form (. . . ), and
so ( ) expands to a clause containing (. . . ) and ( ) Also
observe that the successor state axioms in the KB use equality, which would require
some additional machinery (as explained in Chapter 4), and which we have omitted
from the diagram here for simplicity.

To keep the diagram simple, we have also not included an answer predicate in
this derivation. Looking at the bindings on the right side, it can be seen that the
correct substitution for is

( ( )
( ( ) ))

and so the plan is to first perform the action and then the one.
All but one of the facts in this derivation (including a definition of ) can

be expressed as Horn clauses. The final use of the successor state axiom has two
positive equality literals. However, by using negation as failure to deal with the
inequalities, we can use a program directly to generate a plan, as shown
in Figure 15.3. The goal would be

and result of the computation would then be

as it was above. Using in this way is very delicate, however. A small
change in the ordering of clauses or literals can easily cause the depth-first search
strategy to go down an infinite branch.

In fact, more generally, using Resolution theorem-proving over the situation
calculus for planning is rarely practical for two principal reasons. First of all, we
are required to explicitly draw conclusions about what is not changed by doing
actions. We saw this in the derivation above (in the final use of the successor state
axiom), where we concluded that the robot moving from the office to the supply
room did not change the location of the box (and so the box was still ready to
be pushed into the office). In this case, there was only one action and one box to
worry about; in a larger setting, we may have to reason about the properties of many
objects remaining unaffected after the performance of many actions.
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Figure 15.3: Planning using Prolog

Secondly, and more seriously, the search for a sequence of actions using Res-
olution (or the variant) is completely unstructured. Notice, for example,
that in the derivation above, the first important choice that was made was to bind
the to . If your goal is to get some box into the office, it is silly to first decide
on a box and then search for a sequence of actions that will work for that box. Much
better would be to decide on the box opportunistically based on the current situation
and what else needs doing. In some cases the search should work backwards from
the goal; in others, it should work forward from the current state. Of course, all of

inRoom(robot,office,s0).
box(box1). inRoom(box1,supplies,s0).
box(box2). inRoom(box2,closet,s0).

connected(doorA,office,supplies).
connected(doorA,supplies,office).
connected(doorB,closet,supplies).
connected(doorB,supplies,closet).

poss(goThru(D,R1,R2),S) :-
connected(D,R1,R2), inRoom(robot,R1,S).

poss(pushThru(X,D,R1,R2),S) :-
connected(D,R1,R2), inRoom(robot,R1,S),
inRoom(X,R1,S).

inRoom(X,R2,do(A,S)) :-
X=robot, A=goThru(D,R1,R2).

inRoom(X,R2,do(A,S)) :-
X=robot, A=pushThru(Y,D,R1,R2).

inRoom(X,R2,do(A,S)) :-
A=pushThru(X,D,R1,R2).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),
not (X=robot),
not (A=pushThru(X,T0,T1,T2)).

inRoom(X,R,do(A,S)) :- inRoom(X,R,S),
not (A=goThru(T3,T4,T5)),
not (A=pushThru(T6,T7,T8,T9)).

legal(s0).
legal(do(A,S)) :- poss(A,S), legal(S).

0
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InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

InRoom
Box
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this search should be quite separate from the search that is needed to reason about
what does or does not hold in any given state.

In the next section, we deal with the first of these issues. We deal with searching
for a plan effectively in Section 15.3.

is an alternative representation to the pure situation calculus for planning.
It derives from work on a mobile robot (called “Shakey”) at SRI International in
the 1960’s. In , we assume that the world we are trying to deal with satisfies
the following:

only one action can occur at a time;

actions are effectively instantaneous;

nothing changes except as the result of planned actions.

In this context, the above has been called the “ assumption,” but it clearly ap-
plies just as well to our version of the situation calculus. What really distinguishes

from the situation calculus is that knowledge about the initial state of the
world is required to be complete, and knowledge about the effects and non-effects
of actions is required to be in a specific form. In what follows, we use a very simple
version of the representation, although many of the advantages we claim for it hold
more generally.

In , we do not represent histories of the world like we do in the situation
calculus, but rather we deal with a single world state at a time. The world state
is represented by what is called a , which is a set of ground atomic
formulas, similar to a database of facts in the system of Chapter 6, and the
working memory of a production system of Chapter 7. These facts can be thought
of as ground fluents (with the situation argument suppressed) under closed-world,
unique-name, and domain-closure assumptions (as in Chapter 11). For the example
depicted in Figure 15.1, we would have the following initial world model, DB :

In this case there is no need to distinguish between a fluent (like ) and a
predicate that is unaffected by any action (like ).
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InRoom robot InRoom Connected
InRoom robot InRoom
InRoom robot InRoom

goThru
InRoom robot Connected
InRoom robot
InRoom robot
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Precondition:
Delete list:
Add list:

Precondition:
Delete list:
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Operators Goal
Goal
Operators

Act Pre Add Del Act Pre Add Del

Act Act
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Further, in , actions are not represented explicitly as part of the world
model, which means that we cannot reason about them directly. Instead, actions are
thought of as , which syntactically transform world models. An operator
takes the world model database for some state, and transforms it into a database
representing the successor state. The main benefit of this way of representing and
reasoning about plans is that it avoids frame axioms: an operator will change what
it needs to in the database, and thereby leave the rest unaffected.

operators are specified by pre- and postconditions. The preconditions
are sets of atomic formulas of the language that need to hold before the operator
can apply. The postconditions come in two parts: a , which is a set of
atomic formulas to be removed from the database; and an , which is a set of
atomic formulas to be added to the database. The delete list represents properties
of the world state that no longer hold after the operator is applied, and the add
list represents new properties of the world state that will hold after the operator is
applied. For the example above, we would have the following two operators:

( )
( ) ( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )
( )
( )

Note that the arguments of operators are variables that can appear in the the pre-
and postcondition formulas.

A problem, then, is represented by an initial world model database, a set
of operators, and a goal formula. A solution to the problem is a set of operators that
can be applied in sequence starting with the initial world model without violating
any of the preconditions, and which results in a world model that satisfies the goal
formula.

More precisely, a problem is characterized by DB
where DB is a list of ground atoms, is a list of atoms (whose free vari-
ables are understood existentially), and is a list of operators of the form

where is the name of the operator, and , , and
are lists of atoms. A solution is a sequence
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fail

fail

fail

Box InRoom office

goThru doorA office supplies

Goal
Goal

Act Pre Add Del Pre
Add Del

Plan Goal
Plan Act Plan

Act Pre Add Del

Add Del

Pre

Goal
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Figure 15.4: A depth-first progressive planner

a world model and a goal formula
a plan or

ProgPlan[DB, ] =
If DB then return the empty plan
For each operator such that DB do

Let DB = DB +
Let = ProgPlan[DB ]
If = then return

end for
Return

where is the name of an operator in the list (with , , and as the
other corresponding components) and is a substitution of constants for the vari-
ables in that operator, and where the sequence satisfies the following:

for all 1 , DB = DB + ;

for all 1 , DB ;

for some , DB .

The + and in this definition refer to the union and difference of lists respectively.

The characterization of a solution to the planning problem above imme-
diately suggests the planning procedure shown in Figure 15.4. For simplicity, we
have left out the details concerning the substitutions of variables. This type of plan-
ner is called a planner, since it works by progressing the initial world
model forward until we obtain a world model that satisfies the goal formula.

Consider once again the planning problem in Figure 15.1. If called with the
initial world model above (DB ), and goal

( ) ( )

the progressive planner would first confirm that the goal is not yet satisfied, and
then within the loop, eventually get to the operator ( , , )
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As before, we are omitting details about variable bindings. A more realistic version would cer-
tainly leave the in the goal unbound at this point, for example.

InRoom(box1,supplies) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,supplies)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

pushThru box1 doorA supplies office

InRoom(box1,office) Box(box1)
InRoom(box2,closet) Box(box2)
InRoom(robot,office)
Connected(doorA,office,supplies) Connected(doorA,supplies,office)
Connected(doorB,closet,supplies) Connected(doorA,supplies,closet)

Box InRoom office

pushThru box1 doorA supplies office
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whose precondition is satisfied in the DB. It then would call itself recursively with
the following progressed world model:

The goal is still not satisfied, and the procedure then continues and gets to the op-
erator ( , , , ) whose precondition is satisfied in the
progressed DB. It would then call itself recursively with a new world model:

At this point, the goal formula is satisfied, and the procedure unwinds successfully
and produces the expected plan.

In some applications, it may be advantageous to use a planner that works backwards
from the goal rather than forward from the initial state. The process of working
backwards, repeatedly simplifying the goal until we obtain one that is satisfied in the
initial state is called . A regressive planner is shown in Figure 15.5.
In this case, the first operator we consider is the last one in the plan. This operator
obviously must not delete any atomic formula that appears in the goal. Furthermore,
to be able to use this operator, we must ensure that its preconditions will be satisfied;
so they become part of the next goal. However, the formulas in the add list of
the operator we are considering will be handled by that operator, so they can be
removed from the goal as we regress it.

If called with the initial world model from Figure 15.1 and goal

( ) ( )

the regressive planner would first confirm that the goal is not yet satisfied, and
then within the loop, eventually get to ( , , , ) whose
delete list does not intersect with the goal. It then would call itself recursively with

0

0
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Goal
Goal

Act Pre Add Del Del Goal
Goal Goal Pre Add
Plan Goal

Plan Plan Act

fail

fail

fail

Box box1 InRoom robot supplies InRoom box1 supplies
Connected doorA supplies office

goThru doorA office supplies

Box box1 InRoom robot office InRoom box1 supplies
Connected doorA supplies office Connected doorA office supplies
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Figure 15.5: A depth-first regressive planner

a world model and a goal formula
a plan, or

RegrPlan[DB, ] =
If DB then return the empty plan
For each operator such that = do

Let = +
Let = RegrPlan[DB ]
If = then return

end for
Return

the following regressed goal:

( ) ( ) ( )
( )

The goal is still not satisfied in the initial world model, so the procedure continues
and within the loop, eventually gets to the operator ( , , )
whose delete list does not intersect with the current goal. It would then call itself
recursively with a new regressed goal:

( ) ( ) ( )
( ) ( )

At this point, the goal formula is satisfied in the initial world model, and the proce-
dure unwinds successfully and produces the expected plan.

While the two planners above (or their breadth-first variants) work much better
in practice than the Resolution-based planner considered earlier, neither of them
works very well on large problems. This is not too surprising since it can be shown
that the planning task is NP-hard, even for the simple version of we have
considered, and even when the operators have no variables. It is therefore
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One popular planning method involves encoding the task directly as a satisfiability problem, and
using satisfiability procedures to find a plan.

c 309

extremely unlikely that there is procedure that will work well in all cases, as
this would immediately lead to a corresponding procedure for satisfiability.

As with deductive reasoning, there are essentially two options we can consider:
we can do our best to make the search as effective as possible, especially by avoid-
ing redundancy in the search, or we can make the planning problem easier by al-
lowing the user to provide control information.

One major source of redundancy is the fact that actions in a plan tend to be inde-
pendent and can be performed in different orders. If the goal is to get both
and into the office, we can push first or push first. The problem is
that when searching for a sequence of actions (either progressing a world model or
regressing a goal), we consider totally ordered sequence of actions. Before we can
rule out a collection of actions as inappropriate for some goal, we end up consider-
ing many permutations of those same actions.

To deal with this issue, let us consider a new type of plan, which is a finite
set of actions that are only partially ordered. Because such a plan is not a linear
sequence of actions, it is sometimes called a plan. In searching for such
a plan, we order one action before another only if we are required to do so. For
getting the two boxes into the office, for example, we would want a plan with two
parallel branches, one for each box. Within each branch, however, the moving
actions(s) of the robot to the appropriate room would need to occur strictly before
the corresponding pushing action(s).

To generate this type of plan, a different sort of planner, called a
, is often used. In a partial order planner, we start with an incomplete plan,

consisting of the initial world model at one end and the goal at the other end. At
each step, we insert new actions into the plan, and new constraints on when that
action needs to take place relative to the other actions in the plan, until we have
filled all the gaps from one end to the other. It is worth noting, however, that the
efficacy of this approach to planning is still somewhat controversial because of the
amount of extra bookkeeping it appears to require.

A second source of redundancy concerns applying sequence of actions repeat-
edly. Consider, for example, getting a box into the office. This always involves
the same operators: some number of actions followed by a corresponding
number of actions. Furthermore, this sequence as a whole has a fixed
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precondition and postcondition that can calculated once and for all from the com-
ponent operators. The authors of considered an approach to the reuse of
such sequences of actions, and created a set of macro-operators, or “MACROPS,”
which were parameterized and abstracted sequences of operators. While adding
macro-operators to a planning problem means that a larger number of operators
will need to be considered, if they are chosen wisely, the resulting plans can be
much shorter. Indeed, many of the practical planning systems work primarily by
assembling precompiled plan fragments from a library of macro-operators.

Even with careful attention to redundancy in the search, planning remains imprac-
tical for many applications. Often the only way to make planning effective is to
make the problem easier, for example, by giving the planner explicit guidance on
how to search for a solution. We can think of the macro-operators, for example, as

to the planner a sequence to use to get a box into a room. But in some
cases, we can be more definite. Suppose, for example, we wish to reorganize all of
the boxes in a certain distant room. We might tell the planner that it should handle
this by planning on getting to the distant room (ignoring any action dealing
with the boxes) and planning on reorganizing the boxes (ignoring any ac-
tion involving motion to other rooms). As with the procedural control of Chapter 6,
constraints of this sort clearly simplify the search by ruling out various sequences
of action.

In fact, we can imagine two extreme versions of this guidance. At one extreme,
we let the planner search for any sequence of actions, with no constraints; at the
other extreme, the guidance we give to a planner would specify a complete sequence
of actions, where no search would be required at all. This idea does not require us
to use , of course, and the situation calculus, augmented with the
programming language, provides a convenient notation for expressing application-
dependent search strategies.

Consider the following highly nondeterministic program:

The body of the loop says that we should pick an action nondeterministically,
and then do . To execute the entire program, we need to find a sequence of actions
corresponding to performing the loop body repeatedly, ending up in a final situation

where ( ) is true. But this is no more and no less than the planning task. So
using , we can represent guidance to a planner at various levels of specificity.
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The program above provides no guidance at all; on the other hand, the deterministic
program

( ) ;
( )

requires no search at all. In between, however, we would like to provide some
application-dependent guidance, leaving a more manageable search problem.

One convenient way to control the search process during planning is by using
what is called . The idea is to modify very slightly the above pro-
gram so that not every action whose precondition is satisfied can be selected as
the next action to perform in the sequence, but only those actions that also satisfy
some application-dependent criterion:

( )? ;

The intent is that the fluent ( ) should be defined by the user to filter
out actions which may be legal but are not useful at this point in the plan. For
example, if we want to tell the planner that it first needs to get to the closet and only
then consider moving any boxes, we might have the something like the following
in the KB:

( ) ( ) ( )
( ) ( )

for some suitable and predicates. Of course, defining
properly for any particular application is not easy, and requires a deep

understanding of how to solve planning problems in that application.
We can use the idea of forward filtering to define a complete progressive plan-

ner in . The procedure below is a recursive variant of the loop
above that takes as an argument a bound on the length of the action sequence it will
consider. It then does a depth-first search for a plan of that length or shorter:

( ) :
? ( 0)? ; ( ( )? ; ) ; ( 1)

Of course, the plan it finds need not be the shortest one that works. To get the
shortest plan, it would be necessary to first look for plans of a certain length, and
only then look for longer ones:

( ) : (0 )

( ) : ( ) ( )? ; ( + 1 )

The procedure does a form of search called . It uses
depth-first search (that is, ) at ever larger depths as a way of providing many
of the advantages of breadth-first search.
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15.4.2 Conditional planning
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In this final section, we briefly consider a small number of more advanced topics in
planning.

The basic mechanisms of planning that we have covered so far, even including at-
tempts to simplify the process with macro-operators, still preserve all detail needed
to solve a problem all the way through the process. In reality, attention to too much
detail can derail a planner to the point of uselessness. It would be much better, if
possible, to first search through an , where unimportant details
were suppressed. Once a solution in the abstraction space were found, then all we
would have to do would be to account for the details of the linkup of the steps.

In an attempt to separate levels of abstraction of the problem in the planning
process, the team invented the approach. The details are not im-
portant here, but we can note a few of the elements of this approach. First, precondi-
tions in the abstraction space have fewer literals than those in the ground space, thus
they should be less taxing on the planner. For example, in the case of ,
at the highest level of abstraction, the operator is applicable whenever an object
is pushable and a door exists; without those basic conditions, the operator is not
even worth considering. At a lower level of abstraction, like the one we used in
our earlier example, the robot and object have to be in the same room, which must
be connected by a door to the target room. At an even finer-grained level of detail,
it would be important to ascertain whether or not the door was open (and attempt
to open it if not). But that is really not relevant until we have a plan that involves
going through the door with the object. Finally, in the least abstract representation,
it would be important to get the robot right next to the object, and both the robot
and object right next to the doorway, so that they could move through it.

In very many applications, there may not be enough information available to plan
a full course of action to achieve some goal. For example in our robot domain,
imagine that each box has a printed label on it that says either or , and
suppose our goal is to get into the room printed on its label. With no further
information, the full, advance planning task is impossible since we have no way of
knowing where the box should end up. However, we do know that there exists a
sequence of actions that will achieve the goal, namely, to go into the supply room,
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and push the box either to the office or to the closet. If we were to use Resolution
with answer extraction for this example, the existential query would succeed, but
we would end up with a clause with two answer literals, corresponding to the two
possible sequences of action.

But now imagine that our robot is equipped with a sensor of some sort that
tells it whether or not there is a box located in the same room, with a label on it
that says . In this case, we would now like to say that the planning task, or a
generalization of it, is possible. The plan that we expect, however, is not a linear
sequence of actions, but is tree-structured, based on the outcome of sensors: go to
the supply room, and if the sensor indicates the presence of a box labeled ,
then push into the office, and otherwise push into the closet. This type
of branching plan is a called a , and a planner that can generate one
is called a .

There are various ways of making this notion precise, but perhaps the simplest
is to extend the language of situation calculus so that instead of just having terms

and ( ) denoting situations, we also have terms of the form ( ), where
is a tree-structured conditional plan of some sort. The situation denoted by this

term would depend on the outcome of the sensors involved, which of course would
need to be specified. To describe, for example, the sensor mentioned above, we
might state something like the following:

( ) ( )
( ) ( ) ( )

With terms like ( ) in the language, we could once again use Resolution with
answer extraction to do planning. How to do conditional planning , on
the other hand, is a much more difficult question.

Situation calculus representations, and especially , make many restrictive
assumptions. As we discussed in our section on complex actions, there are many
aspects of action that bear investigation and may potentially impact the ability of
an AI agent to reason appropriately about the world. Among the many issues in
real-world planning that are currently under active investigation we find things like
simultaneous interacting actions (e.g., lifting a piano, opening a doorlatch where
the key must be turned and knob turned at the same time), external events, nonde-
terministic actions or those with probabilistic outcomes, non-instantaneous actions,
non-static predicates, plans that explicitly include time, and reasoning about termi-
nation.

0

0 0do
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An even more fundamental challenge for planning is the suggestion made by
some that explicit, symbolic production of formal plans is something to be avoided
altogether. This is generally a reaction to the computational complexity of the un-
derlying planning task. Some advocate instead the idea of a more “reactive” system,
which observes conditions and just “reacts” by deciding—or looking up—what to
do next. This one-step-at-a-time-like process is more robust in the face of unex-
pected changes in the environment. A reactive system could be implemented with
a kind of “universal plan”—a large lookup table (or boolean circuit) that tells you
exactly what to do based on conditions. In some cases where they have been tried,
reactive systems have had impressive performance on certain low-level problems,
like learning to walk; they have even appeared intelligent in their behavior. At the
current time, though, it is very unclear how far one can go with such an approach
and what its intrinsic limitations are.

The exercises below are continuations of the exercises from Chapter 14. For each
application, we consider a planning problem involving an initial setup and a goal.

Imagine that in the initial situation, we have two pots, a 5-litre one
filled with water, and an empty 2-litre one. Our goal is to obtain 1 litre of
water in the 2-litre pot.

Assume that every tile is initially placed in its correct position, except
for tile 9 which is in location 13, tile 13 in location 14, tile 14 in location
15, and tile 15 in location 16. The goal, of course, is to get every tile placed
correctly.

In the initial situation, the blocks are arranged as in Figure 14.2 of
Chapter 14. The goal is to get them arranged as in Figure 15.6.

For each application, the questions are the same:

1. Write a sentence of the situation calculus of the form which asserts the
existence of the final goal situation.

2. Write a ground situation term (that is, a term that is either or of the form
( ) where is a ground action term and is itself a ground situation

term) such that denotes the desired goal situation.
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Figure 15.6: The blocks word goal

3. Explain how you could use Resolution to automatically solve the problem
for any initial state: how would you generate the clauses, and assuming the
process stops, how would you extract the necessary moves?

Explain why you need to use the successor state
axioms, and not just effect axioms.

4. Suppose we were interested in formalizing the problem using a repre-
sentation. Decide what the operators should be, and then write the precondi-
tion, add list, and delete list for each operator. You may change the language
as necessary.

5. Consider the database corresponding to the initial state of the problem. For
each operator, and each binding of its variables such that the precon-
dition is satisfied, state what the database progressed through this operator
would be.

6. Consider the final goal state of the problem. For each operator, de-
scribe the bindings of its variables for which the operator can be the final
action of a plan, and in those cases, what the goal regressed through the op-
erator would be.

7. Without any additional guidance, a very large amount of search is usually
required to solve planning problems. There are often, however, application-
dependent heuristics that can be used to reduce the amount of search. For
example,

for the 15-puzzle, we should get the first row and first column of tiles
into their correct positions (tiles 1, 2, 3, 4, 5, 9, 13); then recursively
solve the remaining 8-puzzle without disturbing these outside tiles;
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for the blocks world, we should never move a block that is in its
, where a block is considered to be in its final position iff

either (a) is on the table and will be on the table in the goal state or
(b) is on another block , will be on in the goal state, and is also
in its final position.

Explain how the complex actions of from Chapter 14 can be used
to define a more restricted search problem which incorporates heuristics like
these. Sketch briefly what the program would look like.
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The Tradeoff Between
Expressiveness and Tractability

The focus of our exploration thus far has been the detailed investigation of a number
of representational formalisms aimed at various uses or applications. Each had
its own features, usually knit together in a cohesive whole that was justified by a
particular point of view on the world ( , object-oriented, or procedural, or rule-
based). Many of the formalisms we discussed can be viewed as extensions to a bare
knowledge representation formalism based on FOL. Even features like defaults or
probabilities can be thought of as additions to a basic FOL framework.

As we have proceeded through the discussion, lurking in the background has
been a potential nagging question: since, in the end, we would like to be able to
formally represent that can be known, why not strive for a highly expres-
sive language, one that includes of the features we have seen so far? Or even
more generally, why do we not attempt to define a formal knowledge representation
language that is co-extensive with a natural language like English?

The answer is the linchpin of the art of practicing KR: although such a highly
expressive language would certainly be desirable from a standpoint,
it leads to serious difficulties from a standpoint. If all we cared about was
to formally represent knowledge in order to be able to prove occasional properties
about it by hand, then perhaps we could go ahead. But if we are thinking of using
a mechanical reasoning procedure to manipulate the expressions of this language,
especially in support of reasoning by an artificial agent, then we need to worry about
what we can do with them in a reasonable amount of time. As we will see in this
chapter, reasoning procedures that seem to be required to deal with more expressive
representation languages do not appear to work well in practice. A fundamental fact

�
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of life is that there is a tradeoff between the expressiveness of the representation
language and the computational tractability of the associated reasoning task.

In this chapter, we will explore this issue in detail. We will begin with a simple
description language of the sort considered in Chapter 9, and show how a very small
change in its expressiveness completely changes the sort of reasoning procedure it
requires. Then we will consider the idea of languages more limited than FOL, and
what seems to happen as they are generalized to full FOL. We will see that “rea-
soning by cases” in various forms is a serious concern, and that one extreme way to
guarantee tractability is to limit ourselves to representation languages where only a
single “case” is ever considered. Finally, we will see that there is still room to ma-
neuver and that even limited representation languages can be augmented in various
ways to make them more useful in practice. Indeed, it can be argued that much of
the research that is concerned with both knowledge representation and reasoning
is concerned with finding interesting points in the tradeoff between tractability and
expressiveness.

It is worth noting before beginning, however, that the topic of this chapter is
somewhat controversial. People, after all, are able to reason with what they know,
even if much of what they know comes from hearing or reading sentences in seem-
ingly unrestricted English. How is this possible? For one thing, people do not nat-
urally explore all and only the logical consequences of what they know. This sug-
gests that one way of dealing with the tradeoff is to allow very expressive languages,
but to preserve tractability by doing a form of reasoning that is somehow less de-
manding. Researchers have proposed alternative logical systems with weaker no-
tions of entailment, which might be candidates for exploration of limited reasoning
with expressive representation languages. However, since the tradeoff between ex-
pressiveness and complexity is so fundamental to the understanding of knowledge
representation and reasoning, we will here concentrate on that issue and leave aside
the issue of weak logics.

To illustrate the tradeoff between expressiveness and tractability most clearly, we
begin by examining a very concrete case involving description logics and the sub-
sumption task as discussed in Chapter 9. We will present a new description logic
language called , and subset of it called , and show that what is needed to
calculate subsumption is quite different in each case.
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As with in Chapter 9, the language consists of and (but no
constants) and is defined by the following grammar:

every atomic concept is a concept;

if is a role and is a concept, then [ ] is a concept;

if is a role, then [ 1 ] is a concept;

if . . . are concepts, then [ . . . ] is a concept;

every atomic role is a role;

if is a role and is a concept, then [ ] is a role.

There is one simple difference between and a variant that we will call : the
grammar for the language is as above, but without the operator. We
will use [ ] as a shorthand for [ 1 ].

As usual, concepts can be thought of as 1-place predicates and roles as 2-place
predicates. Unlike in , both concepts and roles here can be either atomic (with
no internal structure) or non-atomic, indicated by an operator (like or )
with arguments.

The meaning of all the operators except for was explained in Chapter 9.
The operator is intended to denote a . For example, if
is a role (to be filled by a person who is a child of someone), then [

] is also a role (to be filled by a person who is a daughter of someone). It is
important then to distinguish clearly between the following two concepts:

[ [ [ ]]]
[ [ [ ] ]]

The first describes a person whose children are all female students; the second de-
scribes a person whose female children are all students. In the second case, nothing
is said about the male children, if any.

Formally, the semantics for is like that of . The interpretation mapping
is required to satisfy one additional requirement for :

[[ ]] = [ ] and [ ] .

Thus, the set of [ ] relationships is defined to be the set of
child relationships where the child in question is female. With this definition in
place, subsumption for is as before: subsumes (given an empty KB) if
and only if for every interpretation , [ ] is a superset of [ ].
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As we saw previously, the principal form of reasoning in description logics is the
calculation of subsumption. We begin by considering this reasoning task for ex-
pressions in , where we can use a procedure very similar to the one for :

first put the expressions into an equivalent normal form,

[ . . .
[ ], . . . , [ ],
[ ], . . . , [ ]],

where are atomic concepts, the and are atomic roles, and the are
themselves concept expressions in normal form;

to see if normal form expression subsumes normal form expression , we
check that for every part of there is a matching part in :

for every , ;

for every [ ] , [ ] ;

for every [ ] , there is a [ ] , such that recur-
sively subsumes .

This procedure can be shown to be sound and complete for : it returns with
success if and only if the concept subsumes according to the definition above
(with interpretations). Furthermore, it is not hard to see that the procedure runs
quickly: conversion to normal form can be done in ( ) time (where is the
length of the concept expression), and the structural matching part requires at worst
scanning for each part of , and so is again ( ).

But let us now consider subsumption for all of , including the op-
erator. Here we see that subsumption is not so easy. Consider, for example, the
following two descriptions:

[ [ [ ]]
[ ]]

and

[ [ [ ]
[ ]]

[ [ ]
[ ]]].
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It is not hard to see that the first subsumes the second: looking at the second expres-
sion, if all your male friends are tall bachelors and all your doctor friends are rich
surgeons, then it follows that all your male doctor friends are both tall and rich. On
the other hand, we cannot settle the subsumption question by finding a matching
part in the second concept for each part in the first. The interaction among the parts
is more complicated than that. Similarly, a description like

[ [ [ ]]]

subsumes one like

[ [ [ [ ]]]
[ [ ] [ ]]
[ [ [ ]] ]]

even though we have to work through all the parts of the second one to see why.
Because of possible interactions among the parts, the sort of reasoning that

is required to handle appears to be much more complex than the structural
matching sufficient for . Is this just a failure of imagination on our part, or is

truly harder to reason with? In fact, it can be that subsumption in
is as difficult as proving the unsatisfiability of propositional formulas: there is a
polynomial-time function that maps CNF formulas into concept expressions of

that has the property that for any two CNF formulas and , ( ) is valid
if and only if ( ) is subsumed by ( ). Since ( ( )) is valid if and only
if is unsatisfiable, it follows that a procedure for subsumption could be used
to check whether a CNF formula is unsatisfiable. Since it is believed that no good
algorithm exists to compute unsatisfiability for CNF formulas, it follows that no
good algorithm exists for expressions either.

: Even small doses of expressive power—in this case adding
one natural, role-forming operator—can come at a significant compu-
tational price.

This raises a number of interesting questions that are central to the KR enterprise:

1. What properties of a representation language affect or control its computa-
tional difficulty?

2. How far can expressiveness be pushed without losing the prospect of good
algorithms?

3. When are inexpressive but tractable representation languages sufficient for
the purposes of knowledge representation and reasoning?
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While these questions remain largely unanswered, some progress has been made on
them. As we will see below, reasoning by cases is a major source of computational
intractability. As for description logics, the space of possible languages has been
extensively explored, together with proofs about which combinations of operators
preserve tractability.

Finally, as for making do with inexpressive languages, this is a much more con-
troversial topic. For some researchers, anything less than “English” is a cop-out,
and inappropriate for AI research; others are quite content to look for inexpressive
languages tailored to applications, although they might prefer to call this, “exploit-
ing constraints in the application domain,” rather than the more negative sounding,
“getting by with an expressively limited language.” As we will see, there is indeed
significant mileage to be gained by looking for reasoning tasks that can be formu-
lated in limited but tractable representation languages, and then making efforts to
extend them as necessary.

The main idea in the design of useful limited languages is that there are reasoning
tasks that can be easily formulated in terms of FOL entailment, , in terms of
whether or not KB = , but that can also be solved by special-purpose methods
because of restrictions on the KB or on .

A simple example of this is Horn clause entailment. We could obviously use full
Resolution to handle Horn clauses, but there is no need to, since SLD Resolution
offers a much more focused search. In fact, in the propositional case, we know
that there is a procedure guaranteed to run in linear time for doing the reasoning,
whereas a full Resolution procedure need not and likely would not do as well.

A less obvious example of a limited language is provided by description logics
in general. It is not hard to formulate subsumption in terms of FOL entailment.
We can imagine introducing predicate symbols for concept expressions and writing

for them in FOL. For example, for the concept

[ [ ]
[ [ ]]]

we introduce the predicate symbol and the meaning postulate

( ) ( ( ) ( ))
( ( ) ( ) ( )).

This has the effect of defining to be anything that satisfies the stated property. If
we have two concept descriptions and introduce two predicate symbols and ,
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along with two meaning postulates and , then it is clearly the case that the
first concept is subsumed by the second if and only if

= ( ) ( )

So if we wanted to, we could use full Resolution to calculate concept subsumption.
But as we saw, for some description logic languages (like ), there are very good
subsumption procedures. It would be extremely awkward to try to coax this efficient
structure-matching behavior out of a general-purpose Resolution procedure.

As a third and final example, consider linear equations. Let be the usual
Peano axioms of arithmetic written in FOL:

+ = +
+ 0 =

and so on. From this we can derive, for example, that

= ( + 2 = 4 = 1) ( = 2 = 1)

That is, Resolution (with some form of answer extraction) can be used to solve
systems of linear equations. But there is a much better way, of course: the Gauss-
Jordan method with back substitution. For the example above, we subtract the
second equation from the first to derive that 3 = 3; we divide both sides by 3 to
get = 1; we substitute this value of in the first equation to get = 2. In general,
a set of linear equations can be solved by this method in ( ) steps, whereas
the Resolution procedure can offer no such guarantee.

This idea of limited languages obviously generalizes: it will always be advan-
tageous to use a special-purpose reasoning procedure when one exists even if a
general-purpose procedure like Resolution is applicable.

So when do we expect to be able to use a specialized procedure to advantage?
Suppose that instead of having a system of linear equations as above, our reasoning
task started with the following formulas:

( + 2 = 4 3 = 7) = 1

We can still show using Resolution that this implies that 0. But if we wanted
to use an efficient procedure like Gauss-Jordan to draw this conclusion, we would
have to split the problem into two cases:

i i

n n

n
1 1 2 2

1 1 2 2
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Given + 2 = 4 and = 1,
we infer using Gauss-Jordan that = 1, and so 0.

Given 3 = 7 and = 1,
we infer using Gauss-Jordan that = 2, and so 0.

Either way, we conclude that 0.

Reasoning this way may still be better than using Resolution. But what if we have
two disjunctions to consider, ( ) ( ), where the and are equations?
Then we would have four cases to consider. If we had disjunctions

( ) ( ) . . . ( )

we would need to call the Gauss-Jordan method 2 times to see what follows. For
even a modestly sized formula of this type—say when is 30—this method is no
longer feasible, even though the underlying Gauss-Jordan procedure is efficient.

The conclusion: Special purpose reasoning methods will not help us if we are
forced to reason by cases and invoke these procedures exponentially often.

But can we avoid this type of case analysis? Unfortunately, it seems to be
demanded by languages like FOL. The constructs of FOL are ideally suited to ex-
pressing . Consider what we can say in FOL:

1. ( ) ( )
Either block A or B is in the box.

2. ( )
Block C is not in the box.

3. ( )
Something is in the box.

4. ( ) ( )
Everything in the box is light (in weight).

5. =
The heaviest block is not block A.
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This is not to suggest that we are to enumerate the cases to reason correctly. Indeed,
whether or not we need a reasoning procedure that scales with the number of cases remains open, and
is perhaps the deepest open problem in Computer Science.

It can be shown that finding a satisfying interpretation for a set of clauses that has at most one
satisfying interpretation, while not NP-hard, is still unlikely to be solvable in polynomial time.
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6. = ( )
The heaviest block is also John’s favorite.

In all cases, the logical operators of FOL allow us to express knowledge in a way
that does not force us to answer the questions posed in italics above. In fact, we
can understand the expressiveness of FOL not in terms of what it allows us to say,
but in terms of of what it allows us to leave .

From a reasoning point of view, however, the problem is that if we know that
block A or block B is the box, but not which, and we want to consider what follows
from this and what the world must be like, we have to somehow cover the two cases.
And again, the trouble with cases is that they multiply together, and so very quickly
there are too many of them to enumerate. Not too surprisingly then, the limited
languages we examined above (Horn clauses, description logics, linear equations)
do not allow this form of incomplete knowledge to be represented.

This then suggests a general direction to pursue to avoid intractability: restrict
the contents of a KB somehow so that reasoning by cases is not required.

One natural question along these lines is this: is sufficient
to ensure tractability? That is, if for every sentence we care about, the KB entails

or the KB entails , can we efficiently determine which? The answer unfortu-
nately is ; a proof is beyond the scope of this book, but an informal argument is
that if we have a KB like

( ) ( ) ( )

then we have a KB with complete knowledge about and , since it only has one
satisfying interpretation. But we need to reason carefully with the entire KB to
come to this conclusion, and determine, for example, that is entailed.

We saw in the previous section that one way to keep reasoning tractable is to some-
how avoid reasoning by cases. Unfortunately, we also saw that merely insisting on
complete knowledge in a KB was not enough. In this section, we will consider an
additional restriction that will be sufficient to guarantee the tractability of reasoning.
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We begin with the propositional case. One property we do have for a KB with
complete knowledge is that if it is satisfiable at all, then it is satisfied by a
interpretation. To see this, suppose that KB has complete and consistent knowledge,
and define the interpretation such that for any atom , = if and only if
KB = . Now consider any other interpretation that satisfies KB. If KB = ,
it follows that = ; furthermore, because KB is complete, if KB = , then
KB = , and so it follows that = , and thus that, = . Therefore, and

agree on all atoms, and so are the same interpretation.
It follows by this argument that if a KB has complete and consistent knowledge

(for some vocabulary), then there is an interpretation such that for any sentence
, KB = if and only if = . In other words, there is a (unique) interpretation

such that the entailments of the KB are nothing more than the sentences true in that
interpretation. Because calculating what is true in an interpretation is such a simple
matter once we are given the interpretation, we find that calculating entailments
in this case will be easy too. The problem, as we saw in the previous section,
is that it may be difficult to find this interpretation. The simplest way, then, to
ensure tractability of reasoning is to insist that a KB with complete and consistent
knowledge wear this unique interpretation on its sleeve.

In the propositional case, then, we define a KB to be if and only if it is
a complete and consistent set of literals (over some vocabulary). A KB in this
form exhibits the unique satisfying interpretation in a very obvious way. To answer
queries with such a KB we need only use the positive literals in the KB, as we did
with the CWA in Chapter 11. In fact, a vivid KB is simply one that has the CWA
built in.

In the first-order case, we will do exactly the same, and base our definition on
the first-order version of the CWA. We say that a first-order KB is if and only
if for some finite set KB of positive function-free ground literals, it is the case that

KB = KB
is atomic and KB =

( = ) are distinct constants
[ = . . . = ] where the are all the constants in KB

Again, we have a KB that has the CWA built in, and again we get a simple recursive
algorithm for determining whether or not KB = :

1. KB = ( ) iff KB = and KB = ;

2. KB = ( ) iff KB = or KB = ;

3. KB = iff KB = ;
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4. KB = iff KB = for some appearing in KB;

5. KB = ( = ) iff and are the same constants;

6. if is atomic, then KB = iff KB .

Notice that the algorithm for determining what is entailed by a vivid KB is just
database retrieval over the KB part. Only this part of the KB is actually needed to
answer queries, and could be stored in a collection of database relations.

One interesting aspect of this definition of a vivid KB is how well it accounts for
what is called “analogical,” “diagrammatic,” or “model-based” reasoning.

It is often argued that a form of reasoning that is even more basic than reasoning
with representing knowledge about some world (as we consider in this
book) is reasoning with representing worlds directly. Instead of reasoning
by asking what is entailed by a collection of sentences, we are presented with a
model or a diagram of some sort, and we reason by asking ourselves if a sentence
is satisfied by the model or holds in the diagram.

Here is the type of example that is used to argue for this form of reasoning:
imagine the President of the US standing directly beside the Prime Minister of
Canada. It is observed that people have a hard time thinking about this scene with-
out either imagining the President as being on the left or the Prime Minister as
being on the left. In a collection of sentences representing beliefs about the scene,
we could easily leave out who is on the left. But in a model or diagram of the scene,
we cannot represent the leaders as being beside each other without also committing
to this and other visually salient properties of the scene.

This constraint on how we seem to think about the world has led many to con-
clude that reasoning with models or diagrams is somehow a more basic and funda-
mental form of reasoning than the manipulation of sentences.

But viewed another way, it can be argued what what we are really talking about
is a form of reasoning where certain kinds of properties of the world cannot be
left unspecified and must be spelled out directly in the representation. A vivid KB
can in fact be viewed as a model of the world in just this sense. In fact, there
is clear structural correspondence between a vivid KB and the world it represents
knowledge about:

for each object of interest in the world, there is exactly one constant in KB
that stands for that object;

+

+

+

+
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for each relationship of interest in the world, there is a corresponding pred-
icate in the KB such that the relationship holds among certain objects in the
world if and only if the predicate with the constants as arguments is an ele-
ment of KB .

In this sense, KB is an of the world it represents knowledge about.
Note that this close correspondence between the structure of a KB and the world

it represents knowledge about does not hold in general. For example, if a KB con-
sists of the sentences ( ) ( ) , it might be talking about a world where there
are five objects, two of which satisfy property and four of which satisfy . On
the other hand, if we have a KB where KB is ( ) ( ) , then we must be
talking about a world with exactly two objects, one of which satisfies , and the
other of which satisfies . In the propositional case, we said that a vivid KB was
uniquely satisfied; in the first-order case, a vivid KB is not uniquely satisfied, but
all of the interpretations that satisfy it look the same—they are isomorphic.

The result of this close correspondence between the structure of a vivid KB and
the structure of its satisfying interpretations is that many reasoning operations are
much simpler on a vivid KB than they would be in a general setting. Just as, given a
model of a house, we can find out how many doors the house has by them
in the model, given a vivid KB, we can find out how many objects have a certain
property by counting how many constants have the property. Similarly, we can
represent changes to the world directly by changes to the analogue KB , adding or
removing elements just as we did with the procedural representations in Chapter 6.

While vivid knowledge bases seem to provide a platform for tractable reasoning,
they are quite limited as representations of knowledge. In this section, we will con-
sider some extensions that have been proposed that appear to preserve tractability.

First, let us consider in the propositional case a KB as any finite set of literals, not
necessarily complete (that is, with no CWA built in). Because such a knowledge
base does not use disjunction explicitly, we might think it would be easier to reason
with. It is not, however. Notice that if this KB happens to be the empty set of
literals, it will entail an if and only if is a tautology. So a good algorithm
for reasoning from a set of literals would imply a good algorithm for testing for
tautologies, an unlikely prospect.
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However, let us now assume that the in question is small in comparison with
an exponentially larger KB. For example, imagine a query that uses at most 20
atoms, whereas the KB might use millions. In this case, here is what we can do:
First, we can put into CNF, to obtain a set of clauses . . . . Next, we
discard tautologous clauses (containing an atom and its negation). We then get that
KB = iff KB = for every remaining (and if there are no remaining ones,
then was a tautology). Finally, we have this property:

KB = iff (KB ) =

So under these conditions, we get tractable reasoning even in the absence of
complete knowledge. However, this is for a propositional language; it is far from
clear how to extend this idea to an with quantifiers.

As a second extension, imagine that we have a vivid KB as before. Now assume
that we add to it a sentence of the form ( ) where is any formula
that uses the predicates in the KB, and is a new predicate that does not appear in
the KB. For example, we might have a vivid KB that uses the predicate and

, and we could add a sentence like

( ) ( ) ( )

These sentences serve essentially to define the new predicate in terms of the old
ones.

We can still reason efficiently with a vivid KB that has been extended with defi-
nitions in this way: if we have a query that contains a terms ( . . . ) where is
one of the defined predicates, we can simply replace it in the query by ( . . . ),
and continue as before. Note that this formula can contain arbitrary logical op-
erations (including disjunctions and existential quantifications) since they will end
up being part of the query, not of the KB. Furthermore, it is not too hard to see that
we could allow recursive definitions like

( ) ( ) ( ( ) ( ))

provided that we were careful about how the expansion would take place. In this
case, it would be undecidable whether or not a sentence was entailed, but arguably,
this would be a very modest and manageable form of undecidability.

1 2

1 2
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This idea of a vivid KB together with definitions of unrestricted logical form has
a clear connection with . A good case can be made that in fact this, rather
than Horn clauses, is the proper way to understand from a Knowledge
Representation point of view.

Having seen various forms of limited special-purpose reasoning algorithms, we
might pose the natural question of whether or not these can be combined in a single
system. What we would like is a system that can use efficient procedures such as
equation solvers or subsumption checkers as appropriate, but can also do general
first-order reasoning (like reasoning by cases) in those perhaps rare situations where
it is necessary to do so. We might have, for example, a Resolution-based reasoning
system where we attempt, as much as possible, to use special-purpose reasoning
procedures whenever we can, as part of the derivation process.

One proposal in this direction is what is called . The idea
here is that procedures can be attached to certain function and predicate symbols.
For example, in the domain of numbers, we might attach the obvious procedures to
the function and the predicate . Then, when we are dealing with a
clause that has ground instances of these expressions, we attempt to them
before passing them on to Resolution. For example, the literal ( (5 3) )
would simplify to ( 15 ) using the procedure attached to . Similarly, a
clause of the form [ ( (36 6) 5) ] would simplify to itself,
once the first literal had simplified to . Obviously this reasoning could be done
without semantic attachment using Resolution and the axioms of arithmetic. How-
ever, as we argued, there is much to be gained by using special-purpose procedures.

A more general version of this idea that is not restricted to ground terms is
what is called . The idea here is to build a background theory into
the unification process itself, the way paramodulation encodes a theory of equality.
Rather than attaching procedures to functions and predicates, we imagine that the
special-purpose reasoner will extend the notion of which literals are considered to
be complementary. For example, suppose we have two clauses,

[ (2 )] and [ ( 1)]

Using a background theory of , we can inform Resolution that the two
literals in question are complementary, exactly as if one had been and the other
had been . In this case, we would get the theory resolution resolvent ( ) in
one step, using this special-purpose reasoner.



www.manaraa.com

residue



_ : _

_

_ : _

_ _ :

P x x Q y

P Q y

P x x Q y :

P Q y ;

16.6 Bibliographic notes

16.7 Exercises

2003 R. Brachman and H. Levesque July 17, 2003

Male Bachelor john

Male Bachelor

john

Male Bachelor john

Male Bachelor

john Single john

c 331

One nice application of theory resolution is the incorporation of a description
logic into Resolution. Suppose that some of the predicates in a Resolution system
are the names of concepts defined elsewhere in a description logic system. For
example, we might have the two clauses

[ ( ) ( )] and [ ( ) ( )]

where no Resolution steps are possible. However, if both and are
defined in a description logic, we can determine that the former subsumes the latter,
and so the two literals are indeed complementary. Thus, we infer the clause

[ ( ) ( )]

by theory resolution. In this case, we are using a description logic procedure to
quickly decide if two predicates are complementary, instead of letting Resolution
work with meaning postulates, as discussed earlier.

One concern in doing this type of hybrid reasoning is making sure we do not
miss any conclusions: we would like to draw exactly the same conclusions we
would get if we used the axioms of a background theory. To preserve this form of
completeness, it is sometimes necessary to consider literals that are “almost com-
plementary”. Consider, for example, the two clauses

[ ( ) ( )] and [ ( ) ( )]

There are no complementary literals here, even assuming and have
their normal definitions. However, there is a connection between the two literals,
in that they are contradictory unless the individual in question is married. Thus, we
would say that the two clauses should resolve together to produce the clause

[ ( ) ( ) ( )]

where the third literal in the clause is considered to be a of the unification.
It is a simple matter in description logics to calculate such residues, and it turns
out that without them, or without a significantly more complex form of Resolution,
completeness would be lost.

x x x x :
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Figure 16.1: A taxonomy of pets

guppyhamster goldfishgerbilmousedogferretcatsnaketurtle

rodent
rodent
eater

carnivorous
mammal

fish
eater

fishmammalcarnivorereptile

pet

1. Many of the disjunctive facts that arise in practice state that a specific in-
dividual has one property or another, where the two properties are similar.
For example, we may want to represent the fact that a person is either 4 or
5 years old, that a car is either a Chevrolet or a Pontiac, or that a piece of
music is either by Mozart or by Haydn. In general, to calculate the entail-
ments of a KB containing such facts, we would need to use a mechanism
that considered each case individually, such as Resolution. However, when
the conditions being disjoined are sufficiently similar, a better strategy might
be to try to sidestep the case analysis by finding a single property that

the disjoined ones. For example, we might treat the original fact as if
it merely said that the person is a pre-schooler, that the car is made by GM,
and that the music is by a classical composer, none of which involve explicit
disjunctions.

Imagine that you have a KB which contains among other things a
of one place predicates like in Figure 16.1 that can be used to find subsuming
cases for disjunctions. Assume that this taxonomy is understood as exhaus-
tive, so that, for example, it implies

[ ( ) ( ) ( )]

(a) Given the above taxonomy, what single atomic sentence could be used
to replace the disjunction ( ( ) ( ))? Explain why no
information is lost in this translation.

(b) What atomic sentence would replace the disjunction

( ( ) ( ))?
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In this case, information about Stan is lost. Give an example of a sen-
tence that follows from the original KB containing the disjunction, but
that no longer follows once the disjunction is eliminated.

(c) What should happen to the disjunction

( ( ) ( ) ( ))?

(d) Present informally a procedure which, given a taxonomy like the above
and a disjunction ( ( ) . . . ( )) where the are predicates that
may or may not appear in the taxonomy, replaces it by a disjunction
containing as few cases as possible.

(e) Argue that a reasoning process that first eliminates disjunctions as we
have done above will always be .

2. In Chapter 11, we saw that under the closed world assumption, complex
queries can be broken down to queries about their parts. In particular, re-
stricting ourselves to the propositional case, for any formulas and , we
have that KB = ( ) iff KB = or KB = . This way of handling
disjunction clearly does not work for regular entailment since, for instance,
( ) = ( ) but ( ) = and ( ) = .

(a) Prove that this way of handling disjunction work for regular en-
tailment when the KB happens to be a complete set of literals (that is,
containing every atom or its negation).

(b) Show that the completeness of the KB matters here by finding a set of
literals and formulas and such that = ( ), = , = ,
and = ( ).

(c) Prove that when a KB is a set of literals (not necessarily complete) and
also and have no atoms in common, then once again KB = ( )
iff KB = or KB = .

3. In this question we will consider reasoning with a vivid KB and ,
in a simple propositional form. So assume that a KB consists of two parts,
a vivid part , which is a complete and consistent set of literals over some
set of atoms , and for some set of atoms . . . not in , a set of
definitions = ( ) . . . ( ) , where each is an arbitrary
propositional formula whose atoms are all from . Intuitively, we are using

to define as . We want to examine the conditions under which we can
reason efficiently with such a KB.

0

0

0
0 0
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(a) Prove that for any propositional formula , that entails ( ),
where is like except with replaced by . show by induc-
tion on the size of that any interpretation satisfying will satisfy
iff it satisfies .

(b) Using part (a), prove that for any propositional formula , KB entails
iff entails , where is as above.

(c) Explain using part (b) how it is possible to efficiently determine whether
KB entails an arbitrary propositional . State precisely what assump-
tions are needed regarding the sizes of the various formulas.

(d) Would this this still work if were a collection of propositional Horn
clauses? Explain briefly.

(e) Suppose that contained “necessary but not sufficient conditions” (like
we saw in description logics) of the form ( ). might contain,
for example, ( ). For efficiency reasons, it would be nice to
still replace by and then use , as we did above. Give an example
showing that the resulting reasoning process would not be sound.

(f) Under the same conditions as part (e), suppose that instead of using
and , we use , defined as follows: when ( ) is in , we
replace in by as before; but when ( ) is in , we replace

by ( ), where is some new atom used nowhere else. The idea
here is that we are treating ( ) as if it were ( ( )) for
some atom about which we know nothing. Show that the reasoning
process is now both sound and complete. repeat the argument
from part (b).

4. Consider the following KB:

( ) ( )
[ ( ) ( ( ))]

From this KB, we would like to conclude that but
obviously this cannot be done as is using ordinary Resolution, without saying
more about the predicates involved.

Imagine a version of Theory Resolution that works with Description Logic
from Chapter 9 as follows: for unary predicates, instead of requiring ( ) in
one clause and ( ) in the other (where and are unifiable), we instead
allow ( ) in one clause and ( ) in the other provided that subsumes
The assumption here is that some of the unary predicates in the KB will have
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associated definitions in Description Logic. In the above example, assume
we have the following:

= [ ]
= [ ]

where , , and are primitive concepts.

(a) Show using Theory Resolution that the conclusion now follows.

(b) Show that this derivation is by writing meaning postulates MP
for the two definitions such that the conclusion is entailed by KB MP.

(c) Show that this form of Theory Resolution is by finding a
sentence that is entailed by KB MP, but not derivable from KB using
Theory Resolution as above.

5. We saw in Section 16.5.1 that it was possible to determine entailments effi-
ciently when a KB was an arbitrary set of literals (not necessarily complete)
and the query was small relative to the size of the KB. In this question, we will
generalize this result to Horn KBs. More precisely, assume that KB 2 ,
where KB is a set of propositional Horn clauses, and is an arbitrary propo-
sitional sentence. Prove that it is possible to decide whether KB entails in
time that is polynomial in |KB|. Why does this not work if is the same size
as the KB?

6. In this question, we will explore a different way of dealing with the compu-
tational intractability of ordinary deductive reasoning than what we saw in
the text. The idea is that instead of determining if KB = which can be
too difficult in general, we determine if KB = where = is a variant of =
that is easier to calculate. To define this variant, we first need two auxiliary
definitions:

maximally satisfies

(a) If a set of clauses has a maximally satisfying interpretation then it is
clearly satisfiable, but the converse need not hold. Present a set of
clauses (with no unit clauses) that is satisfiable but not maximally sat-
isfiable.
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For any set of (propositional) clauses let BP which is the
of be the set of clauses resulting from resolving away

all unit clauses in More formally, for any literal such that let
Then

BP is the result of starting with and any unit clause in calculating
and then repeating this process with (assuming it contains a unit

clause) and so on, until no unit clauses remain.

BP

BP

BP

BP

iff BP is not maximally satisfiable.
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(b) Let be a set of Horn clauses with no unit clauses and no empty clause.
Show that is always maximally satisfiable.

(c) For any set of clauses, let ( ) = [ ] for some
= Prove that when contains no unit clauses,

maximally satisfies iff satisfies ( )

In the second definition, we eliminate unit clauses from a set of clauses:

( )
binary propagation

[ ]
=

( ) [ ]

(d) What is ( ) when is

[ ] [ ] [ ] [ ] [ ] [ ] [ ] ?

(e) Present an example of a unsatisfiable set of clauses such that ( )
contains the empty clause, and another unsatisfiable set such that

( ) does not contain the empty clause.

(f) Prove that is satisfiable iff ( ) is satisfiable. It is sufficient to prove
that for any and such that [ ] = iff = and =
and the rest follows by induction.

Finally, we define KB = where for simplicity, we assume that KB is a set
of clauses and is atomic:

KB = (KB [ ] )

(g) Present an example KB and a query such that = does not give the
same answer as =. Use part (a) above. Explain whether reasoning
with = is unsound or incomplete (or both).

(h) Prove that reasoning with = is both sound and complete for a KB that is
Horn. Where is Horn, consider the cases according to whether

( ) contains the empty clause, and use parts (b) and (f) above.
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(i) Argue that for any KB it is possible to determine if KB = in poly-
nomial time. You may use the fact that ( ) can be calculated in
polynomial time, and that 2SAT ( satisfiability restricted to clauses
of length 2) can also be solved in polynomial time.

(j) Call a set of clauses if a set of Horn clauses could be
produced by inverting some of its atomic formulas, that is, by replacing
all occurrences of the letter by its negation. Is = sound and complete
for a KB that is generalized Horn? Explain.
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